
Compressible Fluid 
Dynamics



Fluids: Almost 
Everything

• 99% of the visible matter in the 
Universe is in the form of fluids

• Most of the astrophysical 
systems we don’t fully 
understand, it’s the fluid 
dynamics tripping us up M42 - Orion Nebula

Credit: NASA, ESA, M. Robberto (STScI/ESA) and the 
Hubble Space Telescope Orion Treasury Project Team

http://antwrp.gsfc.nasa.gov/apod/ap060119.html

http://antwrp.gsfc.nasa.gov/apod/ap060119.html
http://antwrp.gsfc.nasa.gov/apod/ap060119.html
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Equations of 
Hydrodynamics
• Density, momentum, and 

energy equations

• Supplemented by an equation 
of state - pressure as a 
function of dens, energy



Discretizing 
Derivatives

• Done by finite differencing the 
discretized values

• Implicitly or explicitly involves 
interpolating data and taking 
derivative of the interpolant

• More accuracy - larger 
‘stencils’
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Discretizing 
Derivatives

• Explicit hydrodynamics: only 
need information from as far 
away as the stencil reaches

• Nearest few neighbors

• Locality galore!
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Guardcells
• How to deal with boundaries?

• Because stencil juts out, need 
information on cells beyond 
those you are updating

• Pad domain with ‘guard cells’ 
so that stencil works even for 
the 0th point in domain

• Fill guard cells with values 
such that the required 
boundary conditions are met

Global Domain

0 1 2 3 4 5 6 7

ng = 1
loop from ng, N - 2 ng



Guardcells
• Impose BCs before each 

timestep

• Our hydro code - 3 common 
boundary conditions

• ‘outflow’, reflect, and periodic

• Outflow (-1)- cell 0 just gets 
value from 1

• Reflect (-2); mirror the values

• Periodic(-3); copy values from 
other side (cell 0 gets values 
from cell 6)

Global Domain

0 1 2 3 4 5 6 7

ng = 1
loop from ng, N - 2 ng
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(ρE) +∇ · ((ρE + p)v) = 0

Equations of 
Hydrodynamics
• Density, momentum, and 

energy equations

• Supplemented by an equation 
of state - pressure & 
temperature as a function of 
dens, energy



Conservation 
Law form

• Conservation of mass, 
momentum, energy

• These are important 
properties, want numerical 
solver to maintain them
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Change in mass = 
-outflux + influx



Finite Volume 
Method

• Conservative; very well suited 
to high-speed flows with 
shocks

• At each timestep, calculate 
fluxes using interpolation/finite 
differences, and update cell 
quantities.

• Use conserved variables -- eg, 
momentum, not velocity.

Fx

Fy



Flux 
Calculations

• Compressible flows: common 
to use Godunov-based 
schemes

• At cell interfaces, a Riemann 
problem is solved -- exact 
solution to a fluid jump

• Expensive, but does a great 
job of dealing with shocks 

Frank Timmes,
http://cococubed.asu.edu/code_pages/exact_riemann.shtml

http://cococubed.asu.edu/code_pages/exact_riemann.shtml
http://cococubed.asu.edu/code_pages/exact_riemann.shtml


Flux 
Calculations

• We’re using a ‘central scheme’  
or ‘Kurganov scheme’ 

• No Riemann solve; average 
over possible waves

• Averaging means shocks are 
smeared out compared to 
Riemann solvers;  but much 
faster, simpler to code 
(particularly for RHD, MHD)

Del Zanna, Bucciantini (2002) A&A 390:1177



Dimensional 
Splitting

• Strang Splitting: Operators 
(including X and Y hydro 
operators) can be done 
separately, at cost of limiting 
time accuracy to       .

• Not at all obvious that should 
work as well as it does.

• Makes code much easier - get a 
1d solver working, build 3d 
solver trivially
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Hydrodynamics
• Finite volume dimensionally 

split central scheme

• Need only local info (+/- 2 
zones in each dimension)

• Implemented with dimensional 
splitting; sweep in x, then y 
(then y, then x)

Fx

Fy
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Other 
Hydrodynamic 

approaches
• Finite difference approaches; 

don’t work in fluxes.   Easier 
to incorporate some types of 
physics with high time 
accuracy.

