
Parallel I/O

SciNet
www.scinet.utoronto.ca
University of Toronto

Toronto, Canada

October 19, 2010

Outline / Schedule

1 Introduction

2 File Systems and I/O

3 Data Management

4 Break

5 Parallel I/O

6 MPI-IO

7 HDF5/NETCDF

Disk I/O

Common Uses

Checkpoint/Restart Files

Data Analysis

Data Organization

Time accurate and/or Optimization Runs

Batch and Data processing

Database

Disk I/O

Common Bottlenecks

Mechanical disks are slow!

System call overhead (open, close, read, write)

Shared file system (nfs, lustre, gpfs, etc)

HPC systems typically designed for high bandwidth (GB/s)
not IOPs

Uncoordinated independent accesses

Disk Access Rates over Time

Figure by R. Ross, Argonne National Laboratory, CScADS09

Memory/Storage Latency

Figure by R. Freitas and L Chiu, IBM Almaden Labs, FAST’10

Definitions

IOPs

Input/Output Operations Per Second (read,write,open,close,seek)

I/O Bandwidth

Quantity you read/write (think network bandwidth)

Comparisons

Device Bandwidth (MB/s) per-node IOPs per-node

SATA HDD 100 100 100 100
SSD HDD 250 250 4000 4000
SciNet 5000 1.25 30000 7.5

SciNet Filesystem

File System

1,790 1TB SATA disk drives, for a total
of 1.4PB

Two DCS9900 couplets, each delivering:

4-5 GB/s read/write access (bandwidth)
30,000 IOPs max (open, close, seek, . . .)

Single GPFS file system on TCS and GPC

I/O goes over Gb ethernet network on GPC
(infiniband on TCS)

File system is parallel!

I/O Software Stack

Parallel File System

Parallel File System

Parallel File System

Parallel File System

Parallel File System

Parallel File System

Parallel File System

Parallel File System

Parallel File System

File Locks

Most parallel file systems use locks to manage concurrent file
access

Files are broken up into lock units

Clients obtain locks on units that they will access before I/O
occurs

Enables caching on clients as well (as long as client has a
lock, it knows its cached data is valid)

Locks are reclaimed from clients when others desire access

Parallel File System

Optimal for large shared files.

Behaves poorly under many small reads and writes, high IOPs

Your use of it affects everybody!
(Different from case with CPU and RAM which are not
shared.)

How you read and write, your file format, the number of files
in a directory, and how often you ls, affects every user!

The file system is shared over the ethernet network on GPC:
Hammering the file system can hurt process communications.

File systems are not infinite!
Bandwidth, metadata, IOPs, number of files, space, . . .

Parallel File System

2 jobs doing simultaneous I/O can take much longer than
twice a single job duration due to disk contention and
directory locking.

SciNet: 500+ users doing I/O from 4000 nodes.
That’s a lot of sharing and contention!

I/O Best Practices

Make a plan

Make a plan for your data needs:

How much will you generate,
How much do you need to save,
And where will you keep it?

Note that /scratch is temporary storage for 3 months or less.

Options?

1 Save on your departmental/local server/workstation
(it is possible to transfer TBs per day on a gigabit link);

2 Apply for a project space allocation at next RAC call
(but space is very limited);

3 Buy tapes through us ($100/TB) and we can archive your
data to tape; HSM possibility within next 6 months;

4 Change storage format.

I/O Best Practices

Monitor and control usage

Minimize use of filesystem commands like ls and du.

Regularly check your disk usage using
/scinet/gpc/bin/diskUsage.

Warning signs which should prompt careful consideration:

More than 100,000 files in your space
Average file size less than 100 MB

Monitor disk actions with top and strace

RAM is always faster than disk; think about using ramdisk.

Use gzip and tar to compress files to bundle many files into
one

Try gziping your data files. 30% not atypical!

Delete files that are no longer needed

Do ”housekeeping” (gzip, tar, delete) regularly.

I/O Best Practices

Do’s

Write binary format files
Faster I/O and less space than ASCII files.

Use parallel I/O if writing from many nodes

Maximize size of files. Large block I/O optimal!

Minimize number of files. Makes filesystem more responsive!

Don’ts

Don’t write lots of ASCII files. Lazy, slow, and wastes space!

Don’t write many hundreds of files in a 1 directory. (File
Locks)

Don’t write many small files (< 10MB).
System is optimized for large-block I/O.

