
Research Computing with Python
Lecture 5: File Input and Output

Ramses van Zon

SciNet HPC Consortium

November 19, 2013

Ramses van Zon (SciNet HPC Consortium) Research Computing with PythonLecture 5: File Input and OutputNovember 19, 2013 1 / 34

Today’s Lecture

Basic File Input and Output in Python

Bit of file system theory, iops

Different file formats (and how to use them)

Ramses van Zon (SciNet HPC Consortium) Research Computing with PythonLecture 5: File Input and OutputNovember 19, 2013 2 / 34

Basic File Input and Output in Python

Files contain your data
Files are organized in
directories or folders
A directory is a file too
Path: sequence of directories
to get to a file

Tree:

Files:

FOLDER1/WORLD.TXT

FOLDER2/NOTE.TXT

FOLDER1/HELLO/...

Ramses van Zon (SciNet HPC Consortium) Research Computing with PythonLecture 5: File Input and OutputNovember 19, 2013 3 / 34

Directories

Create

In [1]: import os

In [2]: os.mkdir(’FOLDER1’)

Change current directory

In [3]: os.chdir(’FOLDER1’)

In [4]: os.chdir(’..’)

Ramses van Zon (SciNet HPC Consortium) Research Computing with PythonLecture 5: File Input and OutputNovember 19, 2013 4 / 34

Write to a file

In [5]: f=open(’FOLDER1/WORLD.TXT’,’w’)

In [6]: line="Hello\n"
In [7]: f.write(line)

In [8]: f.close()

Appending

In [9]: f=open(’FOLDER1/WORLD.TXT’,’a’)

In [10]: line="World\n"
In [11]: f.write(line)

In [12]: f.close()

Ramses van Zon (SciNet HPC Consortium) Research Computing with PythonLecture 5: File Input and OutputNovember 19, 2013 5 / 34

Read a file

In [13]: f=open(’FOLDER1/WORLD.TXT’,’r’)

In [14]: line=f.readline()

In [15]: print line

Hello

In [16]: f.close()

Read/Write

In [17]: f=open(’FOLDER1/WORLD.TXT’,’r+’)

In [18]: f.seek(1)

In [19]: f.write(’a’)

In [20]: line=f.readline()

In [21]: print line

Hallo

In [22]: f.close()

Ramses van Zon (SciNet HPC Consortium) Research Computing with PythonLecture 5: File Input and OutputNovember 19, 2013 6 / 34

Let’s take a step back: some theory

Ramses van Zon (SciNet HPC Consortium) Research Computing with PythonLecture 5: File Input and OutputNovember 19, 2013 7 / 34

Computer Data Storage

Media:

Memory
Disks
Flash (USB)

DVD
Tape
. . .

.

All media are essentially linear strings of bits:

In and of itself, this is useless. What do these bits mean?

Ramses van Zon (SciNet HPC Consortium) Research Computing with PythonLecture 5: File Input and OutputNovember 19, 2013 8 / 34

File systems

Many non-volatile media use a file system

This entails storing data describing the meaning of the data:
metadata

Ramses van Zon (SciNet HPC Consortium) Research Computing with PythonLecture 5: File Input and OutputNovember 19, 2013 9 / 34

Files

Storage media is often subdivided into files

Files have a name, a size and possibly other metadata

Let’s say that the metadata for the files is stored at the
beginning of the storage media, e.g.

Ramses van Zon (SciNet HPC Consortium) Research Computing with PythonLecture 5: File Input and OutputNovember 19, 2013 10 / 34

Metadata

Describes the file and its properties:

File name

File size

Location on disk

File type (though often through magic identifiers)

Dates

Read/write permissions

. . .

Ramses van Zon (SciNet HPC Consortium) Research Computing with PythonLecture 5: File Input and OutputNovember 19, 2013 11 / 34

Directories or Folders

So we have files now, but this can get unorganized quickly. Imagine
looking for the file ‘NOTE.TXT’ in a list of 10,000,000 files.