• Parallelization issues same as 
finite volume codes.

Richard Günther,  University of Tübingen. 
http://www.tat.physik.uni-tuebingen.de/~rguenth/

http://www.tat.physik.uni-tuebingen.de/~rguenth/
http://www.tat.physik.uni-tuebingen.de/~rguenth/


Other 
Hydrodynamic 

approaches
• Incompressible flows

• Additional complexity: 
elliptical solver (implicit 
scheme)

• What we have here + linear 
solvers

• Or Multigrid: also mostly 
guardcell filling

Mike Zingale, SUNY Stony Brook
http://www.astro.sunysb.edu/mzingale/pyro/

http://www.tat.physik.uni-tuebingen.de/~rguenth/
http://www.tat.physik.uni-tuebingen.de/~rguenth/


Other 
Hydrodynamic 

approaches
• SPH: no grid at all.   Fluid parcels.

• Hard to do highly accurate 
schemes, but arguably better 
suited for some problems.

• Gadget-2 

• Some of the same parallelization 
issues as N-body gravity 



Single-Processor 
hydro code

• cd hydro{c,f};  make

• ./hydro 100

• Takes options:
• number of points to write

• Outputs image (ppm) of initial 
conditions, final state (plots 
density)

• display ics.ppm

• display dens.ppm



• Set initial conditions

• Loop, calling timestep() and 
maybe some output routines 
(plot() - contours)

• At beginning and end, save an 
image file with outputppm()

• All data stored in array u.

hydro.c

Single-Processor 
hydro code



• Set initial conditions

• Loop, calling timestep() and 
maybe some output routines 
(plot() - contours)

• At beginning and end, save an 
image file with outputppm()

• All data stored in array u.

hydro.f90

Single-Processor 
hydro code



Plotting to 
screen

• plot.c, plot.f90

• Every 10 timesteps

• Find min, max of pressure, 
density

• Plot 5 contours of density 
(red) and pressure (green)

• pgplot library (old, but works).



Plotting to file
• ppm.c, ppm.f90

• PPM format -- binary (w/ ascii 
header)

• Find min, max of density

• Calculate r,g,b values for 
scaled density (black = min, 
yellow = max)

• Write header, then data.



Data structure
• u : 3 dimensional array 

containing each variable in 2d 
space

• eg, u[j][i][IDENS]

• or u(idens, i, j)

solver.f90 (initialconditions)

domain.h

solver.c (initialconditions)



domain.h

Nx

nguardnguard

0 1 2 3 4 5 6
q

7

u[2][3][DENSVAR];
u[2][3][MOMXVAR];
u[2][3][MOMYVAR];
u[2][3][ENERVAR];

y

x

u(idens,4,3)
u(imomx,4,3)
u(imomy,4,3)
u(iener,4,3)

x



Laid out in 
memory (C)

x

y = 2
y = 2

0 1 2 3 4 5 6 7x = 0 1 2 3 4 5 6 7

Same way as in an image file 
(one horizontal row at a time)

4 floats: dens, momx, momy, ener



Laid out in memory 
(FORTRAN)

x

y = 3
y = 3

1 2 3 4 5 6 7 8x = 1 2 3 4 5 6 7 8

Same way as in an image file 
(one horizontal row at a time)

4 floats: dens, momx, momy, ener



Timestep 
routine

• Apply boundary conditions

• X sweep, Y sweep

• Transpose entire domain , so Y 
sweep is just an X sweep

• (unusual approach!  But has 
advantages.  Like matrix multiply.)

• Note - dt calculated each step 
(minimum across domain.)

timestep
solver.f90



Timestep 
routine

• Apply boundary conditions

• X sweep, Y sweep

• Transpose entire domain , so Y 
sweep is just an X sweep

• (unusual approach!  But has 
advantages.  Like matrix multiply.)

• Note - dt calculated each step 
(minimum across domain.)

timestep
solver.c



Xsweep routine

• Go through each x “pencil” of 
cells

• Do 1d hydrodynamics routine on 
that pencil.

xsweep
solver.c

xsweep
solver.f90



What do data 
dependancies 
look like for 

this?



