
Compressible Fluid
Dynamics

Fluids: Almost
Everything

• 99% of the visible matter in the
Universe is in the form of fluids

• Most of the astrophysical
systems we don’t fully
understand, it’s the fluid
dynamics tripping us up M42 - Orion Nebula

Credit: NASA, ESA, M. Robberto (STScI/ESA) and the
Hubble Space Telescope Orion Treasury Project Team

http://antwrp.gsfc.nasa.gov/apod/ap060119.html

http://antwrp.gsfc.nasa.gov/apod/ap060119.html
http://antwrp.gsfc.nasa.gov/apod/ap060119.html

∂

∂t
ρ +∇ · (ρv) = 0

∂

∂t
(ρv) +∇ · (ρvv) = −∇p

∂

∂t
(ρE) +∇ · ((ρE + p)v) = 0

Equations of
Hydrodynamics
• Density, momentum, and

energy equations

• Supplemented by an equation
of state - pressure as a
function of dens, energy

Discretizing
Derivatives

• Done by finite differencing the
discretized values

• Implicitly or explicitly involves
interpolating data and taking
derivative of the interpolant

• More accuracy - larger
‘stencils’

i-2 i-1 i i+1 i+2

+1 -2 +1

d2Q

dx2

����
i

≈ Qi+1 − 2Qi + Qi−1

∆x2

Discretizing
Derivatives

• Explicit hydrodynamics: only
need information from as far
away as the stencil reaches

• Nearest few neighbors

• Locality galore!
i-2 i-1 i i+1 i+2

+1 -2 +1

∂Q

∂t
= f

�
∂Q

∂x

�

∂Q(n)

∂t

����
i

≈ Q(n+1)
i −Q(n)

i

∆t

dQ(n)

dx

����
i

≈
Q(n)

i+1 −Q(n)
i−1

∆x

Q(n+1)
i = Q(n)

i + ∆tf

�
Q(n+1)

i −Q(n)
i

∆t

�

Guardcells
• How to deal with boundaries?

• Because stencil juts out, need
information on cells beyond
those you are updating

• Pad domain with ‘guard cells’
so that stencil works even for
the 0th point in domain

• Fill guard cells with values
such that the required
boundary conditions are met

Global Domain

0 1 2 3 4 5 6 7

ng = 1
loop from ng, N - 2 ng

Guardcells
• Impose BCs before each

timestep

• Our hydro code - 3 common
boundary conditions

• ‘outflow’, reflect, and periodic

• Outflow (-1)- cell 0 just gets
value from 1

• Reflect (-2); mirror the values

• Periodic(-3); copy values from
other side (cell 0 gets values
from cell 6)

Global Domain

0 1 2 3 4 5 6 7

ng = 1
loop from ng, N - 2 ng

∂

∂t
ρ +∇ · (ρv) = 0

∂

∂t
(ρv) +∇ · (ρvv) = −∇p

∂

∂t
(ρE) +∇ · ((ρE + p)v) = 0

Equations of
Hydrodynamics
• Density, momentum, and

energy equations

• Supplemented by an equation
of state - pressure &
temperature as a function of
dens, energy

Conservation
Law form

• Conservation of mass,
momentum, energy

• These are important
properties, want numerical
solver to maintain them

∂

∂t
ρ +∇ · (ρv) = 0

∂

∂t
ρ +

∂

∂x
(ρvx) = 0

� xR

xL

∂

∂t
ρdx = −

� xR

xL

∂

∂x
(ρvx)

∂

∂t
Mass = − (ρvx)R + (ρvx)L

(ρvx) (ρvx)Mass

Change in mass =
-outflux + influx

Finite Volume
Method

• Conservative; very well suited
to high-speed flows with
shocks

• At each timestep, calculate
fluxes using interpolation/finite
differences, and update cell
quantities.

• Use conserved variables -- eg,
momentum, not velocity.

