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Upcoming GPU events:
•GPGPU Research Workshop - TB

•Monthly cross-campus GPGPU meetings - TBA

•ECE Graduate GPGPU course - Spring 2012

•Astronomy/Physics GPGPU minicourse/modular course -
  Spring 2012

•https://support.scinet.utoronto.ca/courses

•https://support.scinet.utoronto.ca/mailman/listinfo/scinet-
gpgpu

https://support.scinet.utoronto.ca/mailman/listinfo/scinet-gpgpu
https://support.scinet.utoronto.ca/mailman/listinfo/scinet-gpgpu
https://support.scinet.utoronto.ca/mailman/listinfo/scinet-gpgpu
https://support.scinet.utoronto.ca/mailman/listinfo/scinet-gpgpu


Your graphics card is probably 
faster than your computer.

• Graphics 
performance has 
grown by leaps and 
bounds

• Driven by gamers



...but it’s not magic

• CPU - very 
flexible, easy to 
program

• GPU - almost all 
transistors go to 
cores and 
mathematics.



...but it’s not magic
• All cores in a 

“multiprocessor 
unit” have same 
control, cache

• Act in lock step
• Do same 

computations on 
different data

• “Data parallel”
• Very small cache 

(48KB/SM)



If it works, it’s great..

• GPU: ~448 
compute cores, 
into ~14 streaming 
multiprocessors 
(SM)

• ~32 threads 
operate at once



..and it often does.
• Much of scientific 

computing is “data 
parallel”

• Same operation on 
each 
• cell of grid
• particle in 

domain
• piece of input 



What we’ll be covering

• Plan - have you leave being able to start 
developing simple (single GPU) codes in 
CUDA

• Know where to look for libraries, 
development tools

• Know what to think about for more advanced 
applications



Why CUDA?
• GPGPU used to be pretty 

bad; put array in as ‘textures’, 
have each point in your grid 
be a vertex that maps the 
texture...

• Much better now: CUDA 
(NVidia), OpenCL (NVidia, 
Apple,AMD)...

NVidia SC2007 
tutorial slides



Open standard 

•Driven by Apple (comes 
standard in Snow Leopard, 
Lion)

•NVIDIA, AMD, Intel, IBM (Cell)

•Exposes a consistent, GPU-like 
interface to any multicore 
system



Heterogeneous, 
Open

• Can work with various 
hardware

• IBM Cell, AMD processors, ATI 
cards, NVidia cards, Intel 
processors

• Multi- and Many- core

• SC09 demo: parallel CFD 
running on all of the above at 
once in same program, using 
MPI to tie them together



CUDA

OpenCL



CUDA vs 
OpenCL kernel 

code
• Since maps to similar 

hardware, basic concepts the 
same

• Some terminology changes; 
some better, some worse.

• Kernels not really that 
different.

CUDA OpenCL

__global__ __kernel

__device__ (function)  

__constant__ __constant

__device__ (mem) __global

__shared__ __local

Local Mem Private Mem

__syncthreads() barrier()



CUDA



OpenCL



Why CUDA?
• Doesn’t really make a 

difference.

• Kernels (where all the hard 
work goes) are almost 
identical.

• Boilerplate, which is 
straightforward (copy memory, 
launch kernel) is different but 
not all that important

• CUDA makes easy things easy, 
so we’ll use that.

• Both are about the same for 
more complicated situations 
(multi-GPU, etc)



Let’s get straight to it

• From login node, ssh to arc01 (devel node of 
accelerator research cluster)

•cp -r /scinet/course/intro-gpu/ . ; 
cd intro-gpu

•source setup
•cd saxpy
•make clean all
•./saxpy --help
•./saxpy



saxpy.cu

Question: How would we OpenMP this?  MPI this?

(run several times 
for timing)

~z = ↵~x + ~y



saxpy.cu

Very fine-grained parallelism.  
Each core does one (or few) tasks.