Data 
dependencies

• Previous timestep must be 
completed before next one 
started.

• Within each timestep, 

• Each tvd1d “pencil” can be 
done independently

• All must be done before 
transpose, BCs

BCs

tvd1d tvd1d tvd1d tvd1d...

transpose

BCs

tvd1d tvd1d tvd1d tvd1d...



Looks like 
OpenMP!

• OpenMP of this code is trivial

• Wrap j loop with omp parallel for

• Almost all of the physics is in this 
tvd1d routine.

xsweep
solver.c

xsweep
solver.f90



$ export OMP_NUM_THREADS=1
$ time ./hydro 100

real! 0m7.256s
user! 0m7.222s
sys!0m0.003s

$ export OMP_NUM_THREADS=8
$ time ./hydro 100

real! 0m1.453s
user! 0m11.540s
sys!0m0.044s

5x speedup with 1 line of 
code!

(all output removed)



$ export OMP_NUM_THREADS=1
$ time ./hydro 500

real! 3m36.728s
user! 3m36.680s
sys!0m0.013s

$ export OMP_NUM_THREADS=8
$ time ./hydro 500

real! 0m47.459s
user! 6m18.849s
sys!0m0.598s

5x speedup with 1 line of 
code!

(all output removed)

cfl(), xytranspose() could 
usefully be parallelized.



MPIing the 
code

• Domain decomposition



MPIing the 
code

• Domain decomposition

• For simplicity, for now we’ll 
just implement decomposition 
in one direction, but we will 
design for full 2d 
decomposition



MPIing the 
code

• Domain decomposition

• We can do as with diffusion 
and figure out out neighbours 
by hand, but MPI has a better 
way...



Create new 
communicator 

with new topology
• MPI_Cart_create 

( MPI_Comm comm_old, 
int ndims,   int *dims, 
int *periods,   int reorder, 
MPI_Comm *comm_cart ) (0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

size = 9
dims = (2,2)
rank = 3



Create new 
communicator 

with new topology
• MPI_Cart_create (

integer comm_old, 
integer ndims, 
integer [dims], 
logical [periods], 
integer reorder, 
integer comm_cart, 
integer ierr )

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

size = 9
dims = (2,2)
rank = 3



Create new 
communicator 

with new topology

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

size = 9
dims = (2,2)
rank = 3

C
ierr = MPI_Cart_shift(MPI_COMM new_comm, int dim,
       int shift, int *left, int *right)
ierr = MPI_Cart_coords(MPI_COMM new_comm, int rank,
       int ndims, int *gridcoords)



Create new 
communicator 

with new topology

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

size = 9
dims = (2,2)
rank = 3

FORTRAN
call MPI_Cart_shift(integer new_comm, dim, shift, 
       left, right, ierr)
call MPI_Cart_coords(integer new_comm, rank,
       ndims, [gridcoords], ierr)



Let’s try starting 
to do this 
together

• In a new directory:

• add mpi_init, _finalize, 
comm_size.

• mpi_cart_create

• rank on new communicator.

• neighbours 

• Only do part of domain

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

size = 9
dims = (2,2)
rank = 3



Next
• File IO - have each process 

write its own file so don’t 
overwrite

• Coordinate min, max across 
processes for contours, 
images.

• Coordinate min in cfl routine.



MPIing the 
code

• Domain decomposition

• Lots of data - ensures locality

• How are we going to handle 
getting non-local information 
across processors?



Guardcells
• Works for parallel 

decomposition!

• Job 1 needs info on Job 2s 0th 
zone, Job 2 needs info on Job 
1s last zone

• Pad array with ‘guardcells’ and 
fill them with the info from the 
appropriate node by message 
passing or shared memory

• Hydro code: need guardcells 2 
deep

n-4 n-3 n-2 n-1 n

-1 0 1 2 3

Global Domain

Job 1

Job 2



Guard cell fill
• When we’re doing boundary 

conditions.

• Swap guardcells with 
neighbour.

