
Workflow Optimization for Large Scale Bioinformatics

Ramses van Zon

SciNet/Compute Canada

September 25, 2012

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 1 / 87

Outline of the course

1 Introduction

2 Bookkeeping and scripting

3 File I/O

4 Running and monitoring

5 Concurrency

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 2 / 87

Part I

Introduction

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 3 / 87

Bioinformatics

. . . is a broad area of research

Next Gen Sequencing

Data Analysis

Alignment

Assembly

Simulation

Common features

Involves a lot of data

Involves a lot of analysis

⇒ High Performance Computing (HPC)

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 4 / 87

Bioinformatics requirements

Tends to hit computational limitations

It is not atypical for bioinformatics applications to require

Large memory

Lots of disk space

High bandwidth to move data

Fast access to small amounts of that data (“iops”)

Substantial computation time

often all at the same time!

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 5 / 87

Bioinformatics & HPC

Suitable for HPC?

Typical HPC cluster:

Optimized for parallel, floating point calculations.

Memory per core typically modest (1-3 GB).

High performance network within cluster.

Good external transfer rates only if good from end to end.

Disk storage optimized for large contiguous blocks of data.

Disk system often the least optimized.

Shared resource.

For HPC to solve large bioinformatics questions requires some rethinking.

Different applications may have quite different optimal workflows, but the
boundary conditions remain the same.

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 6 / 87

Computational Challenges

Workflow

What gets done, with what data, in what sequence (or in parallel), and
what tasks or items can share resources?

Data Management and Data Transport

What goes where, how fast, how big is it, what is the format?

Throughput

Regardless of the speed of workflow components, what matters is how
much data we get to process per second (or per Watt).

Of course these are important for any large scale scientific computation,
but the pace at which data gets produced in bioinformatics is impressive.

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 7 / 87

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 8 / 87

Computational Infrastructure

File systems

Modern computers (CPU, RAM, DISK)

Supercomputers

Networks

Linux

Schedulers

Don’t worry. . .

We do not need to understand these in every detail, but we do need to
familiarize ourselves with each so we understand the limitations, and can
adapt our workflow to maximize throughput.

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 9 / 87

A running example

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 10 / 87

A running example

Project

Given a number of batches of DNA fragments, we want to know which
batches are most likely human, by comparing (“alignment”) against a
reference human genome.

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 11 / 87

Alignment

Alignment in a nutshell

Given some reference sequence, such as CTGA...AGTTAGTGG...

There is some query sequence, such as AGTTCCCTG

One possible alignment is:

CTGA...AGTTAG--TGG...

|||| ||

AGTT*CCCTG

Note that gaps are allowed. The alignment depends on the scoring
criterion. These can be rather sofisticated, but that’s beyond this course.

There are some standard tools for align (e.g. blast), but we’ll use an
example program dalex written for this course that you should not use
in real life. It has a simple scoring metric: the number of exact matches
over the extent of the alignment. E.g. the above alignment scores 60%.

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 12 / 87

Fake Numbers

Fake reference genome

Our fake human genome is exactly given (T, G, C and A only).

It is composed of 23 chromosomes of 200M bases each.

Total bases is thus 4.6G (close to real amount).

Fake experimental sequences

We have 1000 batches of 500 samples each.

Each sample is a 100 bases long only with T, G, C and A as well.

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 13 / 87

Part II

Bookkeeping and scripting

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 14 / 87

Bookkeeping and scripting

Even on an HPC system, you will not ’just run’ and get your results.

There are queuing systems, you will need to split up your work, etc.

Bookkeeping becomes important, for:

1 Data management;

2 Computation management;

3 Postprocessing and documentation.

To automate and track all of this, you’ll like do some scripting.

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 15 / 87

Bookkeeping

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 16 / 87

Bookkeeping

When dealing with lots of data you’ll need to keep track of:

Where is everything stored?

What needs or needed data transfers/copying?

What format was used (conversions)?

Directory structures, naming conventions.

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 17 / 87

Bookkeeping

When dealing with lots of analysis you’ll need to keep track of:

What ’jobs’ in the batch system were done?

Were they successful (no errors)?

Where are the results, do they need to be transfered?

What remains to be done?

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 18 / 87

Bookkeeping

Also don’t forget:

Post-processing.

Take notes of what you are doing.

If you have scripts, programs, etc, use version control.

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 19 / 87

Bookkeeping in the example

Even in our simple example, there are lots of things to keep track of, e.g.

Where is the reference sequences stored, and how?

Where are the query samples?

How are they organized?

What queries have been analyzed already?

Which remain to be done?

Where are the results?

How are they organized?

How far along is the postprocessing (can it start before all’s finished)?

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 20 / 87

Bookkeeping

Simple data structure

Queries are in file batchA-sampleB.dat, with A=1,2,...1000 and
B=1,2,...500 in subdirectory samples.

Chromosomes in humanref/chromosomeC.dat, C=1,2,...23.

Let’s say all results are to go into the subdirectory results.

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 21 / 87

Bookkeeping

Simple data structure

Queries are in file batchA-sampleB.dat, with A=1,2,...1000 and
B=1,2,...500 in subdirectory samples.

