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Material for this class

All the material for the HPC Summer School can be found here:

https:

//wiki.scinet.utoronto.ca/wiki/index.php/2016_Ontario_

Summer_School_for_High_Performance_Computing_Central

The slides for this class can be found here:

http://tinyurl.com/ss2016-R2

and at the SciNet education website:

http://support.scinet.utoronto.ca/education
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Getting set up on SciNet

Please perform the following steps to get yourself setup for today’s class.

ejspence@mycomp ~>
ejspence@mycomp ~> ssh ejspence@login.scinet.utoronto.ca -X

ejspence@scinet01-ib0 ~>
ejspence@scinet01-ib0 ~> ssh -X gpc03

ejspence@gpc-f103n084-ib0 ~>
ejspence@gpc-f103n084-ib0 ~> type the command below

qsub -l nodes=1:ppn=8,walltime=4:00:00 -X -q teach -I
.
.
.

ejspence@gpc-f108n045-ib0 ~>

It should only take a moment to get your compute node. Raise your hand
if it takes more than a minute.
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Getting setup on SciNet, continued

You now have your own compute node on SciNet. This is where you will
run the code for today’s class.

ejspence@gpc-f108n045-ib0 ~>
ejspence@gpc-f108n045-ib0 ~> pwd

/home/s/scinet/ejspence

ejspence@gpc-f108n045-ib0 ~> cd /scinet/course/ss2016/R

ejspence@gpc-f108n045-ib0 R>

ejspence@gpc-f108n045-ib0 R> pwd

/scinet/course/ss2016/R

ejspence@gpc-f108n045-ib0 R>

ejspence@gpc-f108n045-ib0 R> ls

code data pbd setup

ejspence@gpc-f108n045-ib0 R> source setup

ejspence@gpc-f108n045-ib0 R>

ejspence@gpc-f108n045-ib0 R> R

>

Erik Spence (SciNet HPC Consortium) Parallel R 12 July 2016 4 / 78

~
~
~


Scalable data analysis in R

One turns to parallel computing to solve one of two problems:

My program is too slow. Perhaps using more processors will make
things faster:

I Your program is compute bound.
I Tools to use: parallel/multicore, Rdsm.

My program crashes due to lack of memory. Perhaps splitting the
problem up into smaller pieces will allow it to run.

I Your program is memory bound.
I Tools to use: parallel/snow, pbdR.

Note what is not on this list:

My program constantly reads from, and write to, thousands of files,
and these operations are very slow.

These I/O-bound problems are not easily solved with parallelism (adding
more processors or nodes doesn’t usually help).
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R and memory

One must be cognisant of how R manages memory:

R is ”pass by value” if the variables being passed are being modified.
As such, R frequently needs to make temporary copies of variables,
and hitting the memory limit of your machine can be a frequent
problem.

Like many dynamic languages, R relies on ”garbage collection” to
limit its memory usage.

In a running code, ”every so often” a garbage collection task runs and
deletes variables that won’t be used any more.

You can force the garbage collector to run at any given time by
calling gc(), but this almost never fixes anything significant.

How can GC know that you’re not going to use that big variable in
the next line? The garbage collector needs your help to be effective.
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Useful memory-management commands

gc(verbose = TRUE), or just gc(TRUE)
I Calling gc(TRUE ) alone probably won’t help anything, but it does give

verbose output, returning memory usage as a matrix.

ls()
I Lists all existing variables, as strings.

object.size(variablename)
I Pass it a variable, and it prints out its size.
I Pass it get(”variablename”) and it will also print its size.

rm(variablename)
I Deletes a variable you no longer need. Lets gc go to work.

Fun little one-liner which prints out all variables by size in bytes:

> sort(sapply(ls(), function(x) {object.size(get(x))}), decreasing = TRUE)
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object.size() and gc()
Let’s play with object.size() and gc():

> gc()

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 183250 9.8 407500 21.8 350000 18.7

Vcells 377223 2.9 905753 7.0 864975 6.6

> old.mem <- gc()[, c(1:2, 5:6)]

> x <- rep(0., (16 * 1024)**2)

> xsize <- object.size(x)

> xsize

2147483688 bytes

> print(xsize, units = "MB")

2048 Mb

> new.mem <- gc()[, c(1:2, 5:6)]

> new.mem - old.mem
used (Mb) max used (Mb)

Ncells 445 0 0 0.0

Vcells 268436139 2048 268080411 2045.3
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object.size() and gc(), some more

Now let’s delete the object and see how system memory behaves:

> rm(x)

>

> final.mem <- gc()[, c(1:2, 5:6)]

>

> final.mem - old.mem
used (Mb) max used (Mb)

Ncells 451 0.1 0 0.0

Vcells 1781 0.0 268080411 2045.4

>
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It’s better to use functions

Be sure to rm() any temporary intermediate variables.

> trunc.gc <- function() {gc()[, c(1:2, 5:6)]}
> orig.gc <- trunc.gc()

> x <- rnorm(16 * 1024 * 1024)

> s <- sum(x)

> s

[1] -1851.947

> rm(x)

> after.gc <- trunc.gc()

> after.gc - orig.gc

used (Mb) max used (Mb)

Ncells 35 0 0 0

Vcells 362 0 0 0

>
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Out-of-core computation

Some problems require doing fairly simple analysis on data that is too
large to fit into memory

Min/mean/max.

Data cleaning.

Even linear fitting is pretty simple.