Fx

Fy

Flux
Calculations

• Compressible flows: common
to use Godunov-based
schemes

• At cell interfaces, a Riemann
problem is solved -- exact
solution to a fluid jump

• Expensive, but does a great
job of dealing with shocks

Frank Timmes,
http://cococubed.asu.edu/code_pages/exact_riemann.shtml

http://cococubed.asu.edu/code_pages/exact_riemann.shtml
http://cococubed.asu.edu/code_pages/exact_riemann.shtml

Flux
Calculations

• We’re using a ‘central scheme’
or ‘Kurganov scheme’

• No Riemann solve; average
over possible waves

• Averaging means shocks are
smeared out compared to
Riemann solvers; but much
faster, simpler to code
(particularly for RHD, MHD)

Del Zanna, Bucciantini (2002) A&A 390:1177

Dimensional
Splitting

• Strang Splitting: Operators
(including X and Y hydro
operators) can be done
separately, at cost of limiting
time accuracy to .

• Not at all obvious that should
work as well as it does.

• Makes code much easier - get a
1d solver working, build 3d
solver trivially

Fx

Fy

Fx

Fy

=

+

?

∆t2

Hydrodynamics
• Finite volume dimensionally

split central scheme

• Need only local info (+/- 2
zones in each dimension)

• Implemented with dimensional
splitting; sweep in x, then y
(then y, then x)

Fx

Fy

+

Other
Hydrodynamic

approaches
• Finite difference approaches;

don’t work in fluxes. Easier
to incorporate some types of
physics with high time
accuracy.

• Parallelization issues same as
finite volume codes.

Richard Günther, University of Tübingen.
http://www.tat.physik.uni-tuebingen.de/~rguenth/

http://www.tat.physik.uni-tuebingen.de/~rguenth/
http://www.tat.physik.uni-tuebingen.de/~rguenth/

Other
Hydrodynamic

approaches
• Incompressible flows

• Additional complexity:
elliptical solver (implicit
scheme)

• What we have here + linear
solvers

• Or Multigrid: also mostly
guardcell filling

Mike Zingale, SUNY Stony Brook
http://www.astro.sunysb.edu/mzingale/pyro/

http://www.tat.physik.uni-tuebingen.de/~rguenth/
http://www.tat.physik.uni-tuebingen.de/~rguenth/

Other
Hydrodynamic

approaches
• SPH: no grid at all. Fluid parcels.

• Hard to do highly accurate
schemes, but arguably better
suited for some problems.

• Gadget-2

• Some of the same parallelization
issues as N-body gravity

Single-Processor
hydro code

• cd hydro{c,f}; make

• ./hydro 100

• Takes options:
• number of points to write

• Outputs image (ppm) of initial
conditions, final state (plots
density)

• display ics.ppm

• display dens.ppm

• Set initial conditions

• Loop, calling timestep() and
maybe some output routines
(plot() - contours)

• At beginning and end, save an
image file with outputppm()

• All data stored in array u.

hydro.c

Single-Processor
hydro code

• Set initial conditions

• Loop, calling timestep() and
maybe some output routines
(plot() - contours)

• At beginning and end, save an
image file with outputppm()

• All data stored in array u.

hydro.f90

Single-Processor
hydro code

Plotting to
screen

• plot.c, plot.f90

• Every 10 timesteps

• Find min, max of pressure,
density

• Plot 5 contours of density
(red) and pressure (green)

• pgplot library (old, but works).

Plotting to file
• ppm.c, ppm.f90

• PPM format -- binary (w/ ascii
header)

• Find min, max of density

• Calculate r,g,b values for
scaled density (black = min,
yellow = max)

• Write header, then data.

Data structure
• u : 3 dimensional array

containing each variable in 2d
space

• eg, u[j][i][IDENS]

• or u(idens, i, j)

solver.f90 (initialconditions)

domain.h

solver.c (initialconditions)

domain.h

Nx

nguardnguard

0 1 2 3 4 5 6
q

7

u[2][3][DENSVAR];
u[2][3][MOMXVAR];
u[2][3][MOMYVAR];
u[2][3][ENERVAR];

y

x

u(idens,4,3)
u(imomx,4,3)
u(imomy,4,3)
u(iener,4,3)

x

Laid out in
memory (C)

x

y = 2
y = 2

0 1 2 3 4 5 6 7x = 0 1 2 3 4 5 6 7

Same way as in an image file
(one horizontal row at a time)

4 floats: dens, momx, momy, ener

Laid out in memory
(FORTRAN)

x

y = 3
y = 3

1 2 3 4 5 6 7 8x = 1 2 3 4 5 6 7 8

Same way as in an image file
(one horizontal row at a time)

4 floats: dens, momx, momy, ener

Timestep
routine

• Apply boundary conditions

• X sweep, Y sweep

• Transpose entire domain , so Y
sweep is just an X sweep

• (unusual approach! But has
advantages. Like matrix multiply.)