Type “make”, and “./saxpy”

~z = ↵~x + ~y



saxpy.cu

For loop over elements is implied by the call;
n in the <<<>>>’s invokes n of these kernels in parallel.

~z = ↵~x + ~y



saxpy.cu

GPU Memory is separate from system memory (on card).
Have to allocate/free it, and copy data GPU↔CPU



saxpy.cu



Notes:

• CHK_CUDA -- test for error cord.  More 
later.

• Allocating, copying to GPU memory: SLOW 
compared to computing capability of GPU.  
Avoid wherever possible.

• What happens if you try 
./saxpy --nvals=200 ? ./saxpy --nvals=2048 ?



Threads, Blocks, Grids

• CUDA threads are 
organized into blocks

• Threads operate in 
SIMD(ish) manner -- each 
executing same 
instructions in lockstep. 

• Only difference are 
thread ids

• Can have a grid of 
multiple blocks

CUDA Thread

Block of 
CUDA Threads

Grid of 
CUDA Blocks



CUDA - H/W mapping
• Blocks are assigned to a 

particular SM

• Executed there one 
‘warp’ at a time 
(typically 32 threads)

• Multiple blocks may be on   
SM concurrently

• Good; latency hiding

• Bad - SM resources 
must be divided 
between blocks

• If only use 1 Block - 1 SM

GPU

SM#1 SM#2



Multi-block z=ax+y

• Break input, output 
vectors into blocks

• Within each block, thread 
index specifies which 
item to work on

• Each thread does one 
update, puts results in z[i]

y}
z

z[i] = a*x[i]+y[i]

}
x



Multi-block z=ax+y

y}
z

z[i] = a*x[i]+y[i]

}
x



Hands on -- do multi-block saxpy
Enable use of multiple blocks (== multiple SMs!)



Multi-block z=ax+y

y}
z

z[i] = a*x[i]+y[i]

}
x



More blocks →more 
SMs → more FLOPs

• We can use 1024 threads/
block:

GPU

SM#1 SM#2

Multiple calcs, so timing not 
dominated by memory copy



Multi-block z=ax+y

y}
z

z[i] = a*x[i]+y[i]

}

Index within block
(0..blocksize-1)

x



Multi-block z=ax+y

y}
z

z[i] = a*x[i]+y[i]

}
x

Index of block
(0..nblocks-1)

Size of block
(blocksize)



Multi-block z=ax+y

y}
z

}
x

i = 10 + 2*100  = 210
zd[210] = a*xd[210] + yd[210]

Block 2

Thread 10

Blocksize
= 100



Multi-block z=ax+y  

• Now the “if” makes sense:

• Number of work items may 
not be evenly divided by 
block size

• Make sure we don’t “go off 
the end” 

• What happens in the if 
statement?

• Thread divergence



Multi-block z=ax+y  
• All threads in a thread 

block go through kernel in 
same order.

• Threads in a warp go 
through in lock step.

• All threads go through if 
clauses (and else), even if 
they don’t need results

• (Don’t get stored)

• Can be very wasteful!

• Highly “branchy” code not 
very good for GPUs



GPGPU Performance 
Tip #1

• Avoid lots of branches in 
GPGPU code.



DDT

• Let’s see what’s going on 
here in more detail with a 
GPU debugger

• Get a node;
• qsub -I -X -l 
nodes=1:ppn=8:gpus=2,wa
lltime=1:00:00

• cd intro-gpu, source setup

• Type ‘ddt’ to launch the 
Allinea DDT debugger:



DDT

• Let’s see what’s going on 
here in more detail with a 
GPU debugger

• Type ‘ddt’ to launch the 
Allinea DDT debugger:



DDT

• Let’s see what’s going on 
here in more detail with a 
GPU debugger

• Type ‘ddt’ to launch the 
Allinea DDT debugger:



DDT

• Let’s see what’s going on 
here in more detail with a 
GPU debugger

• Type ‘ddt’ to launch the 
Allinea DDT debugger:



DDT

• Let’s see what’s going on 
here in more detail with a 
GPU debugger

• Type ‘ddt’ to launch the 
Allinea DDT debugger:



DDT



DDT











DDT

• Can play with first 
numbers of “block” and 
“thread” to see different 
block, thread

• value shown of i should 
change

• Does i give what you’d 
expect?



cuda-gdb
arc01-$ cuda-gdb ./block-saxpy
NVIDIA (R) CUDA Debugger
3.2 release
[...]
(cuda-gdb) break cuda_saxpy
(cuda-gdb) run --nvals=8192 --nblocks=8
Starting program: [...]
[Launch of CUDA Kernel 0 (cuda_saxpy) on Device 0]
[Switching to CUDA Kernel 0 (<<<(0,0),(0,0,0)>>>)]

Breakpoint 1, cuda_saxpy<<<(1,1),(1000,1,1)>>> (zd=0x200102000, 
a=5, 
    xd=0x200100000, yd=0x200101000, n=1000) at block-saxpy.cu:
13
13! ! int i = threadIdx.x + blockIdx.x*blockDim.x;
(cuda-gdb) 



cuda-gdb
(cuda-gdb) step
14! ! if (i<n) {
(cuda-gdb) print i
$1 = 0
(cuda-gdb) cuda thread 8
[Switching to CUDA Kernel 0 (device 0, sm 0, warp 0, lane 8, 
grid 1, block (0,0), thread (8,0,0))]
14! ! if (i<n) {
(cuda-gdb) print i
$2 = 8
(cuda-gdb) cuda block 2
[Switching to CUDA Kernel 0 (device 0, sm 3, warp 0, lane 8, 
grid 1, block (2,0), thread (8,0,0))]
13! ! int i = threadIdx.x + blockIdx.x*blockDim.x;
(cuda-gdb) step
14! ! if (i<n) {
(cuda-gdb) print i
$4 = 2056
(cuda-gdb) quit



nvcc -G -g

• Note; the -g option to the 
compiler (nvcc) kept 
debugging symbols in the 
host code; the -G option 
kept the symbols in the 
kernel code

• Allows use of debugger, 
better diagnostics.

• But disables many 
optimizations...



How many threads/
block?

• Should be integral 
multiple of warp (32)

• No more than max 
allowed by scheduling 
hardware

• Can get last number from 
hardware specs

• But what if will be needed 
on several machines?

• API can return it:



cudaGetDeviceProperty

querydevs.cu



cudaGetDeviceProperty



cudaGetDeviceProperty

All CUDA calls return cudaSuccess on successful completion.

GPU hardware does not try very hard to catch errors/notify 
you; testing return codes important!

Common to see simple automation like this wrapping all 
CUDA calls; bare minimum for sensible operation. 

Test early, fail often.



Why the .xs?
• For convenience, CUDA 

allows thread, block indices 
to be multidimensional

• Thread blocks can be 3 
dimensional (512,512,64)

• Grids of blocks can be 2 
dimensional (64k, 64k, 1)

• These variables are of type 
dim3 or uint3

• CUDA has int1, int2, int3, 
int4, float1, float2, float3, 
float4, etc.



Why the .xs?

• threadIdx.{x,y,z} - thread index

• blockDim.{x,y,z} - size of block 
(# of threads in each dim)

• blockIdx.{x,y,z} - block index

• gridDim.{x,y,z} - size of grid
(# of blocks in each dim)

• warpsize - size of warp (int)



Why the __global__?
• __global__ - device code 

that can be seen (invoked) from 
host.

• __host__ - default.   Not 
usually interesting.

• __device__ - device code.  
Can be called only from other 
device code.

• __host__ __device__ - 
compiled for both host and 
device.