.
Directories

Like special files that contain a list of (metadata for) other files.
A directory can contain other directories, leading to a tree.

Ramses van Zon (SciNet HPC Consortium) Research Computing with PythonLecture 5: File Input and OutputNovember 19, 2013 12 / 34

I/O Operations

What really happens if we open a file, write to it, etc.?

Opening a file

1 Find the file in the directory
Or create a new entry in the directory

2 Check permissions on the file
3 Find the location of the file on disk
4 Initialize a file ‘handle’ and file ‘pointer’

The file handle is what open returns.

Ramses van Zon (SciNet HPC Consortium) Research Computing with PythonLecture 5: File Input and OutputNovember 19, 2013 13 / 34

I/O Operations

What really happens if we open a file, write to it, etc.?

Writing to a file

1 Convert data to a stream of bytes.
2 Put those bytes in a buffer.
3 Update file pointer.
4 If buffer full: write to file

Ramses van Zon (SciNet HPC Consortium) Research Computing with PythonLecture 5: File Input and OutputNovember 19, 2013 14 / 34

I/O Operations

What really happens if we open a file, write to it, etc.?

Reading from a file

1 If data not in buffer: read data into a buffer
2 Read bytes from buffer into variable, performing any needed

conversion.
3 Update file pointer.

Ramses van Zon (SciNet HPC Consortium) Research Computing with PythonLecture 5: File Input and OutputNovember 19, 2013 15 / 34

I/O Operations

What really happens if we open a file, write to it, etc.?

Closing a file

1 Ensure buffers are flushed to disk
2 Update any metadata.
3 Release buffers associated with the file handle.

Ramses van Zon (SciNet HPC Consortium) Research Computing with PythonLecture 5: File Input and OutputNovember 19, 2013 16 / 34

Minimizing IOPS

Disk I/O is usually the slowest part of a pipe line.

If manipulating data from files is most of what you do, try and
minimize iops.

Bad

s=’Hi world\n’
for c in s:

f=open(’hiworld.txt’,’a’)

f.write(c)

f.close()

Good

s=’Hi world\n’

f=open(’hiworld.txt’,’w’)

f.write(s)

f.close()

Work in memory and reuse data if you can.

Ramses van Zon (SciNet HPC Consortium) Research Computing with PythonLecture 5: File Input and OutputNovember 19, 2013 17 / 34

What’s in a file?

Text

Seems attractive: you can just read it.

This is not as trivial as it may sound.

Must assign a bit pattern to each letter or symbol (encoding).

Ideally unique assignment across languages.

Binary

Covered format of individual numbers in Numerics class.

Decent binary format include information on the data in it, e.g.:
hdf5. NetCDF.

Ramses van Zon (SciNet HPC Consortium) Research Computing with PythonLecture 5: File Input and OutputNovember 19, 2013 18 / 34

Text format

ASCII Encoding: 7 bits =
character

128 possible, but only 95
printable characters

Uses 8-bit bytes: storage
efficiency 82% at best.

ASCII representation of
floating point numbers:

I Needs about 18 bytes vs 8
bytes in binary: inefficient

I Representation must be
computed: slow

I Non-exact representation

ASCII

integers characters

32 (space)

33-47 !"#$%&’()*+,-./

48-57 0-9

58-64 :;<=>?@

65-90 A-Z

91-96 [\]^
97-122 a-z

123-126 {|}~

Ramses van Zon (SciNet HPC Consortium) Research Computing with PythonLecture 5: File Input and OutputNovember 19, 2013 19 / 34

Text Encodings

ASCII: 7 bit encoding. For English.

Latin-1: 8 bit encoding. For western European Languages mostly.

UTF-8: Variable-width encoding that can represent every
character in the Unicode character set.

Unicode: standard containing more than 110,000 characters.

Python can deal with these encodings:

-*- coding: latin-1 -*-

print u"Comment ça va?"