In this case, one processor may be enough; you just want a way to not run
out of memory.

”Out of core” or ”external memory” computation leaves the data on disk,
bringing into memory only what is needed, or what fits, at any given time.

For some computations, this works out well (but note: disk access is
always much slower than memory access).
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Out-of-core computation

The ”bigmemory” package defines
a generalization of a matrix class,
big.matrix, which can be
”file-backed”. That is, can exist
primarily on disk, with parts being
brought into memory as necessary.

This approach works fairly well
when one’s data access involves
passing through the entire data set
once or a very small number of
times, either combining data or
extracting a subset.

Packages like ”bigalgebra” or
”biganalytics” build on bigmemory.
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Ideal gas data set
In data/idealgas, we have a set of synthetic data files describing an ideal
gas experiment - setting temperature, amount of material, and volume,
and measuring pressure.

Simple data sets:

> small.data <- read.csv("data/idealgas/ideal-gas-fixedT-small.csv")

> small.data[1:2,]

X pres vol n temp

1 1 99000 0.02036345 0.8 300

2 2 99250 0.02018306 0.8 300

Row name, pressure (Pa), volume (m3), N (moles), and temperature (K).

A larger data set consisting of 124M rows, 4.7 GB, is sitting in
ideal-gas-fixedT-large.csv, and we’d like to do some analysis of this data
set. But the size is a problem.
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Creating a file-backed big matrix
We’ve already created a big.matrix file from this data set, using

> # Don’t run this!

> data <- read.big.matrix("data/idealgas/ideal-gas-fixedT-large.csv",

+ header = TRUE, backingfile = "data/idealgas/ideal-gas-fixedT-large.bin",

+ descriptorfile = "ideal-gas-fixedT-large.desc")

>

This reads in the .csv file and outputs a binary equivalent (the
”backingfile”) and a descriptor (in the ”descriptorfile”) which contains all
of the information which describes the binary blob.

You can read the descriptorfile. At the command line type ”more
ideal-gas-fixedT-large.desc”. We’ve done this for you since the conversion
takes 12 minutes for this data set - kind of boring.

Note: this converts the data into a matrix, which is a less flexible data
type than a data frame; homogeneous type. Here, we’ll use all
numeric.
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Using a big.matrix

Let’s load the data set and see how memory behaves.

> library(bigmemory, quiet = TRUE)

>

> orig.gc <- trunc.gc()

> data <- attach.big.matrix("data/idealgas/ideal-gas-fixedT-large.desc")

>

> new.gc <- trunc.gc()

> new.gc - orig.gc

used (Mb) max used (Mb)

Ncells 4975 0.6 0 0

Vcells 18256 0.1 0 0

>

Erik Spence (SciNet HPC Consortium) Parallel R 12 July 2016 15 / 78



Using a big.matrix, continued

Let’s do some simple analysis on the data set and see how memory
behaves.

> data[1:2,]

pres vol n temp

[1,] 1 90000.0 0.01328657 0.5 280

[2,] 2 90012.5 0.01285503 0.5 280

>

> system.time(min.p <- min(data[,"pres"]))

user system elapsed

16.407 2.049 18.515

>

> trunc.gc() - orig.gc

used (Mb) max used (Mb)

Ncells 3077 0.2 0 0

Vcells 3484 0.1 0 0

>
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Using a big.matrix, continued more

That only took about 18 seconds to scan through 124M records to find a
minimum. Let’s try a few other calculations:

> min.p

[1] 90000

>

> system.time(max.p <- max(data[,"pres"]))

user system elapsed

16.300 0.328 16.640

>

> system.time(mean.t <- mean(data[,"temp"]))

user system elapsed

16.587 2.046 18.690

>
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Summary: bigmemory

If you just have a data file much larger than memory that you have to
crunch and the amount of actual computation is not a bottleneck, the
‘bigmemory‘ and related packages may be all you need.

Works best if:

Data is of homogeneous type - eg, all integer, all numeric, all string.

Just need to work on a subset of data at a time, or,

Just need to make one or two passes through the data to complete
analysis.
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Using multiple processors in R

The rest of today we will cover using multiple processors and/or nodes to
do large-scale computations in R.

no-work parallelism: existing packages.

”parallel” package:
I ”multicore” (use all cores on a computer): non-windows.
I ”snow” (use all cores on a computer, or across a cluster).

”foreach” package: different interface to similar functionality.

”Rdsm”: shared-memory parallelism (on-node) with big.matrix.

”pbdR”: massive-scale computation with MPI + R.
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Existing parallelism

It’s important to realize that many fundamental routines as well as
higher-level packages come with some degree of scalability and parallelism
”baked in”.

Open another terminal to your node, and run ”top” while executing the
following in R:

>

> n <- 4 * 1024

>

> A <- matrix( rnorm(n * n), ncol = n, nrow = n )

> B <- matrix( rnorm(n * n), ncol = n, nrow = n )

>

> C <- A %*% B

>
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Existing parallelism, continued

One R process using 458% of a processor.

R can be built using high performance threaded libraries for math in
general, and linear algebra — which underlies many data analysis
algorithms — in particular.

Here the single R process has launched several threads of execution – all of
which are part of the same process, and so can see the same memory, eg
the large matrices.
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Packages that explicitly use parallelism

For a complete list, see

http://cran.r-project.org/web/views/HighPerformanceComputing.html

Biopara

BiocParallel for Bioconductor

bigrf - Random Forests

caret - cross-validation, bootstrap characterization of predictive models

GAMBoost - boosting glms

Plus packages that use linear algebra or other expensive math operations which
can be implicitly multithreaded.