Chromosomes in humanref/chromosomeC.dat, C=1,2,...23.

Let’s say all results are to go into the subdirectory results.

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 21 / 87

Bookkeeping

Simple workflow

For each sample in each batch, align with each chromosome.

Demand a scoring of at least 95%.

Write result to a file, for post-processing.

Post-processing

For each output file, count the number of matches.

For each batch, add up the numbers from its samples for all
chromosomes.

Order these final numbers: highest numbers are likely human.

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 22 / 87

Scripting

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 23 / 87

Scripting is . . .

Automating tasks. . .

Reproducable

Debuggable and scalable

At a high level. . .

Easy to learn

Should be easy to read

Using an interpreted language (typically)

No need to compile, but slow

Text based: easy to check

Many choices: bash, tcsh, perl, python, ruby.

We’ll use bash: the same language as that used on the command line and
in job scripts (linux-centric? Yes, but so is HPC in general)

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 24 / 87

A bit of bash: Basic commands

echo Prints output
pwd Print current directory
cd [directory] Change directory
ls Directory LiSting
cat [filename] Dumps out filename(s)
less [filename] Prints out filename(s) by page
mv [src] [dest] Move file
cp [src] [dest] Copy file
rm [filename] Delete file
mkdir [filename] Create directory
rmdir [filename] Remove directory

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 25 / 87

A bit of bash: Some commands that you may not know

seq [limit] Print the numbers 1 to limit
wc [filename] Line/word/char count of file
head [filename] First lines of file
tail [filename] Last lines of file
sort [filename] Sort lines of file
grep Searches input for text
awk Column-based processing language
sed Line-based filter and text transformer
tar Archive multiple files to one file
gzip Compress files

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 26 / 87

A bit of bash: Redirection

[cmd] > [filename] takes what would have gone to the screen,
creates a new file [filename], and redirects output to that file.

Overwrites previous contents of file if it had existed.

[cmd] >> [filename] appends to [filename]if it exists.

[cmd] < [filename] means programs input comes from file, as if you
were typing.

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 27 / 87

A bit of bash: Pipelines

The idea of chaining commands together - the output from one
becomes the input of another - is part of what makes the shell (and
programming generally) so powerful.

Instead of

$ [cmd1] > [file]
$ [cmd2] < [file]

one can say

$ [cmd1] | [cmd2]

The output of [cmd1] becomes the input of [cmd2]

Easier

Avoids creating a temporary file

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 28 / 87

A bit of bash: variables

Declare and initialize a variable:
varname="string"

To use the variable, you need a dollar sign:
echo $varname

Passing this variable to other scripts called within the current one:
export varname

Special variables

$1,$2, ...: Arguments given to a command

$?: Error code of the last command

Storing output in a variables

varname=$(cmdline)
stores the otput of the command cmdline in the variable varname

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 29 / 87

A bit of bash: for loops

Bash has for loops much like any programming language does.

Loops are word list based:
for [varname] in [list]

Block of commands in the loop should be between do and done.

Example:

for word in hello world how are you
do

echo $word
done

hello
world
how
are
you

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 30 / 87

Scripting

Script for the simple workflow

#!/bin/bash
for a in $(seq 1000)
do

for b in $(seq 500)
do

for c in $(seq 23)
do
dalex humanref/chromosome$c.dat \
samples/batch$a-sample$b.dat -w 32 -m 0.95 \
> results/batch$a-sample$b-chromosome$c.dat

done
done

done

If the inner command takes, say, 1 minute on 1 cpu, it would take 8000
days for this computation to complete.

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 31 / 87

Scripting

Script for the simple workflow’s postprocessing

#!/bin/bash
for a in $(seq 1000)
do

for b in $(seq 500)
do

for c in $(seq 23)
do

cat results/batch$a-sample$b-chromosome$c.dat \
| grep '^#' | grep -v '^#0'

done
done | wc -l | awk "{print $1,$a}"

done | sort -n -r > results/batchtotals.txt

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 32 / 87

Scripting

Thoughts on how this would go? Do you see any problems already?

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 33 / 87

Part III

File I/O

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 34 / 87

File I/O

File systems

It’s where we keep most data.

Typically spinning disks

Logical structure: directories, subdirectories and files.

On disk, these are just blocks of bytes.

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 35 / 87

File I/O

What are I/O operations, or IOPS?

Finding a file (ls)
Check if that file exists, read metadata (file size, data stamp etc.)

Opening a file:
Check if that file exists, see if opening the file is allowed, possibly
create it, find the block that has the (first part of) the file system.

Reading a file:
Position to the right spot, read a block, take out right part

Writing to a file:
Check where there is space, position to that spot, write the block.
Repeated if the data read/written spans multiple blocks.

Move the file pointer (“seek”):
File system must check were on disk the data is.

Close the file.

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 36 / 87

Parallel file system at a glance

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 37 / 87

File system at SciNet

1,790 1TB SATA disk drives, for a total of 1.4PB

Two DCS9900 couplets, each delivering:

4-5 GB/s read/write access (bandwidth)
30,000 IOP/s max (open, close, seek, . . .)