Compilation process
.cu file

nvcc
host 
obj 

code

PTX code device
 code

Intermediate,
device-independent

2nd 
compilation 

stage
Executable

__host__

__global__

__device__



Restrictions
• __global__ functions can’t 

recurse, neither can 
__device__ on non-Fermis

• No function pointers to 
__device__ functions on 
non-fermis, can’t take address 
of __device__ function

• Can’t have static variables in 
__global__, __device__ 
functions

• Can’t use varargs with device 
code



Performance

• Why such poor performance?   x5550 (CPU) ~ 10 
GFLOPS.  M2070 (GPU) ~ 1000 GFLOPS

• Arithmetic intensity.   Each operation involves taking 2 values 
from memory, doing very simple operation on them (*,+) 
and then storing a value into memory.   

• Memory costs begin to dominate

arc01-$ ./block-saxpy --nvals=81920 --nblocks=160
Using: n=81920, nblocks=160, niters=5, a=5.000000
CPU time =     2.335 millisec, GFLOPS =   0.07017
GPU time =     0.764 millisec, GFLOPS =    0.2145
CUDA and CPU results differ by 0.000000



Memory Bandwidth

• CPU: 3x(81920) floats read/written in 2.335 ms

• 401 MB/s 

• Peak ~6GB/sec  

• Max possible flops in this mode: ~1GFLOP (as vs 10)

• GPU: 

• 1227 MB/s

• Peak ~ 150GB/s

• Max possible flops in this mode: ~25GFLOP (as vs 1000)

arc01-$ ./block-saxpy --nvals=81920 --nblocks=160
Using: n=81920, nblocks=160, niters=5, a=5.000000
CPU time =     2.335 millisec, GFLOPS =   0.07017
GPU time =     0.764 millisec, GFLOPS =    0.2145
CUDA and CPU results differ by 0.000000



Memory Bandwidth

• For all modern processors, 
memory access is much 
more expensive than 
operating on data once it’s 
local.

• Key to high performance is 
pulling data from memory 
into cache, registers, etc and 
operating on it a lot once it 
is local.

arc01-$ ./block-saxpy --nvals=81920 --nblocks=160
Using: n=81920, nblocks=160, niters=5, a=5.000000
CPU time =     2.335 millisec, GFLOPS =   0.07017
GPU time =     0.764 millisec, GFLOPS =    0.2145
CUDA and CPU results differ by 0.000000



Memory Bandwidth

• For GPU, Memory 
bandwidth is even more 
important

• Data has to get from host 
memory to on-card

• PCIe 3.0 16x - 16GB/s

• 1/10 of on-card bandwidth!
http://www.microway.com/tesla/1UGPUchassis.html

http://www.microway.com/tesla/1UGPUchassis.html
http://www.microway.com/tesla/1UGPUchassis.html


Memory Bandwidth

Performance 
numbers would be 

much worse if 
cudaMemcpy’s 

were in this loop!!



GPGPU Performance 
Tip #2

• Wherever possible, avoid 
copying data back and 
forth between GPU and 
CPU.



2-Dimensional Blocks

• blockDim.x, threadIdx.x...

• Use of 2/3d thread 
blocks, or 2d grids, never 
strictly necessary...

• But can make code 
clearer, shorter.

• Clearer code = fewer 
bugs = good.

• Matrix multiplication 

= *

Ci,j =
X

k

Ai,kBk,j



2-Dimensional Blocks

= *

Ci,j =
X

k

Ai,kBk,j

matmult/matmult.cu



2-Dimensional Blocks

= *

Ci,j =
X

k

Ai,kBk,j

How are we going to write the simple CUDA 
version?



2-Dimensional Blocks
• Hands-on: 

• Fill in the blanks:

• kernel for 
cuda_sgemm

• uncomment 
#define HAVECUDA1

• calculate block size

• Compile, run, compare 
performance and results

• Play with different matrix 
sizes, block numbers



arc01-$ ./matmult
Matrix size = 160, Number of blocks = 10.
CPU  time = 36.556 millisec, GFLOPS=0.224095
GPU  time = 0.532 millisec, GFLOPS=15.398496, diff = 0.029795.

arc01-$ ./matmult --matsize=640 --nblocks=40 
Matrix size = 640, Number of blocks = 40.
CPU  time = 3008.66 millisec, GFLOPS=0.174260
GPU  time = 13.635 millisec, GFLOPS=38.451632, diff = 1.897964.