When at all possible, don’t do the hard work yourself — look to see if a package
already exists which will do your analysis at scale.
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The parallel Package

Since R 2.14.0 (late 2011), the ”parallel”‘ package has been part of core
R. It incorporates - and mostly supersedes - two other packages:

”multicore”: for using all cores on a single processor. Not on
Windows.

”snow”: for using any group of processors, possibly across a cluster.

Many packages which use parallelism use one of these two, so it is worth
understanding.

Both create new processes (not threads) to run on different processors;
but differ in important ways.
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Multicore - forking

Multicore creates new processes
by forking — cloning – the
original process.

That means the new processes
start off seeing a copy of exactly
the same data as the original. If
a first process can read a file, and
it then forks two new processes -
each will see copy of the file.

These are not shared memory;
changes in one process will not
be reflected in others.

Windows doesn’t have fork(), so
windows can’t use these routines.
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Snow - Spawning

In contrast, Snow creates entirely
new R processes to run the jobs.

A downside is that you need to
explicitly copy over any needed
data and functions.

But the upsides are that
spawning a new process can be
done on a remote machine, not
just current machine. So you
can, in principle, use entire
clusters.

In addition, the flipside of the
downside: new processes don’t have
any unneeded data - less total
memory footprint.
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mcparallel/mccollect

The simplest use of the ”multicore” package is the pair of functions
”mcparallel” and ”mccollect”:

mcparallel() forks a task to run a given function; it then runs in the
background.

mccollect() waits for and gets the result.

Let’s pick an example: reading the airlines data set, we want — for a
particular month — to know both the total number of planes in the data
(by tail number) and the median elapsed flight time. These are two
independent calculations, and so can be done independently.
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mcparallel/mccollect, continued
We start two tasks with mcparallel, and collect the answers with mccollect:

> library(parallel, quiet=TRUE)

> source("data/airline/read airline.R")

> jan2010 <- read.airline("data/airline/airOT201001.csv")

> unique.planes <- mcparallel( length( unique( sort(jan2010$TAIL NUM) )))

> median.elapsed <- mcparallel(median( jan2010$ACTUAL ELAPSED TIME,

+ na.rm = TRUE ))

> ans <- mccollect( list(unique.planes, median.elapsed) )

> ans

$’30113’

[1] 4555

$’31286’

[1] 110

We get a list of answers, with each element ”named” by the process ID
that ran the job. There are 4555 planes in the data set, with a
mean flight time of 110 minutes.
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mcparallel/mccollect, continued more

Does this save any time? Let’s do some independent fits to the data. Let’s
try to see what the average in-flight speed is by fitting time in the air to
distance flown; and let’s see how the arrival delay correlates with the
departure delay. (Do planes, on average, make up some time in the air, or
do delays compound?)

>

> system.time(fit1 <- lm(DISTANCE ~ AIR TIME, data=jan2010))

user system elapsed

1.071 0.009 0.976

> system.time(fit2 <- lm(ARR DELAY ~ DEP DELAY, data=jan2010))

user system elapsed

0.659 0.005 0.524

>
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mcparallel/mccollect, continued even more

So the time to beat is about 1.5s:

> parfits <- function() {
+ pfit1 <- mcparallel(lm(DISTANCE ~ AIR TIME, data=jan2010))

+ pfit2 <- mcparallel(lm(ARR DELAY ~ DEP DELAY, data=jan2010))

+ mccollect( list(pfit1, pfit2) )

}
> system.time( parfits() )

user system elapsed

0.620 0.089 1.685

We don’t see a savings of time: 1.7s vs 1.5s. Clearly actually forking the
processes and waiting for them to rejoin itself takes some time.

This overhead means that we want to launch jobs that take a significant
length of time to run - much longer than the overhead (hundredths to
tenths of seconds for fork().)
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Clustering

Typically we want to do more than an itemized list of independent tasks -
we have a list of similar tasks we want to perform.

‘mclapply‘ is the multicore equivalent of ‘lapply‘ - apply a function to a
list, get a list back.

Let’s say we want to see what similarities there are between delays at
O’Hare airport in Chicago in 2010. Clustering methods attempt to uncover
”similar” rows in a dataset by finding points that are near each other in
some p-dimensional space, where p is the number of columns.

k-Means is a particularly simple, randomized, method; it picks k cluster
centre-points at random, finds the rows closest to them, assigns them to
the cluster, then moves the cluster centres towards the centre of mass of
their cluster, and repeats.

Quality of result depends on number of random trials.
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Clustering, continued
Let’s try that with our subset of data. Either run this:

> load(’data/airline/ord.delay.Rdata’)

Or this:

> load("data/airline/airOT2010.Rdata")

> delaycols <- c(18, 28, 40:44) # columns listing various delay measures

> ord.delays <- air2010[air2010$ORIGIN == "ORD", delaycols]

> rm(air2010)

> ord.delays <- ord.delays[ord.delays$ARR DELAY NEW > 0,]

> ord.delays <- ord.delays[complete.cases(ord.delays),]

> system.time(serial.res <- kmeans(ord.delays, centers = 2, nstart = 40))

user system elapsed

3.761 0.045 3.809

> serial.res$betweenss

[1] 236714813
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Clustering with lapply

Running 40 random trials is the same as running 10 random trials 4 times.
Let’s try that approach with ”lapply”:

> do.n.kmeans <- function(n) {kmeans(ord.delays, centers = 2, nstart = n) }
> system.time(list.res <- lapply(rep(10, 4), do.n.kmeans))

user system elapsed

8.212 0.000 8.219

> res <- sapply(list.res, function(x) x$tot.withinss)

> lapply.res <- list.res[[which.min(res)]]

> lapply.res$withinss

[1] 205574263 117857364

> lapply.res$betweenss

[1] 236714813

Get the same answer, but it took longer - bit of overhead from splitting it
up and starting the process four times. We could make the overhead less
important by using more trials, which would be better anyway.
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Clustering with mclapply

”mclapply” works the same way as lapply, but forking off the processes (as
with ”mcparallel”)

> system.time(list.res <- mclapply(rep(10,4), do.n.kmeans, mc.cores = 4))

user system elapsed

0.068 0.017 2.138

>

> res <- sapply(list.res, function(x) x$tot.withinss)

>

> mclapply.res <- list.res[[which.min(res)]]

>

> mclapply.res$betweenss

[1] 236714813

>

Erik Spence (SciNet HPC Consortium) Parallel R 12 July 2016 33 / 78



Clustering with mclapply, continued
Note what the output of top looks like when this is running:

There are four separate processes running - not one process using multiple
CPUs via threads.
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Summary: parallel/multicore
The ‘mc*‘ routines in parallel work particularly well when:

You want to make full use of the processors on a single computer

Each task only reads from some big common data structure and
produces modest-sized results

Things to watch for:

Modifying the big common data structure:
I Won’t be seen by other processes,
I But will blow up the memory requirements

Won’t work on Windows (but what does?)

‘mc.cores‘ is a lie. It’s the number of tasks, not cores. On an 8-core
machine, if you have multithreaded libraries and launch something
‘mc.cores=8‘ you’ll end up with 64 threads competing for 8 cores.
Either make sure to turn off threading (‘export
OMP NUM THREADS=1‘), or use fewer tasks.
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parallel/multicore hands-on

Using the entire 2010 dataset, and the examples above, examine one of
the following questions:

In 2010, what airport (with more than say 10 outgoing flights) had
the largest fraction of outgoing flights delayed?

For some given airport - what hour of the day had the highest relative
fraction of delayed flights?

For all airports?

What is the effect of including the ‘split()‘ and the ‘Reduce()‘ on the
serial-vs-parallel timings for this histogram? Is there a better way of
doing the splitting?
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Multiple computers with parallel/snow

The other half of parallel, routines that were in the still-active ‘snow‘
package, allow you to again launch new R processes — by default, on the
current computer, but also on any computer you have access to. (SNOW
stands for ”Simple Network of Workstations”, which was the original use).

The recipe for doing computations with snow looks something like:

>

> library(parallel)

> cl <- makeCluster(nworkers,...)

> results1 <- clusterApply(cl, ...)

> results2 <- clusterApply(cl, ...)

> stopCluster(cl)

>

Other than the ‘makeCluster()‘/‘stopCluster()‘, it looks very much like
multicore and ‘mclapply‘.
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Hello world with parallel
Let’s try starting up a ”cluster” (eg, a set of workers) and generating some
random numbers from each:

> library(parallel)

> cl <- makeCluster(4)

> clusterCall(cl, rnorm, 5)

[[1]]

[1] -0.19542059 -0.09533088 -0.21122094 -1.52002161 1.24074398

[[2]]

[1] 1.60195084 0.47906454 0.74859881 0.03488538 -0.49270944

[[3]]

[1] 0.3162637 -0.3729758 0.8680270 0.4741110 0.7736880

[[4]]

[1] -0.1799470 -0.7960984 -0.1628196 -0.9641411 1.8729729

> stopCluster(cl)
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Hello world with parallel, continued

‘clusterCall()‘ runs the same function (here, ‘rnorm‘, with argument ‘5‘)
on all workers in the cluster. A related helper function is ‘clusterEvalQ()‘
which is handier to use for some setup tasks:

> cl <- makeCluster(4)

> clusterEvalQ(cl, {library(party); print("Hello World!")})
[[1]]

[1] "Hello World"

[[2]]

[1] "Hello World"

[[3]]

[1] "Hello World"

[[4]]

[1] "Hello World"

Erik Spence (SciNet HPC Consortium) Parallel R 12 July 2016 39 / 78



Clustering on clusters
Emboldened by our success so far, let’s try re-doing our k-means
calculations:

> delaycols <- c(18, 28, 40:44)

> source("data/airline/read airline.R")

> jan2010 <- read.airline("data/airline/airOT201001.csv")

> jan2010 <- jan2010[,delaycols]

> jan2010 <- jan2010[complete.cases(jan2010),]

> do.n.kmeans <- function(n) {kmeans(jan2010, centers = 4, nstart = n) }
> library(parallel)

> cl <- makeCluster(4)

> res <- clusterApply(cl, rep(5,4), do.n.kmeans)

Error in checkForRemoteErrors(val) :

4 nodes produced errors; first error: object ’jan2010’ not found

> stopCluster(cl)

>

Ah! Failure.
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Clustering on clusters, continued

Recall that we aren’t forking here; we are creating processes from scratch.
These processes, new to this world, are not familiar with our ways,
customs, or datasets. We actually have to ship the data out to the workers:

> cl <- makeCluster(4)

> system.time(clusterExport(cl, "jan2010"))

user system elapsed

0.193 0.039 0.607

>

> system.time(cares <- clusterApply(cl, rep(5,4), do.n.kmeans))

user system elapsed

1.049 0.045 25.650

> stopCluster(cl)

> system.time(mcres <- mclapply(rep(5,4), do.n.kmeans, mc.cores = 4))

user system elapsed

0.379 0.051 24.068
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Clustering on clusters, continued more

Note that the costs of shipping out data back and forth, and creating the
processes from scratch, is relatively costly - but this is the price we pay for
being able to spawn the processes anywhere (meaning off node).