Ramses van Zon (SciNet HPC Consortium) Research Computing with PythonLecture 5: File Input and OutputNovember 19, 2013 20 / 34

Binary output

Output the numbers as they are stored in memory

Why bother: Fast and space-efficient.

Writing 128M doubles:

SciNet file system:

ASCII 173 s

binary 6 s

ramdisk

ASCII 174 s

binary 1 s

Not human readable.
But is that really so bad? If you have 100 million numbers in a
file, are you going to read them all?

Ramses van Zon (SciNet HPC Consortium) Research Computing with PythonLecture 5: File Input and OutputNovember 19, 2013 21 / 34

Why you should not use raw binary data

Just dumping the memory is fast, but you loose the information on
what it meant. E.g.:

Dump a 2d array of 100x100 floating point numbers

Gives a file of 800,000 bytes.

If we give this to someone else, how do they know what it is?

I 2d array of 100x100 numbers

I array of 10,000 floating point numbers,

I string of 800,000 characters,

I . . . ?

Ramses van Zon (SciNet HPC Consortium) Research Computing with PythonLecture 5: File Input and OutputNovember 19, 2013 22 / 34

Binary Formats

You could invent your own binary format, but it’s better to take an
existing standard: Saves you potential bugs, the burden of
documentation and/or maintaining an IO library, as one probably
already exists.

Pickle: A python specific format. Portable for the same version.

NumPy: Has a binary format called npy or npz.

NetCDF: A self-describing format: contains not only data but
names, descriptions of arrays (scipy.io.netcdf).

Hdf5: Another standard, self-describing format (pytables)
Almost a filesystem in a file.

For both NetCDF and Hdf5, there are tools to inspect/analyze the
files. Won’t discuss Hdf5 here.

Ramses van Zon (SciNet HPC Consortium) Research Computing with PythonLecture 5: File Input and OutputNovember 19, 2013 23 / 34

Pickle

Base64 encoding using readable ASCII
Portable for the same version of python.
In the pickle module.
Flexible, can serialize any structure.

In [23]: import pickle, os

In [24]: a=zeros((10000,10000))

In [25]: f=open(’a.pickle’,’w’)

In [26]: pickle.dump(a,f)

In [27]: close(f)

In [28]: print os.path.getsize(’a.pickle’)

3200000198

In [29]: g=open(’a.pickle’,’r’)

In [30]: b=pickle.load(g)

In [31]: g.close()

pickle.dump wall time: 121.44 s
Ramses van Zon (SciNet HPC Consortium) Research Computing with PythonLecture 5: File Input and OutputNovember 19, 2013 24 / 34

NumPy I/O Routines

Remember shape
Straight binary dump of data
Surprisingly simple format but not ported too much.
Just for NumPy arrays

In [32]: import os

In [33]: a=zeros((10000,10000))

In [34]: save(’a.npy’,a)

In [35]: print os.path.getsize(’a.npy’)

799997952

In [36]: b=load(’a.npy’)

numpy.save wall time: 1.21 s

Ramses van Zon (SciNet HPC Consortium) Research Computing with PythonLecture 5: File Input and OutputNovember 19, 2013 25 / 34

Numpy I/O Routines

save(FILE,ARRAY) save a NumPy array to a .npy file

savez(FILE,NAME1=ARRAY1,NAME2=ARRAY2) save several NumPy
arrays to an uncompressed zipped file with extension .npz

savez compressed(FILE,NAME1=ARRAY1,NAME2=ARRAY2) save
several NumPy arrays to a compressed zipped file with
extension .npz

load(FILE) load NumPy array(s) from .npy (.npz) file. If FILE is an
.npz, a dictionary with keys equal to the names supplied
to savez is returned.

Ramses van Zon (SciNet HPC Consortium) Research Computing with PythonLecture 5: File Input and OutputNovember 19, 2013 26 / 34

NetCDF files

There are three sections to a NetCDF file

Dimensions How many points in each direction of our
multidimensional array?

