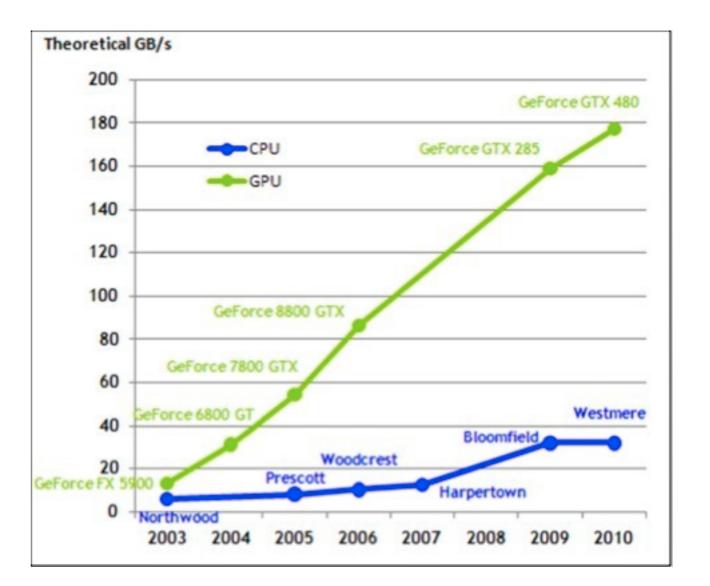
An Introduction to GPGPU with CUDA

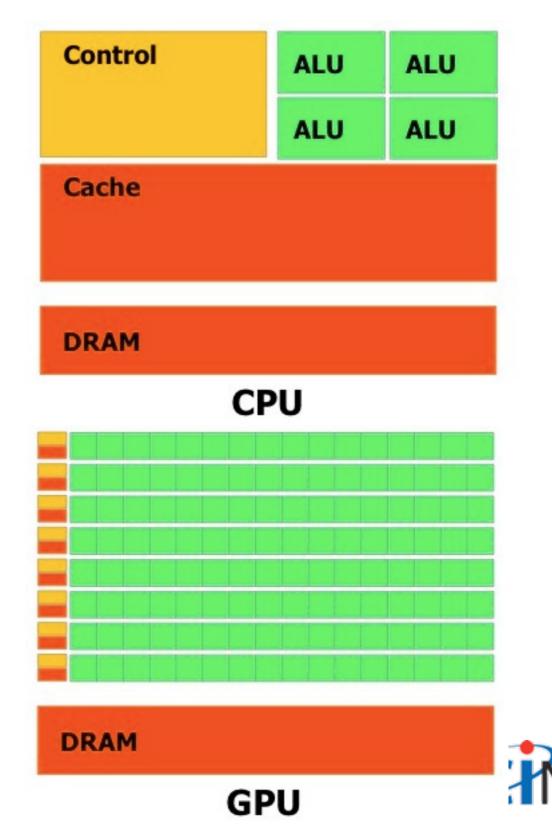
Aug 2011

Upcoming GPU events:


- •GPGPU Research Workshop TB
- Monthly cross-campus GPGPU meetings TBA
- •ECE Graduate GPGPU course Spring 2012
- •Astronomy/Physics GPGPU minicourse/modular course -Spring 2012
- •https://support.scinet.utoronto.ca/courses
- •<u>https://support.scinet.utoronto.ca/mailman/listinfo/scinet-</u> gpgpu

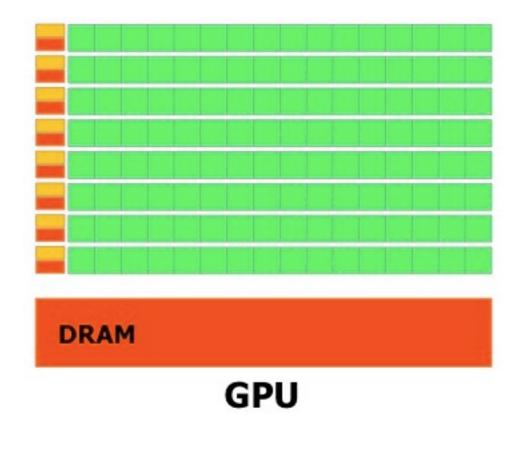
Your graphics card is probably faster than your computer.

- Graphics
 performance has
 grown by leaps and
 bounds
- Driven by gamers


...but it's not magic

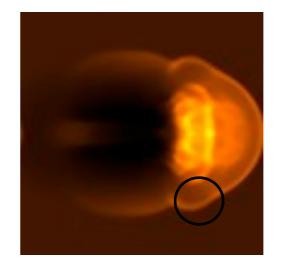
- CPU very flexible, easy to program
- GPU almost all transistors go to cores and mathematics.