(And if our computations take hours to run, we don’t really care about
several-second delays.)

Note that with makeCluster we are still restricted to a single node.
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Running across machines

The default cluster is a sockets-based cluster; you can run on multiple
machines by specifying them to a different call to makeCluster:

> hosts <- c( rep("localhost",8), rep("gpc01", 2) )

> cl <- makePSOCKcluster(names = hosts)

> clusterCall(cl, rnorm, 5)

[[1]]

[1] -0.02141595 0.55431769 -0.64238398 -2.18983521 0.50568289

.

.

.

[[10]]

[1] -1.434019700 -1.016475875 1.385483544 0.003703908 0.536871928

> stopCluster(cl)

For this to work, you will have to (temporarily) tack the line ”source
/scinet/course/ss2016/R/setup” to the bottom of your ”.bashrc” file.

Erik Spence (SciNet HPC Consortium) Parallel R 12 July 2016 43 / 78



Cluster notes

There are too many variations on the makeCluster family of functions to
go over today. Here are a few more highlights:

There is an MPI-based cluster. This is similar to the PSOCK cluster,
but startup and communication can be much faster once you start
going to large numbers (say >64) of hosts.

clusterApplyLB: ”LB” stands for ”Load Balanced”. The default
‘clusterApply‘ sends off one task to each worker, waits until they’re
both done, then sends off another. clusterApplyLB fires off tasks to
each worker as needed (like ”mc.preschedule = FALSE” for mclapply).

clusterSplit: use this function to split up a dataset across your cluster.

parLapply: use this to chunk up the data, and send all the data to all
the tasks at once.
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Summary: parallel

The ‘cluster‘ routines in ‘parallel‘ are good if you know you will eventually
have to move to using multiple computers (nodes in a cluster, or desktops
in a lab) for a single computation.

Use ‘clusterExport‘ for functions and data that will be needed by
everyone.

Communicating data is slow, but much faster than having every
worker read the same data from a file.

Use clusterApplyLB if the tasks vary greatly in runtime.

Use clusterApply if each task requires an enormous amount of data.

Use makePSOCKcluster for small clusters; consider makeMPIcluster
for larger (but see ‘pbdR‘ section this afternoon).
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foreach and doparallel

The ”master/slave” approach that ‘parallel‘ enables works extremely well
for moderately sized problems, and isn’t that difficult to use. It is all based
on one form of R iteration, apply, which is well understood.

However, going from serial to parallel requires some re-writing, and even
going from one method of parallelism to another (eg, ‘multicore‘-style to
‘snow‘-style) requires some modification of code.

The ‘foreach‘ package is based on another style of iterating through data -
a for loop - and is designed so that one can go from serial to several forms
of parallel relatively easily. There are then a number of tools one can use
in the library to improve performance.
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foreach - serial

The foreach operator looks similar
to the standard for loop, but
returns a list of the iterations:

The foreach function creates an
object, and the ‘%do%‘ operator
operates on the code (here just
one statement, but it can be
multiple lines between braces, as
with a for loop) and the foreach
object.

>

> for (i in 1:3) print(sqrt(i))

[1] 1

[1] 1.414214

[1] 1.732051

>

> library(foreach)

> foreach (i = 1:3) %do% sqrt(i)

[[1]]

[1] 1

[[2]]

[1] 1.414214

[[3]]

[1] 1.732051

>

Erik Spence (SciNet HPC Consortium) Parallel R 12 July 2016 47 / 78



foreach + doParallel

Foreach works with a variety of
backends to distribute
computation - ‘doParallel‘, which
allows snow- and multicore-style
parallelism, and ‘doMPI‘ (not
covered here).

Switching the previous loop to
parallel just requires registering a
backend and using ‘%dopar%‘
rather than ‘%do%‘:

> library(doParallel)

>

> # use multicore-style forking

> registerDoParallel(3)

>

> foreach (i = 1:3) %dopar% sqrt(i)

[[1]]

[1] 1

[[2]]

[1] 1.414214

[[3]]

[1] 1.732051

> stopImplicitCluster()

>
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foreach + doParallel, continued

One can also use a PSOCK cluster:

>

> cl <- makePSOCKcluster(3)

> registerDoParallel(cl) # use the just-created PSOCK cluster

> foreach (i = 1:3) %dopar% sqrt(i)

[[1]]

[1] 1

[[2]]

[1] 1.414214

[[3]]

[1] 1.732051

> stopCluster(cl)

>
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Combining results

While returning a list is the default, ‘foreach‘ has a number of ways to
combine the individual results:

> foreach (i = 1:3, .combine = c) %do% sqrt(i)

[1] 1.000000 1.414214 1.732051

> foreach (i = 1:3, .combine = cbind) %do% sqrt(i)

result.1 result.2 result3

[1,] 1 1.414214 1.732051

> foreach (i = 1:3, .combine = "+") %do% sqrt(i)