1 Introduction

2 File Systems and I/O

3 Data Management

4 Break

5 Parallel I/O

6 MPI-IO

7 HDF5/NETCDF

Data Management

Formats

ASCII

Binary

MetaData (XML)

Databases

Standard Library’s (HDF5,NetCDF)

ASCII

American Standard Code for Information Interchange

Pros

Human Readable

Portable (architecture independent)

Cons

Inefficient Storage

Expensive for Read/Write (conversions)

Native Binary

100100100

Pros

Efficient Storage (256 x floats @4bytes takes 1024 bytes)

Efficient Read/Write (native)

Cons

Have to know the format to read

Portability (Endianness)

ASCII vs. binary

Writing 128M doubles

Format /scratch (GPCS) /dev/shm (RAM) /tmp (disk)

ASCII 173s 174s 260s
Binary 6s 1s 20s

Syntax

Format C FORTRAN

ASCII fprintf() open(6,file=’test’,form=’formatted’)
write(6,*)

Binary fwrite() open(6,file=’test’,form=’unformatted’)
write(6)

Metadata

What is Metadata?

Data about Data

File System: size, location, date, owner, etc.

App Data: File format, version, iteration, etc.

Example: XML

<?xml version="1.0" encoding="UTF-8" ?>
<slice_data>
<format>UTF1000</format>
<verstion>6.8</version>

<date> January 15th, 2010 </date>
<loc> 47 23.516 -122 02.625 </loc>

</slice_data>

Databases

Beyond flat files

Very powerful and flexible storage approach

Data organization and analysis can be greatly simplified

Enhanced performance over seek/sort depending on usage

Open Source Software

SQLite (serverless)
PostgreSQL
mySQL

“Standard” Formats

CGNS (CFD General Notation System)

IGES/STEP (CAD Geometry)

HDF5 (Hierarchical Data Format)

NetCDF (Network Common Data Format)

disciplineX version

HDF5/NetCDF - Serial

Jonathan

1 Introduction

2 File Systems and I/O

3 Data Management

4 Break

5 Parallel I/O

6 MPI-IO

7 HDF5/NETCDF

1 Introduction

2 File Systems and I/O

3 Data Management

4 Break

5 Parallel I/O

6 MPI-IO

7 HDF5/NETCDF

Common Ways of Doing Parallel I/O

Sequential I/O (only proc 0 Writes/Reads)

Pro

Trivially simple for small I/O
Some I/O libraries not parallel

Con

Bandwidth limited by rate one client can sustain
May not have enough memory on node to hold all data
Won’t scale (built in bottleneck)

Common Ways of Doing Parallel I/O

N files for N Processes

Pro

No interprocess communication or coordination necessary
Possibly better scaling than single sequential I/O

Con

As process counts increase, lots of (small) files, won’t scale
Data often must be post-processed into one file
Uncoordinated I/O may swamp file system (File LOCKS!)

Common Ways of Doing Parallel I/O

All Processes Access One File

Pro

Only one file
Data can be stored canonically, avoiding post-processing
Will scale if done correctly

Con

Uncoordinated I/O WILL swamp file system (File LOCKS!)
Requires more design and thought

Parallel I/O

What is Parallel I/O?

Multiple processes of a parallel program accessing data (reading or
writing) from a common file.

Parallel I/O

Why Parallel I/O?

Non-parallel I/O is simple but:

Poor performance (single process writes to one file)
Awkward and not interoperable with other tools (each process
writes a separate file)

Parallel I/O

Higher performance through collective and contiguous I/O
Single file (visualization, data management, storage, etc)
Works with file system not against it

Contiguous and Noncontiguous I/O

Contiguous I/O move from a single memory block into a single file block

Noncontiguous I/O has three forms:

Noncontiguous in memory, in file, or in both

Structured data leads naturally to noncontiguous I/O
(e.g. block decomposition)

Describing noncontiguous accesses with a single operation passes more
knowledge to I/O system

Independent and Collective I/O

Independent I/O operations specify only what a single process will do

calls obscure relationships between I/O on other processes

Many applications have phases of computation and I/O

During I/O phases, all processes read/write data
We can say they are collectively accessing storage

Collective I/O is coordinated access to storage by a group of processes

functions are called by all processes participating in I/O
Allows file system to know more about access as a whole, more

optimization in lower software layers, better performance

Parallel I/O

Available Approaches

MPI-IO: MPI-2 Language Standard

HDF (Hierarchical Data Format)

NetCDF (Network Common Data Format)

Adaptable IO System (ADIOS)

Actively developed (OLCF,SandiaNL,GeorgiaTech) and used
on largest HPC systems (Jaguar,Blue Gene/P)
External to the code XML file describing the various elements
Uses MPI-IO, can work with HDF/NetCDF

MPI-IO

MPI-IO

MPI-IO

MPI

MPI: Message Passing Interface

Language-independent communications protocol used to
program parallel computers.