Variables The data in our multidimensional array

Attributes Variable and other annotations (e.g. units)

Python modules

scipy.io.netcdf: for netcdf3 files
netCDF4 (available in Canopy): for netcdf4 files

Ramses van Zon (SciNet HPC Consortium) Research Computing with PythonLecture 5: File Input and OutputNovember 19, 2013 27 / 34

NetCDF example

Can check the ‘header’ of an netcdf file using the linux utility ncdump:

$ ncdump -h test.nc

netcdf test {

dimensions:

x = 1000 ;

variables:

double a(x, x) ;

a:units = "Kelvin" ;

// global attributes:

:history = "This is a test" ;

}

Let’s see how to create and use this file with scipy.io.netcdf.

Ramses van Zon (SciNet HPC Consortium) Research Computing with PythonLecture 5: File Input and OutputNovember 19, 2013 28 / 34

scipy.io.netcdf: write file

In [37]: from scipy.io.netcdf import *

In [38]: f=netcdf_file(’test.nc’,’w’) #create file

In [39]: f.history=’This is a test’ #set file attribute

In [40]: f.createDimension(’x’, 1000) #create dimension

In [41]: a=f.createVariable(’a’, ’d’, (’x’,’x’)) #array

In [42]: a[:]=zeros((1000,1000)) #fill

In [43]: a.units=’Kelvin’ #array attribute

In [44]: f.close() #close file. Important!

Ramses van Zon (SciNet HPC Consortium) Research Computing with PythonLecture 5: File Input and OutputNovember 19, 2013 29 / 34

scipy.io.netcdf: read file

In [45]: from scipy.io.netcdf import *

In [46]: f=netcdf_file(’test.nc’,’r’)

In [47]: print f.history

Created for a test

In [48]: a=f.variables[’a’]

In [49]: print a[100,300], a.units

0.0 Kelvin

In [50]: f.close()

Ramses van Zon (SciNet HPC Consortium) Research Computing with PythonLecture 5: File Input and OutputNovember 19, 2013 30 / 34

scipy.io.netcdf overview

HANDLE=netcdf file(FILENAME,MODE) Opens a netcdf file.
MODE=’w‘for writing, ’r’ for reading, MODE=’rw’ for
both.

HANDLE.ATTRIBUTE=VALUE Sets a file ATTRIBUTE to the value
VALUE

HANDLE.createDimension(NAME,VALUE) Sets the dimension NAME

(a string) to VALUE

HANDLE.createVariable(NAME,SHAPE) Creates the variabe NAME

with SHAPE (a tuple of strings that were assigned a value
with createDimension)

HANDLE.variables[NAME] The array variable NAME

HANDLE.variables[NAME].ATTRIBUTE=VALUE Set an attribute
ATTIBUTE of the array variable NAME to the value VALUE

HANDLE.close() Flush everything to disk and close the file.

Ramses van Zon (SciNet HPC Consortium) Research Computing with PythonLecture 5: File Input and OutputNovember 19, 2013 31 / 34

Final Tips

If your data is not text, do not save it as text.

Choose a binary format that is portable.

Minimize IOPS: write/read big chunks at a time, don’t seek
more than needed, try to reuse data or load more in memory.

Don’t create millions of files: unworkable and slows down
directories.

Stick to letters, numbers, underscores and periods in file names.

Ramses van Zon (SciNet HPC Consortium) Research Computing with PythonLecture 5: File Input and OutputNovember 19, 2013 32 / 34

Next Time

Ramses van Zon (SciNet HPC Consortium) Research Computing with PythonLecture 5: File Input and OutputNovember 19, 2013 33 / 34

Next Lecture

Thursday November 21, 2013, 11:00 am
Topic: Visualization

Ramses van Zon (SciNet HPC Consortium) Research Computing with PythonLecture 5: File Input and OutputNovember 19, 2013 34 / 34

	Let's take a step back: some theory
	Next Time