[1] 4.146264

> foreach (i = 1:3, .multicombine = TRUE, .combine = "sum") %do% sqrt(i)

[1] 4.146264

By default, foreach will combine each new item individually. If
”.multicombine = TRUE”, then you are saying that you’re passing a
function which will do the right thing even if foreach gives it a whole wack
of new results as a list or vector - e.g., a whole chunk at a time.
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Combining foreach objects
There’s one more operator: ‘%:%‘. This lets you nest foreach objects:

>

> foreach (i = 1:3, .combine = "c") %:%

+ foreach (j = 1:3, .combine = "c") %do% {
+ i * j

}
[1] 1 2 3 2 4 6 3 6 9

>

And you can also filter items, using ”when”:

>

> foreach (a = rnorm(25), .combine = "c") %:%

+ when (a >= 0) %do%

+ sqrt(a)

[1] 0.5265719 0.2187333 0.1730294 0.9077089 0.2466300 1.1946766 1.1086728

>
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foreach iterators

Another problem that one can quickly run into: we often create a large
vector to loop over (1:1000000 for example) which in general is the same
size as the data set. For large data sets this can mean big memory.

One can use the iterators package to get a loop variable without creating
something the size of the object. For instance, icount() is like the
difference between Python 2.x range and xrange:

>

> library(iterators)

>

> foreach (i = icount(3), .combine = ’c’) %do% sqrt(i)

[1] 1.000000 1.414214 1.732051

>
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isplit
If we want each task to only work on some subset of the data, the ‘isplit‘
iterator will split the data at the master, and send off the partitioned data
to workers:

> ans <- foreach (byAirline = isplit(jan2010$DEP TIME,

+ jan2010$UNIQUE CARRIER), .combine = cbind) %do% {
+ df <- data.frame(count.hours(byAirline$value));

+ colnames(df) <- byAirline$key;

+ df }
> ans$UA

[1] 2 4 0 0 0 957 1595 1817 2598 1401

[11] 1713 1774 1509 1907 1442 1230 1510 1888 1775 1311

[21] 964 783 785 268

> ans$OH
[1] 2 2 0 0 0 185 654 469 674 679 572

[11] 682 843 763 699 671 839 777 507 764 467 186

[21] 130 20

>
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Stock prices example

In ‘data/stocks/stocks.csv‘, we have 419 daily closing stock prices going
back to 2000 (3654 prices). For stocks, it’s often useful to deal with ”log
returns”, rather than absolute price numbers. We use:

>

> stocks <- read.csv("data/stocks//stocks.csv")

> log.returns <- function(values) {
+ nv = length(values)

+ log(values[2:nv]/values[1:nv-1]) }
>

How would we parallelize this with ‘foreach‘? (Imagine we had thousands
of stocks and decades of data, which isn’t implausable.)
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Stock prices example

>

> library(doParallel)

> registerDoParallel(4)

>

> mat.log <-

+ foreach(col = iter(stocks[,-c(1,2)], by = "col"),

+ .combine = "cbind") %dopar% log.returns(col)

>

> stopImplicitCluster()

> stocks.log <- as.data.frame(mat.log)

> colnames(stocks.log) <- colnames(stocks)[-c(1,2)]

>

> # get rid of the first day; no "return" for then

> stocks.log$date <- stocks$date[-1]

>
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Stock correlations

A quantity we might be interested in is the correlation between the log
returns of various stocks: we can use R’s ‘cor()‘ function to do this.

> nstocks <- 419

> cors <- matrix(rep(0,nstocks*nstocks), nrow=nstocks, ncol=nstocks)

> system.time(

+ for (i in 1:419) {
+ for (j in 1:419) {
+ cors[i,j] <- cor(stocks.log[[i]],stocks.log[[j]])

+ }
+ } )

user system elapsed

29.091 0.000 29.130

>
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Summary: foreach

Foreach is a wrapper for the other parallel methods we’ve seen, so it
inherits some of the advantages and drawbacks of each.

Use ‘foreach‘ if:

Your code already relys on ‘for‘-style iteration; transition is easy

You don’t know if you want multicore vs. snow style ‘parallel‘ use:
you can switch just by registering a different backend!

You want to be able to incrementally improve the performance of
your code.

Note that you can have portions of your analysis code use ‘foreach‘ with
‘parallel‘ and portions using the backend with apply-style parallelism; it
doesn’t have to be all one or the other.
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Advanced R: Rdsm, pbdR

We’ve looked at some of the standard scalable computing packages for R.

Now we’re going to look at two somewhat more advanced packages, that
solve very different problems.

Rdsm: Get the most (performance, memory) out of a single-computer
computation by using shared memory.

pbdR: Get the most (performance, scale) out of a cluster
computation by ditching master-slave, and using very large-scale
distributed routines.
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Rdsm

While it’s generally true that
processes can’t peer into each
other’s memory, there is an
exception.

Processes can explicitly make
a window of memory shared -
visible to other processes.

This isn’t necessary for threads
within a process; but it is
necessary for multiple
processes working on the same
data.

The only works on-node; you can’t
share memory across a network.
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Rdsm, continued

Some notes about the motivation for Rdsm:

Rdsm allows you to share a matrix across processes on a node - for
reading and for writing.

Normally when we split a data structure up across tasks we make
copies (PSOCK), or we use read-only (multicore/fork).

If the output is also going to be large, we now have 2-3 copies of the
data structure floating around.