MPI-IO: Parallel file access protocol

MPI-IO: The parallel I/O part of the MPI-2 standard (1996).

Many other parallel I/O solutions are built upon it.

Versatile and better performance than standard unix I/O.

Usually collective I/O is the most efficient.

MPI-IO

Advantages MPI-IO

noncontiguous access of files and memory

collective I/O

individual and shared file pointers

explicit offsets

portable data representation

can give hints to implementation/file system

no text/formatted output!

MPI-IO

MPI concepts

Process: An instance of your program, often 1 per core.

Communicator: Groups of processes and their topology.
Standard communicators:

MPI COMM WORLD: all processes launched by mpirun.
MPI COMM SELF: just this process.

Size: the number of processes in the communicator.

Rank: a unique number assigned to each process in the
communicator group.

When using MPI, each process always call MPI INIT at the
beginning and MPI FINALIZE at the end of your program.

MPI-IO

Basic MPI code example

in C:
#include <mpi.h>

int main(int argc,char**argv)

{
int rank,nprocs;

MPI Init(&argc,&argv);

MPI Comm size

(MPI COMM WORLD,&nprocs);

MPI Comm rank

(MPI COMM WORLD,&rank);

...

MPI Finalize();

return 0;

}

in Fortran:
program main

include 'mpif.h'

integer rank,nprocs

integer ierr

call MPI INIT(ierr)

call MPI COMM SIZE &

(MPI COMM WORLD,nprocs,ierr)

call MPI COMM RANK &

(MPI COMM WORLD,rank,ierr)

...

call MPI FINALIZE(ierr)

return

end

MPI-IO

MPI-IO exploits analogies with MPI

Writing ↔ Sending message

Reading ↔ Receiving message

File access grouped via communicator: collective operations

User defined MPI datatypes for e.g. noncontiguous data layout

IO latency hiding much like communication latency hiding
(IO may even share network with communication)

All functionality through function calls.

MPI-IO
Basic I/O Operations - C

int MPI File open(MPI Comm comm,char*filename,int amode,
MPI Info info, MPI File* fh)

int MPI File seek(MPI File fh,MPI Offset offset,int to)

int MPI File set view(MPI File fh, MPI Offset disp,
MPI Datatype etype,
MPI Datatype filetype,
char* datarep, MPI Info info)

int MPI File read(MPI File fh, void* buf, int count,
MPI Datatype datatype,MPI Status*status)

int MPI File write(MPI File fh, void* buf, int count,
MPI Datatype datatype,MPI Status*status)

int MPI File close(MPI File* fh)

MPI-IO
Basic I/O Operations - Fortran

MPI FILE OPEN(comm,filename,amode,info,fh,ierr)
character*(*) filename
integer comm,amode,info,fh,ierr
MPI FILE SEEK(fh,offset,whence,ierr)
integer(kind=MPI OFFSET KIND) offset
integer fh,whence,ierr
MPI FILE SET VIEW(fh,disp,etype,filetype,datarep,info,ierr)
integer(kind=MPI OFFSET KIND) disp
integer fh,etype,filetype,info,ierr
character*(*) datarep
MPI FILE READ(fh,buf,count,datatype,status,ierr)
〈type〉 buf(*)
integer fh,count,datatype,status(MPI STATUS SIZE),ierr
MPI FILE WRITE(fh,buf,count,datatype,status,ierr)
〈type〉 buf(*)
integer fh,count,datatype,status(MPI STATUS SIZE),ierr
MPI FILE CLOSE(fh)
integer fh

MPI-IO
Opening and closing a file

Files are maintained via file handles. Open files with MPI File open.
The following codes open a file for reading, and close it right away:

in C:
MPI FILE fh;

MPI File open(MPI COMM WORLD,"test.dat",MPI MODE RDONLY,

MPI INFO NULL,&fh);

MPI File close(&fh);

in Fortran:
integer fh,ierr

call MPI FILE OPEN(MPI COMM WORLD,"test.dat",&

MPI MODE RDONLY,MPI INFO NULL,fh,ierr)

call MPI FILE CLOSE(fh,ierr)