• Note - dt calculated each step
(minimum across domain.)

timestep
solver.f90

Timestep
routine

• Apply boundary conditions

• X sweep, Y sweep

• Transpose entire domain , so Y
sweep is just an X sweep

• (unusual approach! But has
advantages. Like matrix multiply.)

• Note - dt calculated each step
(minimum across domain.)

timestep
solver.c

Xsweep routine

• Go through each x “pencil” of
cells

• Do 1d hydrodynamics routine on
that pencil.

xsweep
solver.c

xsweep
solver.f90

What do data
dependancies
look like for

this?

Data
dependencies

• Previous timestep must be
completed before next one
started.

• Within each timestep,

• Each tvd1d “pencil” can be
done independently

• All must be done before
transpose, BCs

BCs

tvd1d tvd1d tvd1d tvd1d...

transpose

BCs

tvd1d tvd1d tvd1d tvd1d...

Looks like
OpenMP!

• OpenMP of this code is trivial

• Wrap j loop with omp parallel for

• Almost all of the physics is in this
tvd1d routine.

xsweep
solver.c

xsweep
solver.f90

$ export OMP_NUM_THREADS=1
$ time ./hydro 100

real! 0m7.256s
user! 0m7.222s
sys!0m0.003s

$ export OMP_NUM_THREADS=8
$ time ./hydro 100

real! 0m1.453s
user! 0m11.540s
sys!0m0.044s

5x speedup with 1 line of
code!

(all output removed)

$ export OMP_NUM_THREADS=1
$ time ./hydro 500

real! 3m36.728s
user! 3m36.680s
sys!0m0.013s

$ export OMP_NUM_THREADS=8
$ time ./hydro 500

real! 0m47.459s
user! 6m18.849s
sys!0m0.598s

5x speedup with 1 line of
code!

(all output removed)

cfl(), xytranspose() could
usefully be parallelized.

MPIing the
code

• Domain decomposition

MPIing the
code

• Domain decomposition

• For simplicity, for now we’ll
just implement decomposition
in one direction, but we will
design for full 2d
decomposition

MPIing the
code

• Domain decomposition

• We can do as with diffusion
and figure out out neighbours
by hand, but MPI has a better
way...

Create new
communicator

with new topology
• MPI_Cart_create

(MPI_Comm comm_old,
int ndims, int *dims,
int *periods, int reorder,
MPI_Comm *comm_cart) (0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

size = 9
dims = (2,2)
rank = 3

Create new
communicator

with new topology
• MPI_Cart_create (

integer comm_old,
integer ndims,
integer [dims],
logical [periods],
integer reorder,
integer comm_cart,
integer ierr)

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

size = 9
dims = (2,2)
rank = 3

Create new
communicator

with new topology

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

size = 9
dims = (2,2)
rank = 3

C
ierr = MPI_Cart_shift(MPI_COMM new_comm, int dim,
 int shift, int *left, int *right)
ierr = MPI_Cart_coords(MPI_COMM new_comm, int rank,
 int ndims, int *gridcoords)

Create new
communicator

with new topology

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

size = 9
dims = (2,2)
rank = 3

FORTRAN
call MPI_Cart_shift(integer new_comm, dim, shift,
 left, right, ierr)
call MPI_Cart_coords(integer new_comm, rank,
 ndims, [gridcoords], ierr)

Let’s try starting
to do this
together

• In a new directory:

• add mpi_init, _finalize,
comm_size.

• mpi_cart_create

• rank on new communicator.

• neighbours

• Only do part of domain

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

size = 9
dims = (2,2)
rank = 3

Next
• File IO - have each process

write its own file so don’t
overwrite

• Coordinate min, max across
processes for contours,
images.

• Coordinate min in cfl routine.

MPIing the
code

• Domain decomposition

• Lots of data - ensures locality

• How are we going to handle
getting non-local information
across processors?