Single GPFS file system on TCS and GPC

I/O goes over the network

File system is parallel!

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 38 / 87

File system recap

location quota block-size time-limit backup devel comp

/home 10GB 256kB unlimited yes rw ro

/scratch 20TB 4MB 3 months no rw rw

There are quotas

Home read-only from compute nodes!

Big block sizes: small files waste space

Issues are common to parallel file systems (Lustre, etc.)
present in most modern supercomputers.

Scratch quota per user oversubscribes disk space, so only for when
you temporarily really needs a lot of disk space.

Most users will need much less.

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 39 / 87

File system recap

Scratch Policies

Scratch is intended for active jobs
(e.g. writing checkpoints and data during a run).

Files are purged after 3 months

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 40 / 87

The file system is parallel, what does that
mean?

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 41 / 87

Shared file system

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 42 / 87

Shared file system

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 42 / 87

Shared file system

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 42 / 87

Shared file system

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 42 / 87

Shared file system

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 42 / 87

Shared file system

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 42 / 87

Shared file system

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 42 / 87

Shared file system

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 42 / 87

Shared file system

Optimal for large shared files.

Behaves poorly under many small reads and writes.

Your use of it affects everybody!
(Different from case with CPU and RAM which are not shared.)

How you read and write, your file format, the number of files in a
directory, and how often you ls, can all affect every other user!

The file system is shared over the ethernet network on GPC:
Hammering the file system can hurt process communications.

File systems are not infinite!
Bandwidth, metadata, IOPS, number of files, space, . . .

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 43 / 87

Shared file system

Think of your laptop/desktop with several people simultaneously
doing I/O, doing ls on directories with thousands of files . . .
2 jobs doing simultaneous I/O can take much longer than twice a
single job duration due to disk contention and directory locking.
SciNet: ∼100 users doing I/O from 4000 nodes.
That’s a lot of sharing and contention!

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 44 / 87

Some Numbers

830 TB on scratch

Over 1000 users - you do the math!

Want >25%free at any given time
(systems can write 0.5 PB per day!)

100 MB/s: maximum possible read/write speed from a node if there
is nothing else running on system

When system is fully utilized:

1 MB/s: average expected read/write speed from a node

10 IOP/s: average expected iops from a node
So can’t open more than 10 files in a second!

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 45 / 87

How to make the file system work for rather
than against you

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 46 / 87

Make a Plan!

Make a plan for your data needs:

How much will you generate,
How much do you need to save,
And where will you keep it?

Note that /scratch is temporary storage for 3 months or less.

Options?
1 Save on your departmental/local server/workstation

(it is possible to transfer TBs per day on a gigabit link);
2 Apply for a project space allocation at next RAC call
3 Change storage format.

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 47 / 87

Change storage format

Write binary format files
Faster I/O and less space than ASCII files.

Use parallel I/O if writing from many nodes

Maximize size of files. Large block I/O optimal!

Minimize number of files. Makes filesystem more responsive!

Don’ts:

Don’t write lots of ASCII files. Lazy, slow, and wastes space!

Don’t write many hundreds of files in a 1 directory.
Hurts responsiveness!

Don’t write many small files (< 10MB).
System is optimized for large-block I/O!

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 48 / 87

Example

Obviously, we need to change our data layout

500x1000 = 500,000 input files, nominally about 6GB, would take:
125 GB on /home: out of quota

2 TB on /scratch: 300x larger: insane.

Temporary files: 23x⇒ 17.5 million files. Out of quota and
insane.

What to do?

Do we need all these temporary files?
Certainly not, we don’t care which chromosome has the match.

Do we need separate files for all the sequences?
Only need to distinguish by batch: only really need 500 output files.

How about the large number of input files?
Depends on the tool. It turns out the dalex can take multiple query
sequences from a single file. So we might use one input file per batch.

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 49 / 87

Example

Obviously, we need to change our data layout

500x1000 = 500,000 input files, nominally about 6GB, would take:
125 GB on /home: out of quota

2 TB on /scratch: 300x larger: insane.

Temporary files: 23x⇒ 17.5 million files. Out of quota and
insane.

What to do?

Do we need all these temporary files?
Certainly not, we don’t care which chromosome has the match.

Do we need separate files for all the sequences?
Only need to distinguish by batch: only really need 500 output files.

How about the large number of input files?
Depends on the tool. It turns out the dalex can take multiple query
sequences from a single file. So we might use one input file per batch.

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 49 / 87

New data layout for example

$ cd samples
$ for a in $(seq 1000); do
$ cat batch$a-*.dat > batch$a.dat
$ done

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 50 / 87

New scripts

#!/bin/bash
for a in $(seq 1000)
do

for c in $(seq 23)
do
dalex humanref/chromosome$c.dat samples/batch$a.dat \
-w 32 -m 0.95

done > results/batch$a-output.dat
done

#!/bin/bash
for a in $(seq 1000)
do

cat results/batch$a-out.dat | grep '^#' | grep -v '^#0' \
| wc -l | awk "{print $1,$a}"

done | sort -n -r > results/batchtotals.txt

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 51 / 87

General guidelines in restructuring data

1. Identify your unit of computation

If files bundle naturally (or even mildly forced), put them in single
(tar) files if and when you can.