MPI-IO

Opening a file requires...

communicator,
file name,
file handle, for all future reference to file,
file mode, made up of combinations of:
MPI MODE RDONLY read only
MPI MODE RDWR reading and writing
MPI MODE WRONLY write only
MPI MODE CREATE create file if it does not exist
MPI MODE EXCL error if creating file that exists
MPI MODE DELETE ON CLOSE delete file on close
MPI MODE UNIQUE OPEN file not to be opened elsewhere
MPI MODE SEQUENTIAL file to be accessed sequentially
MPI MODE APPEND position all file pointers to end
info structure, or MPI INFO NULL,
In Fortran, error code is the function’s last argument
In C, the function returns the error code.

MPI-IO

etypes, filetypes, file views

To make binary access a bit more natural for many applications,
MPI-IO defines file access through the following concepts:

1 etype: Allows to access the file in units other than bytes.
Some parameters have to be given in bytes.

2 filetype: Each process defines what part of a shared file it uses.

Filetypes specify a pattern which gets repeated in the file.
Useful for noncontiguous access.
For contiguous access, often etype=filetype.

3 displacement: Where to start in the file, in bytes.

Together, these specify the file view, set by MPI File set view.
Default view has etype=filetype=MPI BYTE and displacement 0.

MPI-IO
Contiguous Data

Processes

P(0)q P(1)q P(2)q P(3)q .

↓ ↓ ↓ ↓ .

view(0) q view(1) q view(2) q view(3) qq

One file

int buf[...];

MPI Offset bufsize=...;

MPI File open(MPI COMM WORLD,"file",MPI MODE WRONLY,

MPI INFO NULL,&fh);

MPI Offset disp=rank*bufsize*sizeof(int);

MPI File set view(fh,disp,MPI INT,MPI INT,"native",

MPI INFO NULL);

MPI File write(fh,buf,bufsize,MPI INT,MPI STATUS IGNORE);

MPI File close(&fh);

MPI-IO
Overview of all read functions

Single task Collective

Individual file pointer

blocking MPI File read MPI File read all

nonblocking MPI File iread MPI File read all begin

+(MPI Wait) MPI File read all end

Explicit offset

blocking MPI File read at MPI File read at all

nonblocking MPI File iread at MPI File read at all begin

+(MPI Wait) MPI File read at all end

Shared file pointer

blocking MPI File read shared MPI File read ordered

nonblocking MPI File iread shared MPI File read ordered begin

+(MPI Wait) MPI File read ordered end

MPI-IO
Overview of all write functions

Single task Collective

Individual file pointer

blocking MPI File write MPI File write all

nonblocking MPI File iwrite MPI File write all begin

+(MPI Wait) MPI File write all end

Explicit offset

blocking MPI File write at MPI File write at all

nonblocking MPI File iwrite at MPI File write at all begin

+(MPI Wait) MPI File write at all end

Shared file pointer

blocking MPI File write shared MPI File write ordered

nonblocking MPI File iwrite shared MPI File write ordered begin

+(MPI Wait) MPI File write ordered end

MPI-IO

Collective vs. single task

After a file has been opened and a fileview is defined, processes
can independently read and write to their part of the file.

If the IO occurs at regular spots in the program, which different
processes reach the same time, it will be better to use collective
I/O: These are the all versions of the MPI-IO routines.

Two file pointers

An MPI-IO file has two different file pointers:

1 individual file pointer: one per process.

2 shared file pointer: one per file: shared/ ordered

‘Shared’ doesn’t mean ‘collective’, but does imply synchronization!

MPI-IO
Strategic considerations

Pros for single task I/O

One can virtually always use only indivivual file pointers,

If timings variable, no need to wait for other processes

Cons

If there are interdependences between how processes write,
there may be collective I/O operations may be faster.

Collective I/O can collect data before doing the write or read.

True speed depends on file system, size of data to write and
implementation.

MPI-IO
Noncontiguous Data

Processes

P(0)q P(1)q P(2)q P(3)q .

↙ ↘ etc. .

q qq

One file

Filetypes to the rescue!

Define a 2-etype basic MPI Datatype.

Increase its size to 8 etypes.

Shift according to rank to pick out the right 2 etypes.

Use the result as the filetype in the file view.

Then gaps are automatically skipped.

MPI-IO
Overview of data/filetype constructors

Function Creates a. . .