1 2

1: u(:, nx:nx+ng, ng:ny-ng)
→ 2:  u(:,1:ng, ng:ny-ng)

2: u(:, ng+1:2*ng, ng:ny-ng)
→ 1: u(:, nx+ng+1:nx+2*ng, ng:ny-ng)

(ny-2*ng)*ng values to swap



Cute way for 
Periodic BCs

• Actually make the 
decomposed mesh periodic;

• Make the far ends of the mesh 
neighbors

• Don’t know the difference 
between that and any other 
neighboring grid

• Cart_create sets this up for us 
automatically upon request.

1 2



Implementing in 
MPI

• No different in principle than 
diffusion 

• Just more values

• And more variables: dens, 
ener, imomx....

• Simplest way: copy all the 
variables into an NVARS*
(ny-2*ng)*ng sized buffer

1 2

1: u(:, nx:nx+ng, ng:ny-ng)
→ 2:  u(:,1:ng, ng:ny-ng)

2: u(:, ng+1:2*ng, ng:ny-ng)
→ 1: u(:, nx+ng+1:nx+2*ng, ng:ny-ng)

nvars*(ny-2*ng)*ng values to swap



Implementing in 
MPI

• No different in principle than 
diffusion 

• Just more values

• And more variables: dens, 
ener, temp....

• Simplest way: copy all the 
variables into an NVARS*
(ny-2*ng)*ng sized buffer

1

2



Implementing in 
MPI

• Even simpler way:

• Loop over values, sending 
each one, rather than 
copying into buffer.

• NVARS*nguard*
(ny-2*nguard) latency hit.

• Would completely dominate 
communications cost.  

1 2



Implementing in 
MPI

• Let’s do this together

• solver.f90; copy periodicBCs 
to gcBufferBCs

• When do we call this in 
timestep?



Implementing in 
MPI

• This approach is simple, but 
introduces extraneous copies

• Memory bandwidth is already 
a bottleneck for these codes

• It would be nice to just point 
at the start of the guardcell 
data and have MPI read it 
from there.

1

2



Implementing in 
MPI

• Let me make one 
simplification for now; copy 
whole stripes

• This isn’t necessary, but will 
make stuff simpler at first

• Only a cost of 2xNg2 = 8 
extra cells (small fraction of 
~200-2000 that would 
normally be copied)

1

2



Implementing in 
MPI

• Recall how 2d memory is 
laid out

• y-direction guardcells 
contiguous

i

j



Implementing in 
MPI

• Can send in one go:

i

j

          call MPI_Send(u(1,1,ny), nvars*nguard*ny, MPI_REAL, ....)
          ierr = MPI_Send(&(u[ny][0][0]), nvars*nguard*ny, MPI_FLOAT, ....)



Implementing in 
MPI

• Creating MPI Data types.

• MPI_Type_contiguous: 
simplest case.  Lets you build 
a string of some other type.

1

          MPI_Datatype ybctype;

ierr = MPI_Type_contiguous(nvals*nguard*(ny), MPI_REAL, &ybctype);
          ierr = MPI_Type_commit(&ybctype);

          MPI_Send(&(u[ny][0][0]), 1, ybctype, ....)

ierr = MPI_Type_free(&ybctype);

Count OldType &NewType



Implementing in 
MPI

• Creating MPI Data types.

• MPI_Type_contiguous: 
simplest case.  Lets you build 
a string of some other type.

1

          integer :: ybctype

call MPI_Type_contiguous(nvals*nguard*(ny), MPI_REAL, ybctype, ierr)
          call MPI_Type_commit(ybctype, ierr)

          MPI_Send(u(1,1,ny), 1, ybctype, ....)

call MPI_Type_free(ybctype, ierr)

Count OldType NewType



Implementing in 
MPI

• Recall how 2d memory is 
laid out

• x gcs or boundary values not 
contiguous

• How do we do something 
like this for the x-direction?