2-Dimensional Blocks
• Good speedup (including 

memory copy), but 
results slightly different

• x86: floating pt arithmetic 
done in registers higher 
than nominal precision

• Let’s fix this by doing 
math in both kernels with 
double precision

• cuda_sgemm_dblsum:

arc01-$ ./matmult
Matrix size = 160, Number of blocks = 10.
CPU  time = 36.556 millisec, GFLOPS=0.224095
GPU  time = 0.532 millisec, GFLOPS=15.398496, diff = 0.029795.

arc01-$ ./matmult --matsize=640 --nblocks=40 
Matrix size = 640, Number of blocks = 40.
CPU  time = 3008.66 millisec, GFLOPS=0.174260
GPU  time = 13.635 millisec, GFLOPS=38.451632, diff = 1.897964.



2-Dimensional Blocks
• Hands-on: 

• Fill in the blanks:

• kernel for 
cuda_sgemm_dblsum

• uncomment 
#define HAVECUDA2

• Compile, run, compare 
performance and results

• Play with different matrix 
sizes, block numbers



arc01-$ ./matmult --matsize=640 --nblocks=40
Matrix size = 640, Number of blocks = 40.
CPU  time = 3053.9 millisec, GFLOPS=0.171678
GPU  time = 13.635 millisec, GFLOPS=38.451632, diff = 1.897964. 
GPU2 time = 10.968 millisec, GFLOPS=47.801605, diff = 0.000000.



Timings:

Faster, even with double precision sums - why?

arc01-$ ./matmult --matsize=640 --nblocks=40
Matrix size = 640, Number of blocks = 40.
CPU  time = 3053.9 millisec, GFLOPS=0.171678
GPU  time = 13.635 millisec, GFLOPS=38.451632, diff = 1.897964. 
GPU2 time = 10.968 millisec, GFLOPS=47.801605, diff = 0.000000.



CUDA Memories

• All HPC, but especially 
GPU, all about planning 
memory access to be fast

• Global mem is off the 
GPU chip (but on the 
card); ~100 cycle latency

• Thread-local variables get 
put into registers on each 
SM - fast (~1 cycle) but 
small

SM#1 SM#2

Global
Mem

(On Card)

Registers
(On Chip)



CUDA Memories

SM#1 SM#2

Global
Mem

(On Card)

Registers
(On Chip)

Memory
On 

Chip? Cached? R/W Scope

Register On No R/W Thread

Shared On No R/W Block

Global Off No R/W Kernel, Host

Constant Off Yes R Kernel, Host

Texture Off Yes R(W?) Kernel, Host

‘Local’* Off No R/W Thread

* if you run out of registers, will put ‘local’ mem in global.



GPGPU Performance 
Tip #3

• To make the most of the 
GPU, pull often-used data 
from large/slow memory 
to close/small/fast 
memory

• Tradeoff -- only so much 
of the fast memory.

• Question - would saxpy 
benefit from loading data 
onto on-chip memory 
first?

SM#1 SM#2

Global
Mem

(On Card)

Registers
(On Chip)



Shared memory

• Registers are great if each 
thread needs its own

• Shared memory is seen 
across all threads within a 
block

• Declared with 
__shared__

• Can define shared array 
sizes at compile time or 
at runtime.

SM SM

Global
Mem

Registers
(On Chip)



sharedex.cu

Shared memory

• Silly example: repeatedly 
take sines of a 1d array.

• Let’s put it in a blocksize-
sized shared array (much 
faster than repeatedly 
using global memory)

• (but could just use 
register)



sharedex.cu

Shared memory

• Copy data from global 
memory (each thread 
responsible for index i) 
into shared (responsible 
for index idx)

• Do computation.



__shared__ arrays

• If declared in device 
code, must be sized at 
compile time.