MPI Type contiguous contiguous datatype
MPI Type vector vector (strided) datatype
MPI Type indexed indexed datatype
MPI Type indexed block indexed datatype w/uniform block length
MPI Type create struct structured datatype
MPI Type create resized type with new extent and bounds
MPI Type create darray distributed array datatype
MPI Type create subarray n-dim subarray of an n-dim array
...

Before using the create type, you have to do MPI Commit.

MPI-IO
Accessing a noncontiguous file type

q qq

in C:
MPI Datatype contig, ftype;

MPI Datatype etype=MPI INT;

MPI Aint extent=sizeof(int)*8; /* in bytes! */

MPI Offset d=2*sizeof(int)*rank; /* in bytes! */

MPI Type contiguous(2,etype,&contig);

MPI Type create resized(contig,0,extent,&ftype);

MPI Type commit(&ftype);

MPI File set view(fh,d,etype,ftype,"native",

MPI INFO NULL);

MPI-IO
Accessing a noncontiguous file type

q qq

in Fortran:
integer :: etype,extent,contig,ftype,ierr

integer(kind=MPI OFFSET KIND) :: d

etype=MPI INT

extent=4*8

d=4*rank

call MPI TYPE CONTIGUOUS(2,etype,contig,ierr)

call MPI TYPE CREATE RESIZED(contig,0,extent,ftype,ierr)

call MPI TYPE COMMIT(ftype,ierr)

call MPI FILE SET VIEW(fh,d,etype,ftype,"native",

MPI INFO NULL,ierr)

MPI-IO

File data representation

native: Data is stored in the file as it is in memory:
no conversion is performed. No loss in
performance, but not portable.

internal: Implementation dependent conversion.
Portable across machines with the same
MPI implementation, but not across
different implementations.

external32: Specific data representation, basically
32-bit big-endian IEEE format. See MPI
Standard for more info. Completely
portable, but not the best performance.

These have to be given to MPI File set view as strings.

MPI-IO

More noncontiguous data: subarrays

What if there’s a 2d matrix that is distributed across processes?

proc0q proc1q proc2q proc3q .

.q .q .q .q .q .q .q .q .q .q .q .q .q .q .q .q

.q .q .q .q .q .q .q .q .q .q .q .q .q .q .q .q

.q .q .q .q .q .q .q .q .q .q .q .q .q .q .q .q

.q .q .q .q .q .q .q .q .q .q .q .q .q .q .q .q

.q .q .q .q .q .q .q .q .q .q .q .q .q .q .q .q

.q .q .q .q .q .q .q .q .q .q .q .q .q .q .q .q

q

Common cases of noncontiguous access → specialized functions:
MPI File create subarray & MPI File create darray.

MPI-IO
More noncontiguous data: subarrays

int gsizes[2]={16,6};
int lsizes[2]={8,3};
int psizes[2]={2,2};
int coords[2]={rank%psizes[0],rank/psizes[0]};
int starts[2]={coords[0]*lsizes[0],coords[1]*lsizes[1]};
MPI Type create subarray(2,gsizes,lsizes,starts,,

MPI ORDER C,MPI INT,&filetype);

MPI Type commit(&filetype);

MPI File set view(fh,0,MPI INT,filetype,"native",

MPI INFO NULL);

MPI File write all(fh,local array,local array size,MPI INT,

MPI STATUS IGNORE);

Tip

MPI Cart create can be useful to compute coords for a proc.

MPI-IO
Example: N-body MD checkpointing

Challenge

Simulate n-body molecular dynamics, Lennard-Jones potential.

Parallel MPI run: atoms distributed.

At intervals, checkpoint the state of system to 1 file.

Restart should be allowed to use more or less mpi processes.

Restart should be efficient.

State of the system: total of tot atoms with properties:

struct Atom {
double q[3];

double p[3];

long long tag;

long long id;

};

type atom

double precision :: q(3)

double precision :: p(3)

integer(kind=8) :: tag

integer(kind=8) :: id

end type atom

MPI-IO
Example: N-body MD checkpointing

Issues

Atom data more than array of doubles: indices etc.

Writing problem: processes have different # of atoms
how to define views, subarrays, ... ?

Reading problem: not known which process gets which atoms.

Even worse if number of processes is changed in restart.

Approach

Abstract the atom datatype.

Compute where in file each proc. should write + how much.

Store that info in header.

Restart with same nprocs is then straightforward.