i

j



Implementing in 
MPI

i

jint MPI_Type_vector( 
        int count, 
        int blocklen, 
        int stride, 
        MPI_Datatype old_type, 
        MPI_Datatype *newtype );

stride = nx*nvars

blocklen = ng*nvars

count = ny



Implementing in 
MPI

i

jierr = MPI_Type_vector(ny, nguard*nvars,
        nx*nvars, MPI_FLOAT, &xbctype);

ierr = MPI_Type_commit(&xbctype);

ierr = MPI_Send(&(u[0][nx][0]), 1, xbctype, ....)

ierr = MPI_Type_free(&xbctype);

stride = nx*nvars

blocklen = ng*nvars

count = ny



Implementing in 
MPI

i

jcall MPI_Type_vector(ny, nguard*nvars,
        nx*nvars, MPI_REAL, xbctype, ierr)

call MPI_Type_commit(xbctype, ierr)

call MPI_Send(u(1,nx,1), 1, ybctype, ....)

call MPI_Type_free(xbctype, ierr)

stride = nx*nvars

blocklen = ng*nvars

count = ny



Implementing in 
MPI

i

j• Check: total amount of data = 
blocklen*count = ny*ng*nvars

• Skipped over stride*count = 
nx*ny*nvars

stride = nx*nvars

blocklen = ng*nvars

count = ny



Implementing in 
MPI

• Hands-On: Implement X 
guardcell filling with types.

• Copy gcBufferBC to 
gcTypeBC, implement.

• For now, create/free type each 
cycle through; ideally, we’d 
create/free these once.



In MPI, there’s 
always more 

than one way..
• MPI_Type_create_subarray ; 

piece of a multi-dimensional 
array.

• Much more convenient for 
higher-dimensional arrays

• (Otherwise, need vectors of 
vectors of vectors...)

int MPI_Type_create_subarray(
      int ndims, int *array_of_sizes,
      int *array_of_subsizes,
      int *array_of_starts,
      int order,
      MPI_Datatype oldtype,
      MPI_Datatype &newtype);

call MPI_Type_create_subarray(
      integer ndims, [array_of_sizes],
      [array_of_subsizes],
      [array_of_starts],
      order, oldtype,
      newtype, ierr)



MPI-IO
• Would like the new, parallel 

version to still be able to 
write out single output files.

• But at no point does a single 
processor have entire 
domain...



Parallel I/O
• Each processor has to write 

its own piece of the domain.. 

• without overwriting the other.

• Easier if there is global 
coordination 



• Uses MPI to coordinate 
reading/writing to single file

• Coordination -- collective 
operations.

MPI-IO

...stuff...



PPM file format
• Simple file format

• Someone has to write a 
header, then each PE has to 
output only its 3-bytes pixels 
skipping everyone elses.

header -- ASCII characters
‘P6’, comments, height/width, max val

{

row by row triples of bytes: each 
pixel = 3 bytes



MPI-IO File View
• Each process has a view of the file that consists of only of the parts 

accessible to it.

• For writing, hopefully non-overlapping!

• Describing this - how data is laid out in a file - is very similar to 
describing how data is laid out in memory...



MPI-IO File View
• int MPI_File_set_view(

   MPI_File fh, 
   MPI_Offset disp, 
   MPI_Datatype etype, 
   MPI_Datatype filetype, 
   char *datarep, 
   MPI_Info info)

disp

/* displacement in bytes from start */
/* elementary type */
/* file type; prob different for each proc */
/* ‘native’ or ‘internal’ */
/* MPI_INFO_NULL for today */

etypes



MPI-IO File View
• int MPI_File_set_view(

   MPI_File fh, 
   MPI_Offset disp, 
   MPI_Datatype etype, 
   MPI_Datatype filetype, 
   char *datarep, 
   MPI_Info info)

/* displacement in bytes from start */
/* elementary type */
/* file type; prob different for each proc */
/* ‘native’ or ‘internal’ */
/* MPI_INFO_NULL */

{ { {

Filetypes (made up of etypes; 
repeat as necessary)



MPI-IO File Write
• int MPI_File_write_all(

   MPI_File fh, 
   void *buf, 
   int count, 
   MPI_Datatype datatype, 
   MPI_Status *status)

Writes (_all: collectively) to part of file within view.



Hands On 
• Implement the ppm routines collectively using the 

subarray type.