• No sharedMalloc (all 
threads in block would 
have to agree)

• can use consts or 
#defines to size array, or 
other approach to 
maintain flexibility

SM#1 SM#2

Global
Mem

(On Card)

Shared mem
(On Chip)



sharedex.cu



__syncthreads()
• Computation must wait until 

all threads have brought in 
their data

• Not all memory accesses 
may take same length of time

• __syncthreads() - waits until 
all threads in block are at 
same point.

• No equivalent between 
blocks

• Loop must similarly wait for 
computation



Atomic operations

• When accessing shared 
memory, must be sure 
multiple threads are not 
updating same value at 
same time

• Overwrite or worse!

• Race condition

• Some atomic operations.  
Serialize results; only if no 
other way

int atomicAdd(int* address, int val);



sharedex.cu

Optional 3rd argument - size (in bytes) 
of shared memory to allocate per block 



extern __shared__

Comes in as one array; can type,
name it anything you like



Memory usage in 
SGEMM

• How can we exploit this?

• N3 multiplies, adds

• 2N2 data

• Regular access

• Opportunity for high  
memory re-use

• Need to find ways to 
bring data into shared 
memory (incurring global 
mem overhead once), use 
it several times

= *

Ci,j =
X

k

Ai,kBk,j



Memory usage in 
SGEMM

• One nice thing about 
matrix multiplication - 
same as block 
multiplication, each sub-
block is a matrix mult

• Neighbouring threads 
within block all see 
nearby rows, columns

• Pull whole block in

• If b blocks in each dim, 
each data only pulled in 
2b times, not 2n times

= *

Cbi,bj =
X

k

Abi,bkBbk,bj



Hands on

• Change one of the matrix 
multiplier kernels to use 
shared memory

• use fixed blocksize if you 
like (easier)

• Assume blocksize divides 
matrix size (easier)

• Two “tiles” of A and B, 
and loop from k=0..n/
(blocksize) to do block 
matrix mult.

= *

Cbi,bj =
X

k

Abi,bkBbk,bj





Memory usage in 
SGEMM

= *

Cbi,bj =
X

k

Abi,bkBbk,bj



Timings:
$ ./matmult --matsize=160 --nblocks=10
Matrix size = 160, Number of blocks = 10.
CPU time = 14.093 millisec.
GPU time = 4.416 millisec.
CUDA and CPU results differ by 0.162872

$ ./matmult --matsize=160 --nblocks=10
Matrix size = 160, Number of blocks = 10.
CPU time = 14.047 millisec.
GPU time = 2.219 millisec.
CUDA and CPU results differ by 0.000000

$ ./matmult --matsize=160 --nblocks=10
Matrix size = 160, Number of blocks = 10.
CPU time = 14.041 millisec.
GPU time = 0.998 millisec.
CUDA and CPU results differ by 0.000000

Orig

Double Prec. sum

Shared



Making effective use of 
CUDA memories

• Preload data wherever 
possible

• Global memory -

• Coalesced access

• Make use of 128B (or, 
maybe, 32B) at a time

• Profiler to see what’s 
happening

• Shared memory

• Bank conflicts

Memory
On 

Chip? Cached? R/W Scope

Register On No R/W Thread

Shared On No R/W Block

Global Off No R/W Kernel, Host

Constant Off Yes R Kernel, Host

Texture Off Yes R(W?) Kernel, Host

‘Local’* Off No R/W Thread



Stalling on Memory 
Access

SM#1

Warp 1, Inst. 12

Warp 5, Inst. 12

Warp 7, Inst. 12

Warp 4, Inst. 12

Warp 2, Inst. 12

Warp 1, Inst. 13

Queue
• Graphics card schedules by the 

warp on an SM

• All warps that are ready to 
execute get scheduled

• Not ready to execute - stalled 
on memory access

• Nothing ready - SM sits idle.