2. Distinguish types of data

Analysis: i.e., that which is strictly necessary for later analysis.

Required: e.g. for restarts, but you might not need this.

By-product: All the stuff you don’t need

3. Take action

Remove By-product data as soon as possible.

Bundle data by ’unit of computation’.

Separately bundle the Analysis and Required data.

Only keep the Analysis data on hand, store the rest (tarball, HPSS).

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 52 / 87

Ramdisk

Sometimes, the tools you’re using is not yours to rewrite, and does
bad I/O.

RAM is always faster than disk; think about using ramdisk.

If the total size of the files involved in this bad behaviour is not too
large, you can put them on ramdisk.

Ramdisk lives on /dev/shm as if it is a regular directory. However,
anything put there will actually be stored in memory.

That memory is then no longer available for you application: plan
ahead!

The maximum size of the ramdisk is 11GB on most GPC nodes.

Important: results stored to ramdisk are not shared among the cluster!

Suppose dalex did not allow multiple sequences in a file, what then?

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 53 / 87

Ramdisk example

$ cd samples
$ for a in $(seq 1000); do
$ tar cf batch$a.tar batch$a-*.dat
$ done

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 54 / 87

New scripts

#!/bin/bash
for a in $(seq 1000)
do

tar xf samples/batch$a.tar -C /dev/shm/
for b in $(seq 500)
do

for c in $(seq 23)
do
dalex humanref/chromosome$c.dat \
/dev/shm/batch$a-sample$b.dat -w 32 -m 0.95

done
done > results/batch$a-output.dat
rm -rf /dev/shm/batch$a-sample*.dat

done

Post-processing remains the same.

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 55 / 87

Part IV

Running and monitoring

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 56 / 87

Running and monitoring

You’ll be running on a cluster (GPC)

Need some understanding of:

Clusters

Schedulers

These run fairly “hands-off”, so knowing how to monitor your jobs is
important.

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 57 / 87

Running

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 58 / 87

Submitting jobs

To run a job, you must submit to a batch queue.

You submit jobs from a devel node in the form of a script

Scheduling is by node. You need to use all 8 cores on the node!

Best to run from the scratch directory (home=read-only)

Copy essential results out after runs have finished.

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 59 / 87

Submitting jobs - Limits

Group based limits:
possible for your colleagues to exhaust group limits

Talk to us first to run massively parallel jobs (> 2048 cores)

While their resources last, jobs will run at a higher priority than
others for groups with an allocation.

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 60 / 87

GPC queues

queue min.time max.time max jobs max cores

batch 15m 48h 32/1000 256/8000

debug 2h/30m 1 16/64

largemem 15m 48h 1 16

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 61 / 87

GPC queues

Submit to these queues from a GPC devel node with

qsub [options] <script>

Common options (usually in script):
-l: specifies requested nodes and time, e.g.

-l nodes=2:ppn=8,walltime=1:00:00

-q: specifies the queue, e.g.

-q batch

-q debug

-q largemem

-I specifies that you want an interactive session.
-X specifies that you want X forwarded.

The largemem queue is exceptional, in that it provides access to two
nodes (only) that have 16 processors and 128GB of ram.

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 62 / 87

GPC job script example

#!/bin/bash

#PBS -l nodes=1:ppn=8

#PBS -l walltime=2:00:00

#PBS -N JobName

cd $PBS O WORKDIR

dalex -m .95 -w 32 humanref/chromosome1.dat samples/batch1.dat

$ cd $SCRATCH/...
$ qsub myjob.pbs
2961983.gpc-sched
$ qstat (or checkjob 2961983, or showq -u $USER)
Job id Name User Time Use S Queue
---------------- -------------- ---- -------- - --------
13706895.gpc-sched JobName rzon 0 Q batch
$ ls
JobName.e13706895 JobName.o13706895 humanref myjob.pbs
results samples

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 63 / 87

Where’s the output? In JobName.o13706895

Unredirected output goes, after the run, to:

--
Begin PBS Prologue Mon Sep 24 22:16:33 EDT 2012 1348539393
Job ID: 13706895.gpc-sched
Username: rzon
Group: scinet
Nodes: gpc-f109n001-ib0
End PBS Prologue Mon Sep 24 22:16:34 EDT 2012 1348539394
--
INFO: read reference from : humanref/chromosome1.dat
INFO: read in queries from : samples/batch1.dat
...
--
Begin PBS Epilogue Mon Sep 24 22:17:30 EDT 2012 1348539450
...
Limits: neednodes=1:ppn=8,nodes=1:ppn=8,walltime=02:00:00
Resources: cput=00:00:50,mem=3279680kb,vmem=3386652kb,wallt...

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 64 / 87

Full problem

Just add a for loop over chromosomes:

#!/bin/bash

#PBS -l nodes=1:ppn=8

#PBS -l walltime=2:00:00

#PBS -N JobName

cd $PBS O WORKDIR

for c in $(seq 23); do

dalex -m .95 -w 32 humanref/chromosome$c.dat samples/batch1.dat

done

and submit 1000 times, right?