Rdsm allows (on-node) cluster tasks to collaboratively make a large
output without making copies.
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Rdsm, continued more

Simple example - let’s create a
shared matrix, and have
everyone fill it.

Create a PSOCK cluster

Create an Rdsm instance

Create a shared matrix

Create a barrier.

Make sure you’re somewhere
in your $SCRATCH directory.

> setwd(Sys.getenv("SCRATCH"))

> library(parallel)

> library(Rdsm)

>

> nrows <- 7

>

> # form a 3-process PSOCK cluster

> cl <- makePSOCKcluster(3)

>

> # initialize Rdsm

> init <- mgrinit(cl)

>

> # make a 7x7 shared matrix

> mgrmakevar(cl, "m", nrows, nrows)

>

> bar <- makebarr(cl)

>
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Rdsm, continued some more
Each process gets its own id, and each is assigned its own rowsof the
matrix.

> # at each thread, set id to Rdsm built-in ID variable for that thread

> clusterEvalQ(cl, myid <- myinfo$id)

[[1]]

[1] 1

[[2]]

[1] 2

[[3]]

[1] 3

> clusterExport(cl, c("nrows"))

> dmy <- clusterEvalQ(cl, myidxs <- getidxs(nrows))

> dmy <- clusterEvalQ(cl, m[myidxs,1:nrows] <- myid)

> dmy <- clusterEvalQ(cl, "barr()")

>

Each process fills its rows with its id.
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Rdsm, continued even more

Now, print the results.

>

> print(m[,])

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 1 1 1 1 1 1 1

[2,] 1 1 1 1 1 1 1

[3,] 2 2 2 2 2 2 2

[4,] 2 2 2 2 2 2 2

[5,] 2 2 2 2 2 2 2

[6,] 3 3 3 3 3 3 3

[7,] 3 3 3 3 3 3 3

>

> stoprdsm(cl) # stops cluster

>
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Summary: Rdsm

You takeaway for Rdsm:

Rdsm allows collaborative use of a single pool of memory.

It avoids performance and memory problems of making copies to send
back and forth.

It works well when:
I Outputs are as large/larger than inputs. (Correlation matrix of stocks).
I Inputs are very large, and want to do transformation in-place (values to

log-returns).

But remember that it will only work on a single node.
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pbdR

The master-worker approach works well
for interactive work, is easy to
loadbalance, and is easy to understand.

But there’s a narrow range of number
of workers where master-worker works
well. For a small number of total
processors (2-4), it hurts to have one
processor doing nothing except some
small amount of coordination.

For a large number of processors
(hundreds or more, depending on the
size of each task), the workers can
overwhelm the master, with all the
workers waiting while the master
catches up.
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pbdR, continued
At scale, the idea of a single master isn’t helpful. It’s better to coordinate
between peers.

Rather than a single master parcelling out work, the workers themselves
decide which part of the problem they should be working on, and combine
their results cooperatively. This is more efficient and can scale better, but
there are downsides:

Dynamic load-balancing is substantially trickier (but doable).
Can’t really do this interactively; need to write a script.
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Departure hour histogram example
In ‘pbd/mpi-histogram.R‘ we have a script that does an hour-histogram
calculation for eight full years of airline data, sifting through 40 million
flights, in about a minute:

ejspence@gpc-f108n045-ib0 ~> cd /scinet/course/ss2016/R/pbd

ejspence@gpc-f108n045-ib0 pbd>

ejspence@gpc-f108n045-ib0 pbd> time mpirun -np 8 Rscript mpi-histogram.R

COMM.RANK = 0
[1] 4081 118767 27633 7194 9141 194613 2235007

[8] 2902703 3003510 2649823 2373934 2473105 2757256 2772498

[15] 2362334 2485699 2503423 2794298 2626931 2282125 2074739

[22] 1386485 649392 344257
COMM.RANK = 0

[1] 41038948
real 1m15.357s

user 9m39.943s

sys 0m10.910s

ejspence@gpc-f108n045-ib0 pbd>

Erik Spence (SciNet HPC Consortium) Parallel R 12 July 2016 67 / 78

~


Departure hour histogram example, cont
ejspence@gpc-f108n045-ib0 pbd> cat mpi-histogram.R

library(pbdMPI, quiet = TRUE)

.

.

.

# count.hours and get.hour definitions...

start.year <- 1990

init()

rank <- comm.rank()

my.year <- start.year + rank

myfile <- paste0("data/airline/airOT", as.character(my.year),".RDS")

data <- readRDS(myfile)

data <- data$DEP TIME

myhrs <- count.hours(data)

hrs <- allreduce( myhrs, op = "sum" )

comm.print( hrs )

comm.print( sum(hrs) )

finalize()

ejspence@gpc-f108n045-ib0 pbd>
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Departure hour histogram example, cont
Let’s look at the first few lines:

ejspence@mycomp ~> cat mpi-histogram.R

.

.

.

# count.hours and get.hour definitions...

start.year <- 1990

init()

rank <- comm.rank()

my.year <- start.year + rank

myfile <- paste0("data/airline/airOT", as.character(my.year),".RDS")

data <- readRDS(myfile)

data <- data$DEP TIME
.
.
.

Each task decides which year’s data to work on. First (zeroth) task works
on 1990, next on 1991, etc. Every task has to call the ‘init()‘ routine when
starting, and ‘finalize()‘ routine when done.
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Departure hour histogram example, cont

.

.