Stalling on Memory 
Access

SM#1

Warp 1, Inst. 12

Warp 5, Inst. 12

Warp 7, Inst. 12

Warp 4, Inst. 12

Warp 2, Inst. 12

Warp 1, Inst. 13

Queue

• Two ways to ensure no idle SM:

• Lots of warps 
(=blocks*threads/32); hide 
latency with other threads.

• Little or no stalling on 
memory access; hide latency 
within threads.

• Sometimes work to counter 
purposes!  Must experiment to 
see what works best for your 
algorithm.



Stalling happens on use.

• Kernel does not stall on 
loading data

• Stalls when data not yet 
ready needs to be used

• Can “preload” data that 
you will need at beginning 
of kernel

• Hide latency by doing as 
much work as possible 
before need bulk of data.

} register vars

ok
ok

stall



Keep memory accesses 
going

• Make maximum use of 
memory bandwidth 
hardware provides

• To fully use a pipe, must 
have bandwidth x latency 
memory accesses ‘in 
flight’.

• Little’s Law, Queueing 
theory - http://en.wikipedia.org/
wiki/Little%27s_law

{

{
latency

band-
width

http://en.wikipedia.org/wiki/Little%27s_law
http://en.wikipedia.org/wiki/Little%27s_law
http://en.wikipedia.org/wiki/Little%27s_law
http://en.wikipedia.org/wiki/Little%27s_law


Coalesced Memory 
Access

• Global memory is slow

• Get as much out of it per 
access as possible

• HW reads 128 byte lines 
from global memory 
(Fermi: can turn off 
caching and read 4x 
32byte segments)

• Want to make the most 
of this 

SM#1

0        128       256   



Coalesced Memory 
Access

• Corresponds to 4B for 
each thread in a warp

• If each thread in warp 
reads consecutive float, 
aligned w/ boundary, can 
be coalesced into 1 read: 
high bandwidth

• Warp can continue after 
1 global read cycle

SM#1

0        128       256   



Coalesced Memory 
Access

• If each thread in warp 
reads consecutive float, 
but offset, can be 
coalesced into 2 read: 
reduced bandwidth

• Warp can continue after 
2 global read cycle (and 
128B of bandwidth 
wasted)

SM#1

0        128       256   



Coalesced Memory 
Access

• Random access is a 
nightmare 

• Can potentially take 32 
times as long, wasting 
97% of available global 
memory bandwidth
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List reversal

• Imagine having to reverse 
a list

• (Sounds dumb, but matrix 
transpose, partial 
pivoting, various graph 
algorithms require data 
reordering)

• Obvious way to do this, 
particularly on older (pre 
cc 1.2) hardware, doesn’t 
work well:

0 1 2 3 4 5 6 7 8 9

9 8 7 6 5 4 3 2 1 0



List reversal

Read - coalesced



List reversal

Read - coalesced

Write - reversed - possibly noncoalesced



List reversal

Do permutation 
in shared 
memory

[ljdursi@tpb1 class4]$ ./reverse --nvals=960 --nblocks=30 
For run with n = 960, nblocks = 30, blocksize = 32, 
iters=1,
CPU time  = 0.002 millisec.
GPU time  = 0.101 millisec, diff = 0.000000.
GPU2 time = 0.059 millisec, diff = 0.000000.



Visual Profiler

• Sometimes we’d like to 
see more detail than just 
integrated timings

• Cuda/OpenCL profiler 
comes with NVidia SDK

• run with computeprof 

• From there, you can run 
an application and look at 
timings



Visual Profiler

• Click ‘Profile application’ 
to begin getting data,



Visual Profiler

• Click ‘Profile application’ 
to begin getting data,

• Enter directory, 
executable, and 
arguments of program to 
profile,



Visual Profiler

• Click ‘Profile application’ 
to begin getting data,

• Enter directory, 
executable, and 
arguments of program to 
profile,

• and then run the 
program.   Program runs 
several times to get all 
counter information.