We would probably yell at you for that. Why?

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 65 / 87

Monitoring

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 66 / 87

Batch computing

SciNet systems are batch compute clusters

Computing by submitting batch jobs to the scheduler.

When you submit a job, it gets placed in a queue.

Job priority is based on allocation and fairshare.

When sufficient nodes are free to execute a job, it starts the job on
the appropriate compute nodes.

Jobs remain ‘idle’ until resources become available.

Jobs can be temporarily ‘blocked’ if you submit too much.

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 67 / 87

Batch computing

Components

Torque: Resource manager providing control over batch jobs and
distributed compute nodes.

Moab: A policy-based job scheduler and event engine that enables
utility-based computing for clusters.

Fairshare: Mechanism using past utilization for prioritization.

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 68 / 87

Job cycle

Preparation 〉Monitor 〉 Control 〉 Reports 〉
• Compile

• Test on
devel node

• Determine
resources

• Write job
script

qsub script

(returns ‘jobid’)

• Job
queued?

• When will it
run?

• What else is
queued?

• Efficiency?

qstat -f jobid

checkjob jobid

showstart jobid

showbf

showq

showq -r -u user

• Cancel job

• Ssh to
nodes

• Interactive
jobs

• Debug
queue

canceljob jobid

ssh node

top

qsub -I

qsub -q debug

• Check .o/.e
jobid.{o,e}
• short-term

statistics:

showstats -u user

• year-to-date
usage on:

https://
portal.scinet
.utoronto.ca

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 69 / 87

Monitoring not-yet-running jobs

qstat and checkjob

Show torque status right away on GPC: qstat

Show moab status (better): checkjob jobid

See more details of the job: checkjob -v jobid
(e.g., why is my job blocked?)

showq

See all the jobs in the queue: showq (from gpc or tcs)

See your jobs in the queue: showq -u user

showstart and showbf

Estimate when a job may start: showbf [-f ib]

Estimate when a queued job may start: showstart jobid

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 70 / 87

Monitoring running jobs

checkjob

checkjob jobid

output/error files

/var/spool/torque/spool/jobid.OU

/var/spool/torque/spool/jobid.ER

showq

showq -r -u user

ssh

ssh node (node name from checkjob)

top: shows process state, memory and cpu usage

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 71 / 87

Top example

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 72 / 87

Top example

:

,

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 73 / 87

Control

canceljob

If you spot a mistake: canceljob jobid

qsub for interactive and debug jobs
-I:

Interactive
After qsub, waits for jobs to start.
Usually combined with:

-q debug:

Debug queue has 10 nodes reserved for short jobs.
You can get 1 node for 2 hours, but also
8 nodes, for half an hour.

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 74 / 87

Reports

output/error files

*.e / *.o
In submission directory by default, unless set in script.

If for some reason no .o and .e created, look for

/var/spool/torque/spool/jobid.OU
/var/spool/torque/spool/jobid.ER

Statistics

Short term: showstats -u USER

Year-to-date: SciNet Portal

Usage stats for past year, showing a breakdown of TCS, GPC eth,
and GPC ib usage. Updated every 24 hours.

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 75 / 87

Reports

output/error files

*.e / *.o
In submission directory by default, unless set in script.

If for some reason no .o and .e created, look for

/var/spool/torque/spool/jobid.OU
/var/spool/torque/spool/jobid.ER

Statistics

Short term: showstats -u USER

Year-to-date: SciNet Portal

Usage stats for past year, showing a breakdown of TCS, GPC eth,
and GPC ib usage. Updated every 24 hours.

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 75 / 87

Monitoring jobs - recap

From the scheduler’s point-of-view

Once the job is incorporated into the queue (this takes a minute), you
can use showq to show the queue, and job-specific commands such as
showstart, checkjob, canceljob

On the node

Once the job is running, you can check on what node it is running
(showq -r)

This node is yours for the duration of the run, and you can ssh into it.

top: tells you about the resources that are used on the node.

Check and track memory usage.

Check and track cpu usage.

Ensure that your program is not stuck in ’D’ (waiting for Disk).

/var/spool/torque/spool contains the .o and .e files so far.

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 76 / 87

Data Management monitoring

Minimize use of filesystem commands like ls -l and du.

Regularly check your disk usage using /scinet/gpc/bin6/diskUsage.

Warning signs which should prompt careful consideration:

More than 100,000 files in your space
Average file size less than 100 MB

Remember to distinguish: Analysis, Required and By-Product data.

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 77 / 87

Part V

Concurrency

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 78 / 87

Concurrency

Modern computers have more than one core.

Modern supercomputers are modern computers linked together by a
fast interconnect.

Modern supercomputers run sofisticated schedulers that can run jobs
simultaneously.

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 79 / 87

Concurrency

Figure out if the tool of your choice can handle shared memory, threaded
parallelism, or distributed memory parallelism.
Each has its merits:

Threaded:
Pro: Shared memory means some things only need to be loaded once.
Con: Cannot scale beyond 1 node.