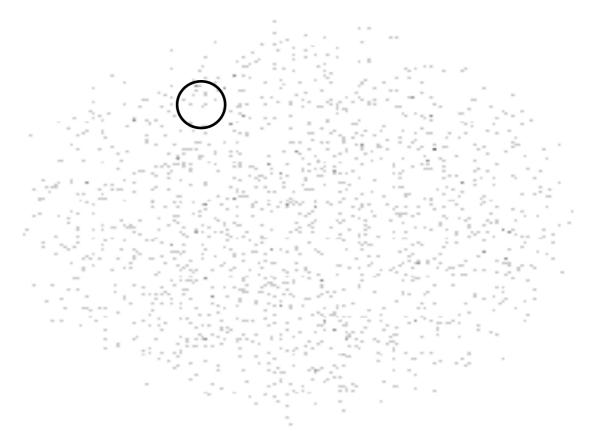
Control		ALU	ALU	
		ALU	ALU	
Cache				
DRAM				
CPU				
DRAM				
	GP	U		


...but it's not magic

- All cores in a "multiprocessor unit" have same control, cache
- Act in lock step
- Do same computations on different data
- "Data parallel"
- Very small cache (48KB/SM)

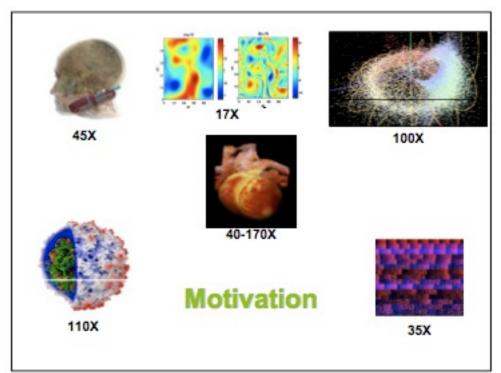
lf it works, it's great..


- GPU: ~448
 compute cores,
 into ~14 streaming
 multiprocessors
 (SM)
- ~32 threads
 operate at once



...and it often does.

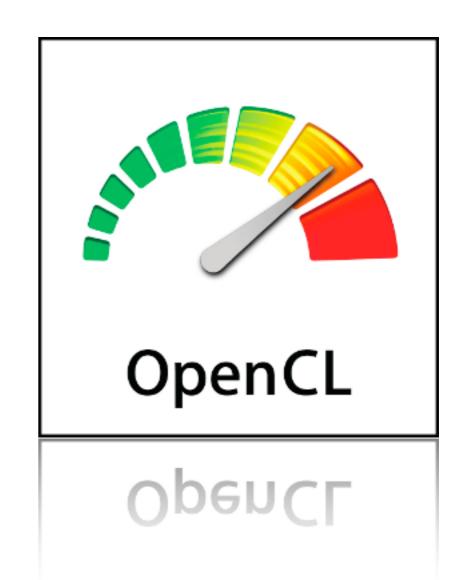
- Much of scientific computing is "data parallel"
- Same operation on each
 - cell of grid
 - particle in domain
 - piece of input


What we'll be covering

- Plan have you leave being able to start developing simple (single GPU) codes in CUDA
- Know where to look for libraries, development tools
- Know what to think about for more advanced applications

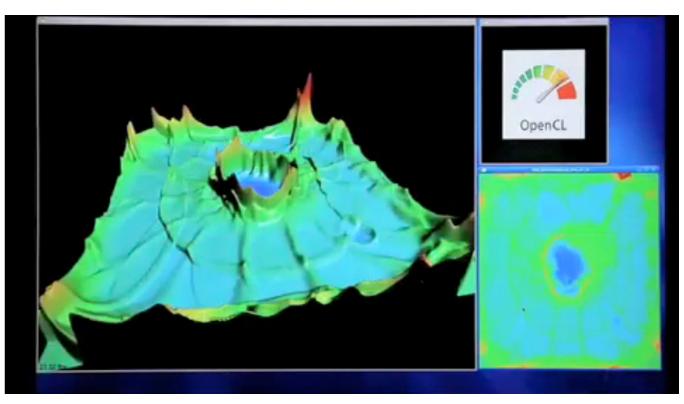
Why CUDA?

- GPGPU used to be pretty bad; put array in as 'textures', have each point in your grid be a vertex that maps the texture...
- Much better now: CUDA (NVidia), OpenCL (NVidia, Apple,AMD)...