.

myhrs <- count.hours(data)

hrs <- allreduce( myhrs, op = "sum" )

comm.print( hrs )

comm.print( sum(hrs) )

finalize()

ejspence@mycomp ~>

Once the file is read, we use the count.hours routine to work on the entire
vector.

Then an ‘allreduce‘ function sums each workers hours, and returns the
sum to all processors. We then print it out.

Rather than only the master running the main program and handing off
bits to workers, every task runs this identical program; the only difference
is the value of ‘comm.rank()‘.
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Reductions
ejspence@gpc-f108n045-ib0 pbd> cat min-median-max.R

library(pbdMPI); init()

rank <- comm.rank()

my.year <- start.year + rank

myfile <- paste0("../data/airline/airOT",as.character(my.year),".RDS")

data <- readRDS(myfile); data <- data$CRS ELAPSED TIME

data <- data[!is.na(data)]

data.median <- pbd.quantile(data,0.5)

data.min <- allreduce(min(data), op = "min")

data.max <- allreduce(max(data), op = "max")

comm.print(data.min)

comm.print(data.median)

comm.print(data.max)

finalize()
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Reductions, continued

Reductions are one way of combining results, and they’re very powerful:

ejspence@gpc-f108n045-ib0 pbd>

ejspence@gpc-f108n045-ib0 pbd> mpirun -np 4 Rscript min-median-max.R

COMM.RANK = 0

[1] -70

COMM.RANK = 0

[1] 93.00004

COMM.RANK = 0

[1] 1613

ejspence@gpc-f108n045-ib0 pbd>
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Finding the median
R’s higher-level functions plus reductions are very powerful ways to do
otherwise tricky distributed problems - like median of distributed data:

pbd.quantile <- function( data, q = 0.5 ) {

if (q < 0 | q > 1) {
stop("q should be between 0 and 1.")

}

N <- allreduce(length(data), op = "sum")

data.max <- allreduce(max(data), op = "max")

data.min <- allreduce(min(data), op = "min")

f.quantile <- function(x, prob=0.5) {
allreduce(sum(data <= x), op="sum" )/N - prob

}
uniroot(f.quantile, c(data.min, data.max), prob=q)$root

}
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pbd*apply
‘pbd‘ has parallel apply functions. Note that work isn’t farmed out by a
master task; the tasks decide which parts of the list are theirs.

ejspence@gpc-f108n045-ib0 pbd> cat histogram-pbdsapply.R

.

.

.

year.hours <- function(my.year) {
myfile <- paste0("data/airline/airOT",as.character(my.year),".RDS")

data <- readRDS(myfile)$DEP TIME

count.hours(data)

}

init(); years <- 1990:1993

all.hours.list <- pbdLapply(years, year.hours)

all.hours <- Reduce("+", all.hours.list)

comm.print( all.hours )

comm.print( sum(all.hours) )

finalize()
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pbd data distributions

pbd has a couple of ways of
distributing data.

What we’ve used before is their
so-called ”GBD” distribution -
globally distributed data. It’s split
up by rows.

However, for linear algebra
computations, a block-cyclic
distribution is much more useful.
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Reading a pbd Ddmatrix

pbdR comes with several packages for reading a data file and distributing
it as a ddmatrix:

‘read.csv.ddmatrix()‘ for reading from csv

‘nc get dmat()‘ to read from a NetCDF4 file

‘gbd2dmat()‘ for conversions from row-oriented to a ddmatrix.
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pbd lm
Several operations defined on regular R matrices also work transparently
on ddmatrix: ‘lm‘, ‘solve‘, ‘chol‘.
ejspence@mycomp ~> cat pbd-lm.R

.

.

.

init.grid()

rank <- comm.rank()

my.year <- start.year + rank

data <- cleandata(my.year)

Y <- data[[1]]

X <- as.matrix(data[,-1])

X.dm <- gbd2dmat(X)

Y.dm <- gbd2dmat(Y)

fit <- lm(Y X)

comm.print(summary(fit))

finalize()

Erik Spence (SciNet HPC Consortium) Parallel R 12 July 2016 77 / 78

~


pbd lm, continued
ejspence@gpc-f108n045-ib0 pbd> mpirun -np 4 Rscript pbd-lm.R

Using 2x2 for the default grid size

COMM.RANK = 0

Call:

lm(formula = Y ~ X)

Residuals:
Min 1Q Median 3Q Max

-1307.62 -6.03 -2.29 3.53 1431.70

Coefficients: (6 not defined because of singularities)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.152e+01 9.616e-02 119.77 <2e-16 ***

XORIGIN AIRPORT ID -1.895e-04 5.193e-06 -36.50 <2e-16 ***

XDEST AIRPORT ID -2.257e-04 5.213e-06 -43.29 <2e-16 ***

.

.

.

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 13.43 on 2741063 degrees of freedom

Multiple R-squared: 0.7809, Adjusted R-squared: 0.7809

F-statistic: 1.628e+06 on 6 and 2741063 DF, p-value: < 2.2e-16

Erik Spence (SciNet HPC Consortium) Parallel R 12 July 2016 78 / 78


	Getting set up
	R and memory
	Memory management commands
	Out-of-core computation
	big.matrix

	Using multiple processors
	The parallel package
	mcparallel/mccollect
	mclapply

	Using multiple nodes
	Single-node cluster
	Multi-node cluster

	foreach
	serial
	doParallel
	iterators

	Advanced parallelism
	Rdsm
	pbdR