Visual Profiler

• Summary table shows lots of good stuff

• Here we see overall kernel time is about 12% faster, 
presumably because of roughly ~12% better global 
memory throughput.



Another Example: 
Multi-block y=ax+b

• Break input, output 
vectors into blocks

• Within each block, thread 
index specifies which 
item to work on

• Each thread does one 
update, puts results in y[i]

x}
y

y[i] = a*x[i]+b

}
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• Within each block, thread 
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• Each thread does one 
update, puts results in y[i]

• But now with a stride:

• Can coalesce reads, 
writes, but not both.
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Another Example: 
Multi-block y=ax+b

• Break input, output 
vectors into blocks

• Within each block, thread 
index specifies which 
item to work on

• Each thread does one 
update, puts results in y[i]

• But now with a stride:

• Can coalesce reads, 
writes, but not both.

x

y

y[(3*i)%n] = a*x[i]+b



Coalesced Memory 
Access

• Rewriting algorithm to 
ensure coalesced 
memory access probably 
most important 
optimization.

• Try to rearrange data 
before transfer to device 
to be in order needed;

• Reorder in shared mem if 
necessary.
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Shared Memory Bank 
Conflicts

• Each thread in warp 
accesses different bank: 
no problem.
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Shared Memory Bank 
Conflicts

• Each thread in warp 
accesses different bank: 
no problem.

• Each thread accesses 
same one value: 
‘broadcast’, no problem.

• Multiple threads need 
data from same bank: 
conflict.   Accesses are 
serialized.

SM#1



Shared Memory Bank 
Conflicts

• Imagine 8 banks, and 
working on an 8xN 
matrix 
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Shared Memory Bank 
Conflicts

• Imagine 8 banks, and 
working on an 8xN 
matrix

• Row operations are great
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Shared Memory Bank 
Conflicts

• Imagine 8 banks, and 
working on an 8xN 
matrix

• Row operations are great

• Column operations 
maximally bad
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Shared Memory Bank 
Conflicts

• Imagine 8 banks, and 
working on an 8xN 
matrix

• Row operations are great

• Column operations 
maximally bad

• Solutions

• Row ops if possible
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Shared Memory Bank 
Conflicts

• Imagine 8 banks, and 
working on an 8xN 
matrix

• Row operations are great

• Column operations 
maximally bad 

• Solutions

• Row ops if possible

• Pad matrix with extra 
column to stride 
across banks
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Warps in multi-d blocks

• Easy to see how warps are 
assigned in 1-d block:

• First 32 = warp0

• Next 32 = warp1..

• How done in 2d block?

• C ordering: x first, then y

• blockDim.x = 32:

• warp 0 : blockDim.y = 0

• warp 1:  blockDim.y = 1..



matmult.cu

Striding through matrix 
w/ slow moving index;

Massive bank conflicts if 
blocksize = warpsize



marten$ ./matmult --matsize=1536 --nblocks=48
Matrix size = 1536, Number of blocks = 48.
CPU  time = 29466.5 millisec, GFLOPS=0.245966
GPU  time = 522.71 millisec, GFLOPS=13.865733, diff = 0.000000.
GPU2 time = 128.905 millisec, GFLOPS=56.225572, diff = 0.000000.

4x performance

blocksize = 32 
= warpsize



Memory structure 
informs block sizes:

• By choosing block size in such a way to maximize global, 
shared memory bandwidth and preloading data into shared, 
can extract significant performance

• Get your code working first, then use these considerations to 
get them working fast

• Use tuned code where available (this is still much slower than 
CUBLAS, MAGMA!)

$ ./matmult --matsize=1536 --nblocks=24
Matrix size = 1536, Number of blocks = 24.
CPU  time = 29467.4 millisec, GFLOPS=0.245958
GPU  time = 8.203 millisec, GFLOPS=883.549593, diff = 0.000000.
GPU2 time = 8.122 millisec, GFLOPS=892.361156, diff = 0.000000.



CUBLAS

cublas.cu



CUFFT

cublas.cucufft.cu