Guardcells
• Works for parallel

decomposition!

• Job 1 needs info on Job 2s 0th
zone, Job 2 needs info on Job
1s last zone

• Pad array with ‘guardcells’ and
fill them with the info from the
appropriate node by message
passing or shared memory

• Hydro code: need guardcells 2
deep

n-4 n-3 n-2 n-1 n

-1 0 1 2 3

Global Domain

Job 1

Job 2

Guard cell fill
• When we’re doing boundary

conditions.

• Swap guardcells with
neighbour.

1 2

1: u(:, nx:nx+ng, ng:ny-ng)
→ 2: u(:,1:ng, ng:ny-ng)

2: u(:, ng+1:2*ng, ng:ny-ng)
→ 1: u(:, nx+ng+1:nx+2*ng, ng:ny-ng)

(ny-2*ng)*ng values to swap

Cute way for
Periodic BCs

• Actually make the
decomposed mesh periodic;

• Make the far ends of the mesh
neighbors

• Don’t know the difference
between that and any other
neighboring grid

• Cart_create sets this up for us
automatically upon request.

1 2

Implementing in
MPI

• No different in principle than
diffusion

• Just more values

• And more variables: dens,
ener, imomx....

• Simplest way: copy all the
variables into an NVARS*
(ny-2*ng)*ng sized buffer

1 2

1: u(:, nx:nx+ng, ng:ny-ng)
→ 2: u(:,1:ng, ng:ny-ng)

2: u(:, ng+1:2*ng, ng:ny-ng)
→ 1: u(:, nx+ng+1:nx+2*ng, ng:ny-ng)

nvars*(ny-2*ng)*ng values to swap

Implementing in
MPI

• No different in principle than
diffusion

• Just more values

• And more variables: dens,
ener, temp....

• Simplest way: copy all the
variables into an NVARS*
(ny-2*ng)*ng sized buffer

1

2

Implementing in
MPI

• Even simpler way:

• Loop over values, sending
each one, rather than
copying into buffer.

• NVARS*nguard*
(ny-2*nguard) latency hit.

• Would completely dominate
communications cost.

1 2

Implementing in
MPI

• Let’s do this together

• solver.f90; copy periodicBCs
to gcBufferBCs

• When do we call this in
timestep?

Implementing in
MPI

• This approach is simple, but
introduces extraneous copies

• Memory bandwidth is already
a bottleneck for these codes

• It would be nice to just point
at the start of the guardcell
data and have MPI read it
from there.

1

2

Implementing in
MPI

• Let me make one
simplification for now; copy
whole stripes

• This isn’t necessary, but will
make stuff simpler at first

• Only a cost of 2xNg2 = 8
extra cells (small fraction of
~200-2000 that would
normally be copied)

1

2

Implementing in
MPI

• Recall how 2d memory is
laid out

• y-direction guardcells
contiguous

i

j

Implementing in
MPI

• Can send in one go:

i

j

 call MPI_Send(u(1,1,ny), nvars*nguard*ny, MPI_REAL,)
 ierr = MPI_Send(&(u[ny][0][0]), nvars*nguard*ny, MPI_FLOAT,)

Implementing in
MPI

• Creating MPI Data types.

• MPI_Type_contiguous:
simplest case. Lets you build
a string of some other type.

1

 MPI_Datatype ybctype;

ierr = MPI_Type_contiguous(nvals*nguard*(ny), MPI_REAL, &ybctype);
 ierr = MPI_Type_commit(&ybctype);

 MPI_Send(&(u[ny][0][0]), 1, ybctype,)

ierr = MPI_Type_free(&ybctype);

Count OldType &NewType

Implementing in
MPI

• Creating MPI Data types.

• MPI_Type_contiguous:
simplest case. Lets you build
a string of some other type.