Different nprocs: MPI exercise outside scope of 1-day class.

MPI-IO
Example: N-body MD checkpointing

Defining the Atom etype
struct Atom atom;

int i,len[4]={3,3,1,1};
MPI Aint addr[5];

MPI Aint disp[4];

MPI Get address(&atom,&(addr[0]));

MPI Get address(&(atom.q[0]),&(addr[1]));

MPI Get address(&(atom.p[0]),&(addr[2]));

MPI Get address(&atom.tag,&(addr[3]));

MPI Get address(&atom.id,&(addr[4]));

for (i=0;i<4;i++)

disp[i]=addr[i]-addr[0];

MPI Datatype t[4]

={MPI DOUBLE,MPI DOUBLE,MPI LONG LONG,MPI LONG LONG};
MPI Type create struct(4,len,disp,t,&MPI ATOM);

MPI Type commit(&MPI ATOM);

MPI-IO
Example: N-body MD checkpointing

File structure

totq pq n[0]q n[1]q.. n[p-1]q n[0]×atomsq n[1]×atomsq.. n[p-1]×atomsq︸ ︷︷ ︸
header: integers

︸ ︷︷ ︸
body: atoms

Functions

void cpwrite(struct Atom* a, int n, MPI Datatype t,
char* f, MPI Comm c)

void cpread(struct Atom* a, int* n, int tot,
MPI Datatype t, char* f, MPI Comm c)

void redistribute() → consider done

MPI-IO: Checkpoint writing

void cpwrite(struct Atom*a,int n,MPI Datatype t,char*f,MPI Comm c){
int p,r;

MPI Comm size(c,&p);

MPI Comm rank(c,&r);

int header[p+2];

MPI Allgather(&n,1,MPI INT,&(header[2]),1,MPI INT,c);

int i,n below=0;

for(i=0;i<r;i++)

n below+=header[i+2];

MPI File h;

MPI File open(c,f,MPI MODE CREATE|MPI MODE WRONLY,MPI INFO NULL,&h);

if(r==p-1){
header[0]=n below+n;

header[1]=p;

MPI File write(h,header,p+2,MPI INT,MPI STATUS IGNORE);

}
MPI File set view(h,(p+2)*sizeof(int),t,t,"native",MPI INFO NULL);

MPI File write at(h,n below,a,n,t,MPI STATUS IGNORE);

MPI File close(&h);

}

MPI-IO
Example: N-body MD checkpointing

Reading and redistributing atoms

Copy example lj code to your own directory.
$ cp -r ~rzon/Courses/lj .

$ cd lj

Get your environment setup with
$ source ./envsetup

Type ’make’ to build.
$ make

Run:
$ mpirun -np 8 lj run.ini

Creates 70778.cp as a checkpoint (try ls -l).

Rerun to see that it successfully reads the checkpoint.

Run again with different # of processors. What happens?

MPI-IO
Example: N-body MD checkpointing

Reading and redistributing atoms

The lj program has an option to produce an xsf file with the
trajectory, which can be displayed in vmd.

Edit run.ini, change the line “0” to “5”

Careful: xsf is an ascii format, and the file quickly gets huge!

Do:
mpirun -np 8 lj run.ini

Note difference in speed!

Open in vmd:
$ vmd pos.xsf

MPI-IO
Example: N-body MD checkpointing

Checking binary files

Interactive binary file viewer in ~rzon/Courses/lj: cbin
Useful for quickly checking your binary format, without having to
write a test program.

Start the program with:
$ cbin 70778.cp

Gets you a prompt, with the file loaded.

Commands at the prompt are a letter plus optional number.

E.g. i2 reads 2 integers, d6 reads 6 doubles.

Has support to reverse the endian-ness, switching between
loaded files, and moving the file pointer.

Type ’?’ for a list of commands.

Check the format of the file.

MPI-IO

Good References on MPI-IO

W. Gropp, E. Lusk, and R. Thakur, Using MPI-2: Advanced
Features of the Message-Passing Interface (MIT Press, 1999).

J. H. May, Parallel I/O for High Performance Computing
(Morgan Kaufmann, 2000).

W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk,
B. Nitzberg, W. Saphir, and M. Snir, MPI-2: The Complete
Reference: Volume 2, The MPI-2 Extensions
(MIT Press, 1998).

HDF5/NETCDF

	Introduction
	File Systems and I/O
	Data Management
	Break
	Parallel I/O
	MPI-IO
	HDF5/NETCDF