Distributed parallelism:
Con: does not shared memory even if it can.
Pro: But can (potentially) scalable beyond one node.

What if it does not support either (such as dalex).
I.e. what if you are stuck with a bunch of serial jobs?

There is no queue for serial jobs, so if you have serial jobs, YOU will have
to bunch together 8 of them to use the node’s full power.

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 80 / 87

Easy case: serial jobs of equal duration

#!/bin/bash
#PBS -l nodes=1:ppn=8,walltime=1:00:00
#PBS -N serialx8
cd $PBS O WORKDIR
(cd jobdir1; ./dojob1) &
(cd jobdir2; ./dojob2) &
(cd jobdir3; ./dojob3) &
(cd jobdir4; ./dojob4) &
(cd jobdir5; ./dojob5) &
(cd jobdir6; ./dojob6) &
(cd jobdir7; ./dojob7) &
(cd jobdir8; ./dojob8) &
wait # crucial

Wait!

Make sure that 8 jobs actually fit in memory, or you will crash the node.
If only 4 fit in memory, and there is no way to reduce that, go ahead.
But there are also about 80 nodes with 32 GB memory.

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 81 / 87

Hard case: serial jobs of unequal duration

What you need is: Load Balancing

Keep all 8 cores on a node busy.

GNU Parallel can help you with that!

GNU Parallel

GNU parallel is a really nice tool to run multiple serial jobs in parallel. It
allows you to keep the processors on each 8core node busy, if you provide
enough jobs to do.

GNU parallel is accessible on the GPC in the module gnu-parallel, which
you can load in your .bashrc.

$ module load gnu-parallel/20120622

Note that there are currently (Sep 2012) two versions of gnu-parallel
installed on the GPC, with the older version, gnu-parallel/2010, as the
default, although we’d recommend using the newer version.

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 82 / 87

GNU Parallel Example
gpc-f101n084-$

module load intel

gpc-f101n084-$ icpc -O3 -xhost mycode.cc -o mycode

gpc-f101n084-$ mkdir $SCRATCH/example2

gpc-f101n084-$ cp mycode $SCRATCH/example2

gpc-f101n084-$ cd $SCRATCH/example2

gpc-f101n084-$ cat > joblist.txt
mkdir run1; cd run1; ../mycode 1 > out
mkdir run2; cd run2; ../mycode 2 > out
mkdir run3; cd run3; ../mycode 3 > out
. . .
mkdir run64; cd run64; ../mycode 64 > out

gpc-f101n084-$ cat > myjob.pbs
#!/bin/bash
#PBS -l nodes=1:ppn=8,walltime=24:00:00
#PBS -N GPJob
cd $PBS O WORKDIR
module load intel gnu-parallel/20120622
parallel -j 8 < joblist.txt

gpc-f101n084-$ qsub myjob.pbs
2961985.gpc-sched

gpc-f101n084-$ ls
GPJob.e2961985 GPJob.o2961985 joblist.txt mycode
myjob.pbs run1/ run2/

run3/
...

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 83 / 87

GNU Parallel Example
gpc-f101n084-$ module load intel

gpc-f101n084-$

icpc -O3 -xhost mycode.cc -o mycode

gpc-f101n084-$ mkdir $SCRATCH/example2

gpc-f101n084-$ cp mycode $SCRATCH/example2

gpc-f101n084-$ cd $SCRATCH/example2

gpc-f101n084-$ cat > joblist.txt
mkdir run1; cd run1; ../mycode 1 > out
mkdir run2; cd run2; ../mycode 2 > out
mkdir run3; cd run3; ../mycode 3 > out
. . .
mkdir run64; cd run64; ../mycode 64 > out

gpc-f101n084-$ cat > myjob.pbs
#!/bin/bash
#PBS -l nodes=1:ppn=8,walltime=24:00:00
#PBS -N GPJob
cd $PBS O WORKDIR
module load intel gnu-parallel/20120622
parallel -j 8 < joblist.txt

gpc-f101n084-$ qsub myjob.pbs
2961985.gpc-sched

gpc-f101n084-$ ls
GPJob.e2961985 GPJob.o2961985 joblist.txt mycode
myjob.pbs run1/ run2/

run3/
...

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 83 / 87

GNU Parallel Example
gpc-f101n084-$ module load intel

gpc-f101n084-$ icpc -O3 -xhost mycode.cc -o mycode

gpc-f101n084-$

mkdir $SCRATCH/example2

gpc-f101n084-$ cp mycode $SCRATCH/example2

gpc-f101n084-$ cd $SCRATCH/example2

gpc-f101n084-$ cat > joblist.txt
mkdir run1; cd run1; ../mycode 1 > out
mkdir run2; cd run2; ../mycode 2 > out
mkdir run3; cd run3; ../mycode 3 > out
. . .
mkdir run64; cd run64; ../mycode 64 > out

gpc-f101n084-$ cat > myjob.pbs
#!/bin/bash
#PBS -l nodes=1:ppn=8,walltime=24:00:00
#PBS -N GPJob
cd $PBS O WORKDIR
module load intel gnu-parallel/20120622
parallel -j 8 < joblist.txt

gpc-f101n084-$ qsub myjob.pbs
2961985.gpc-sched

gpc-f101n084-$ ls
GPJob.e2961985 GPJob.o2961985 joblist.txt mycode
myjob.pbs run1/ run2/

run3/
...