1

 integer :: ybctype

call MPI_Type_contiguous(nvals*nguard*(ny), MPI_REAL, ybctype, ierr)
 call MPI_Type_commit(ybctype, ierr)

 MPI_Send(u(1,1,ny), 1, ybctype,)

call MPI_Type_free(ybctype, ierr)

Count OldType NewType

Implementing in
MPI

• Recall how 2d memory is
laid out

• x gcs or boundary values not
contiguous

• How do we do something
like this for the x-direction?

i

j

Implementing in
MPI

i

jint MPI_Type_vector(
 int count,
 int blocklen,
 int stride,
 MPI_Datatype old_type,
 MPI_Datatype *newtype);

stride = nx*nvars

blocklen = ng*nvars

count = ny

Implementing in
MPI

i

jierr = MPI_Type_vector(ny, nguard*nvars,
 nx*nvars, MPI_FLOAT, &xbctype);

ierr = MPI_Type_commit(&xbctype);

ierr = MPI_Send(&(u[0][nx][0]), 1, xbctype,)

ierr = MPI_Type_free(&xbctype);

stride = nx*nvars

blocklen = ng*nvars

count = ny

Implementing in
MPI

i

jcall MPI_Type_vector(ny, nguard*nvars,
 nx*nvars, MPI_REAL, xbctype, ierr)

call MPI_Type_commit(xbctype, ierr)

call MPI_Send(u(1,nx,1), 1, ybctype,)

call MPI_Type_free(xbctype, ierr)

stride = nx*nvars

blocklen = ng*nvars

count = ny

Implementing in
MPI

i

j• Check: total amount of data =
blocklen*count = ny*ng*nvars

• Skipped over stride*count =
nx*ny*nvars

stride = nx*nvars

blocklen = ng*nvars

count = ny

Implementing in
MPI

• Hands-On: Implement X
guardcell filling with types.

• Copy gcBufferBC to
gcTypeBC, implement.

• For now, create/free type each
cycle through; ideally, we’d
create/free these once.

In MPI, there’s
always more

than one way..
• MPI_Type_create_subarray ;

piece of a multi-dimensional
array.

• Much more convenient for
higher-dimensional arrays

• (Otherwise, need vectors of
vectors of vectors...)

int MPI_Type_create_subarray(
 int ndims, int *array_of_sizes,
 int *array_of_subsizes,
 int *array_of_starts,
 int order,
 MPI_Datatype oldtype,
 MPI_Datatype &newtype);

call MPI_Type_create_subarray(
 integer ndims, [array_of_sizes],
 [array_of_subsizes],
 [array_of_starts],
 order, oldtype,
 newtype, ierr)

MPI-IO
• Would like the new, parallel

version to still be able to
write out single output files.

• But at no point does a single
processor have entire
domain...

Parallel I/O
• Each processor has to write

its own piece of the domain..

• without overwriting the other.

• Easier if there is global
coordination

• Uses MPI to coordinate
reading/writing to single file

• Coordination -- collective
operations.

MPI-IO

...stuff...

PPM file format
• Simple file format

• Someone has to write a
header, then each PE has to
output only its 3-bytes pixels
skipping everyone elses.

header -- ASCII characters
‘P6’, comments, height/width, max val

{

row by row triples of bytes: each
pixel = 3 bytes

MPI-IO File View
• Each process has a view of the file that consists of only of the parts

accessible to it.

• For writing, hopefully non-overlapping!

• Describing this - how data is laid out in a file - is very similar to
describing how data is laid out in memory...

MPI-IO File View
• int MPI_File_set_view(

 MPI_File fh,
 MPI_Offset disp,
 MPI_Datatype etype,
 MPI_Datatype filetype,
 char *datarep,
 MPI_Info info)

disp

/* displacement in bytes from start */
/* elementary type */
/* file type; prob different for each proc */
/* ‘native’ or ‘internal’ */
/* MPI_INFO_NULL for today */

etypes

MPI-IO File View
• int MPI_File_set_view(

 MPI_File fh,
 MPI_Offset disp,
 MPI_Datatype etype,
 MPI_Datatype filetype,
 char *datarep,
 MPI_Info info)

/* displacement in bytes from start */
/* elementary type */
/* file type; prob different for each proc */
/* ‘native’ or ‘internal’ */
/* MPI_INFO_NULL */

{ { {

Filetypes (made up of etypes;
repeat as necessary)

MPI-IO File Write
• int MPI_File_write_all(

 MPI_File fh,
 void *buf,
 int count,
 MPI_Datatype datatype,
 MPI_Status *status)

Writes (_all: collectively) to part of file within view.

Hands On
• Implement the ppm routines collectively using the

subarray type.