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 83 / 87

GNU Parallel Example
gpc-f101n084-$ module load intel

gpc-f101n084-$ icpc -O3 -xhost mycode.cc -o mycode

gpc-f101n084-$ mkdir $SCRATCH/example2

gpc-f101n084-$

cp mycode $SCRATCH/example2

gpc-f101n084-$ cd $SCRATCH/example2

gpc-f101n084-$ cat > joblist.txt
mkdir run1; cd run1; ../mycode 1 > out
mkdir run2; cd run2; ../mycode 2 > out
mkdir run3; cd run3; ../mycode 3 > out
. . .
mkdir run64; cd run64; ../mycode 64 > out

gpc-f101n084-$ cat > myjob.pbs
#!/bin/bash
#PBS -l nodes=1:ppn=8,walltime=24:00:00
#PBS -N GPJob
cd $PBS O WORKDIR
module load intel gnu-parallel/20120622
parallel -j 8 < joblist.txt

gpc-f101n084-$ qsub myjob.pbs
2961985.gpc-sched

gpc-f101n084-$ ls
GPJob.e2961985 GPJob.o2961985 joblist.txt mycode
myjob.pbs run1/ run2/

run3/
...

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 83 / 87

GNU Parallel Example
gpc-f101n084-$ module load intel

gpc-f101n084-$ icpc -O3 -xhost mycode.cc -o mycode

gpc-f101n084-$ mkdir $SCRATCH/example2

gpc-f101n084-$ cp mycode $SCRATCH/example2

gpc-f101n084-$

cd $SCRATCH/example2

gpc-f101n084-$ cat > joblist.txt
mkdir run1; cd run1; ../mycode 1 > out
mkdir run2; cd run2; ../mycode 2 > out
mkdir run3; cd run3; ../mycode 3 > out
. . .
mkdir run64; cd run64; ../mycode 64 > out

gpc-f101n084-$ cat > myjob.pbs
#!/bin/bash
#PBS -l nodes=1:ppn=8,walltime=24:00:00
#PBS -N GPJob
cd $PBS O WORKDIR
module load intel gnu-parallel/20120622
parallel -j 8 < joblist.txt

gpc-f101n084-$ qsub myjob.pbs
2961985.gpc-sched

gpc-f101n084-$ ls
GPJob.e2961985 GPJob.o2961985 joblist.txt mycode
myjob.pbs run1/ run2/

run3/
...

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 83 / 87

GNU Parallel Example
gpc-f101n084-$ module load intel

gpc-f101n084-$ icpc -O3 -xhost mycode.cc -o mycode

gpc-f101n084-$ mkdir $SCRATCH/example2

gpc-f101n084-$ cp mycode $SCRATCH/example2

gpc-f101n084-$ cd $SCRATCH/example2

gpc-f101n084-$

cat > joblist.txt
mkdir run1; cd run1; ../mycode 1 > out
mkdir run2; cd run2; ../mycode 2 > out
mkdir run3; cd run3; ../mycode 3 > out
. . .
mkdir run64; cd run64; ../mycode 64 > out

gpc-f101n084-$ cat > myjob.pbs
#!/bin/bash
#PBS -l nodes=1:ppn=8,walltime=24:00:00
#PBS -N GPJob
cd $PBS O WORKDIR
module load intel gnu-parallel/20120622
parallel -j 8 < joblist.txt

gpc-f101n084-$ qsub myjob.pbs
2961985.gpc-sched

gpc-f101n084-$ ls
GPJob.e2961985 GPJob.o2961985 joblist.txt mycode
myjob.pbs run1/ run2/

run3/
...

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 83 / 87

GNU Parallel Example
gpc-f101n084-$ module load intel

gpc-f101n084-$ icpc -O3 -xhost mycode.cc -o mycode

gpc-f101n084-$ mkdir $SCRATCH/example2

gpc-f101n084-$ cp mycode $SCRATCH/example2

gpc-f101n084-$ cd $SCRATCH/example2

gpc-f101n084-$ cat > joblist.txt
mkdir run1; cd run1; ../mycode 1 > out
mkdir run2; cd run2; ../mycode 2 > out
mkdir run3; cd run3; ../mycode 3 > out
. . .
mkdir run64; cd run64; ../mycode 64 > out

gpc-f101n084-$

cat > myjob.pbs
#!/bin/bash
#PBS -l nodes=1:ppn=8,walltime=24:00:00
#PBS -N GPJob
cd $PBS O WORKDIR
module load intel gnu-parallel/20120622
parallel -j 8 < joblist.txt

gpc-f101n084-$ qsub myjob.pbs
2961985.gpc-sched

gpc-f101n084-$ ls
GPJob.e2961985 GPJob.o2961985 joblist.txt mycode
myjob.pbs run1/ run2/

run3/
...

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 83 / 87

GNU Parallel Example
gpc-f101n084-$ module load intel

gpc-f101n084-$ icpc -O3 -xhost mycode.cc -o mycode

gpc-f101n084-$ mkdir $SCRATCH/example2

gpc-f101n084-$ cp mycode $SCRATCH/example2

gpc-f101n084-$ cd $SCRATCH/example2

gpc-f101n084-$ cat > joblist.txt
mkdir run1; cd run1; ../mycode 1 > out
mkdir run2; cd run2; ../mycode 2 > out
mkdir run3; cd run3; ../mycode 3 > out
. . .
mkdir run64; cd run64; ../mycode 64 > out

gpc-f101n084-$ cat > myjob.pbs
#!/bin/bash
#PBS -l nodes=1:ppn=8,walltime=24:00:00
#PBS -N GPJob
cd $PBS O WORKDIR
module load intel gnu-parallel/20120622
parallel -j 8 < joblist.txt

gpc-f101n084-$

qsub myjob.pbs
2961985.gpc-sched

gpc-f101n084-$ ls
GPJob.e2961985 GPJob.o2961985 joblist.txt mycode
myjob.pbs run1/ run2/

run3/
...

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 83 / 87

GNU Parallel Example
gpc-f101n084-$ module load intel

gpc-f101n084-$ icpc -O3 -xhost mycode.cc -o mycode

gpc-f101n084-$ mkdir $SCRATCH/example2

gpc-f101n084-$ cp mycode $SCRATCH/example2

gpc-f101n084-$ cd $SCRATCH/example2

gpc-f101n084-$ cat > joblist.txt
mkdir run1; cd run1; ../mycode 1 > out
mkdir run2; cd run2; ../mycode 2 > out
mkdir run3; cd run3; ../mycode 3 > out
. . .
mkdir run64; cd run64; ../mycode 64 > out

gpc-f101n084-$ cat > myjob.pbs
#!/bin/bash
#PBS -l nodes=1:ppn=8,walltime=24:00:00
#PBS -N GPJob
cd $PBS O WORKDIR
module load intel gnu-parallel/20120622
parallel -j 8 < joblist.txt

gpc-f101n084-$ qsub myjob.pbs
2961985.gpc-sched

gpc-f101n084-$

ls
GPJob.e2961985 GPJob.o2961985 joblist.txt mycode
myjob.pbs run1/ run2/

run3/
...

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 83 / 87

GNU Parallel Example
gpc-f101n084-$ module load intel

gpc-f101n084-$ icpc -O3 -xhost mycode.cc -o mycode

gpc-f101n084-$ mkdir $SCRATCH/example2

gpc-f101n084-$ cp mycode $SCRATCH/example2

gpc-f101n084-$ cd $SCRATCH/example2

gpc-f101n084-$ cat > joblist.txt
mkdir run1; cd run1; ../mycode 1 > out
mkdir run2; cd run2; ../mycode 2 > out
mkdir run3; cd run3; ../mycode 3 > out
. . .
mkdir run64; cd run64; ../mycode 64 > out

gpc-f101n084-$ cat > myjob.pbs
#!/bin/bash
#PBS -l nodes=1:ppn=8,walltime=24:00:00
#PBS -N GPJob
cd $PBS O WORKDIR
module load intel gnu-parallel/20120622
parallel -j 8 < joblist.txt

gpc-f101n084-$ qsub myjob.pbs
2961985.gpc-sched

gpc-f101n084-$ ls
GPJob.e2961985 GPJob.o2961985 joblist.txt mycode
myjob.pbs run1/ run2/

run3/
...

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 83 / 87

GPC and hyperthreading

HyperThreading: Appears as if there are 16 processors rather than 8
per node.

For OpenMP applications this is the default unless OMP NUM THREADS
is set.
For MPI, try -np 16.
For gnu parallel, use -j 16.

Always request ppn=8, even with hyperthreading.

Always test if this is beneficial and feasible!

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 84 / 87

GNU parallel on our example problem

Assume only 4 instances of dalex will fit in memory:

#!/bin/bash
#PBS -l nodes=1:ppn=8
#PBS -l walltime=48:00:00
#PBS -N JobName
cd $PBS O WORKDIR
module load gnu-parallel/20120622
for a in $(seq 1000)
do

echo "" > results/batch$a-out.dat
done
for c in $(seq 23)
do

seq 1000 | parallel -j4 \
"dalex -m .95 -w 32 humanref/chromosome$c.dat \
samples/batch{}.dat >> results/batch{}-out.dat"

done

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 85 / 87

Can you think of more improvements?

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 86 / 87

Conclusions

I hope to have conveyed that

(Bio-)Computing at scale requires careful thought.

New bottlenecks can arise as one scales up.

Monitoring and testing is important.

I/O often the bottleneck.

Restructuring data can help a lot.

Using ramdisk can help.

Many files are bad.

Ramses van Zon (SciNet) Optimizing Large Scale Bioinformatics September 25, 2012 87 / 87

	Introduction
	Bookkeeping and scripting
	File I/O
	Running and monitoring
	Concurrency
	Conclusions