NVidia SC2007 tutorial slides

Open standard


- Driven by Apple (comes standard in Snow Leopard, Lion)
- NVIDIA, AMD, Intel, IBM (Cell)
- Exposes a consistent, GPU-like interface to any multicore system

Heterogeneous, Open

- Can work with various hardware
- IBM Cell, AMD processors, ATI cards, NVidia cards, Intel processors
- Multi- and Many- core
- SC09 demo: parallel CFD running on all of the above at once in same program, using MPI to tie them together

CUDA vs OpenCL kernel code

- Since maps to similar hardware, basic concepts the same
- Some terminology changes; some better, some worse.
- Kernels not really that different.

CUDA	OpenCL	
global	kernel	
device (function)		
constant	constant	
device (mem)	global	
shared	_local	
Local Mem	Private Mem	
syncthreads()	barrier()	


```
/* run GPU code */
                                                                  CUDA
CHK_CUDA( cudaMalloc(&xd, n*sizeof(float)) );
CHK_CUDA( cudaMalloc(&yd, n*sizeof(float)) );
tick(&gputimer);
CHK_CUDA( cudaMemcpy(xd, x, n*sizeof(float), cudaMemcpyHostToDevice) );
blocksize = (n+nblocks-1)/nblocks;
for (i=0; i<niters; i++) {</pre>
    cuda_saxpb<<<nblocks, blocksize>>>(xd, a, b, yd, n);
}
CHK_CUDA( cudaMemcpy(ycuda, yd, n*sizeof(float), cudaMemcpyDeviceToHost) );
gputime = tock(&gputimer);
CHK_CUDA( cudaFree(xd) );
CHK_CUDA( cudaFree(yd) );
```


/* create OpenCL device & context */
cl_platform_id clPlatform;
err = clGetPlatformIDs(1, &clPlatform, NULL);
chk(err, "Get Platform`");

/* query all devices available to the context */

cl_device_id device; err = clGetDeviceIDs(clPlatform, CL_DEVICE_TYPE_GPU, 1, &device, NULL); chk(err, "Get Device IDs");

cl_context hContext; hContext = clCreateContext(0, 1, &device, NULL, NULL, &err); chk(err, "Get Context");

/* create a command queue for first device the context reported */
cl_command_queue hCmdQueue;

hCmdQueue = clCreateCommandQueue(hContext, device, 0, &err); chk(err, "Create Queue");

/* create & compile program */
cl_program hProgram;
hProgram = clCreateProgramWithSource(hContext, nlines, kernelsrc, 0, &err);
chk(err, "Create Program");

err = clBuildProgram(hProgram, 1, &device, NULL, NULL, NULL); buildchk(err, "Build Program");

/* create kernel */
cl_kernel hKernel;

hKernel = clCreateKernel(hProgram, "opencl_saxpb", &err); chk(err, "Create Kernel");

/* setup parameter values */

err = clSetKernelArg(hKernel, 0, sizeof(cl_mem), (void *)&xd); err |= clSetKernelArg(hKernel, 1, sizeof(cl_float), (void *)&a); err |= clSetKernelArg(hKernel, 2, sizeof(cl_float), (void *)&b); err |= clSetKernelArg(hKernel, 3, sizeof(cl_mem), (void *)&yd); chk(err, "Set args");

/* execute kernel */

chk(err, "Enqueue Kernel");

// copy results from device back to host

clReleaseMemObject(xd); clReleaseMemObject(yd); clReleaseProgram(hProgram); clReleaseKernel(hKernel); clReleaseCommandQueue(hCmdQueue); clReleaseContext(hContext);

OpenCL

Why CUDA?

- Doesn't really make a difference.
- Kernels (where all the hard work goes) are almost identical.
- Boilerplate, which is straightforward (copy memory, launch kernel) is different but not all that important
- CUDA makes easy things easy, so we'll use that.
- Both are about the same for more complicated situations (multi-GPU, etc)

/* create OpenCL device 6 context */
cl_platform_id clPlatform;
err = clGetPlatformIDs(1, 6clPlatform, NULL);
chk(err, "Get Platform'");

/* query all devices available to the context */

cl_device_id device; err = clGetDeviceIDs(clPlatform, CL_DEVICE_TYPE_GPU, 1, &device, NULL); chk(err, "Get Device IDs");

cl_context hContext; hContext = clCreateContext(0, 1, &device, MULL, NULL, &err); chk(err, "Get Context");

/* create a command gueve for first device the context reported */
ct_command_gueve hCndQueve;
hCndQueve = clCreateCommandQueve(hContext, device, 0, 6err);
chk(err, "CreateQueve");

/* create & compile program */
cl_program hProgram;
hProgram = clCreateProgramWithSource(hContext, nlines, kernelsrc, 0, Serr);
chk(err, "Create Program");

err = clBuildProgram(hProgram, 1, &device, NULL, NULL, NULL);
buildchk(err, "Build Program");
/* create kernel =/
cl kernel NKernel;

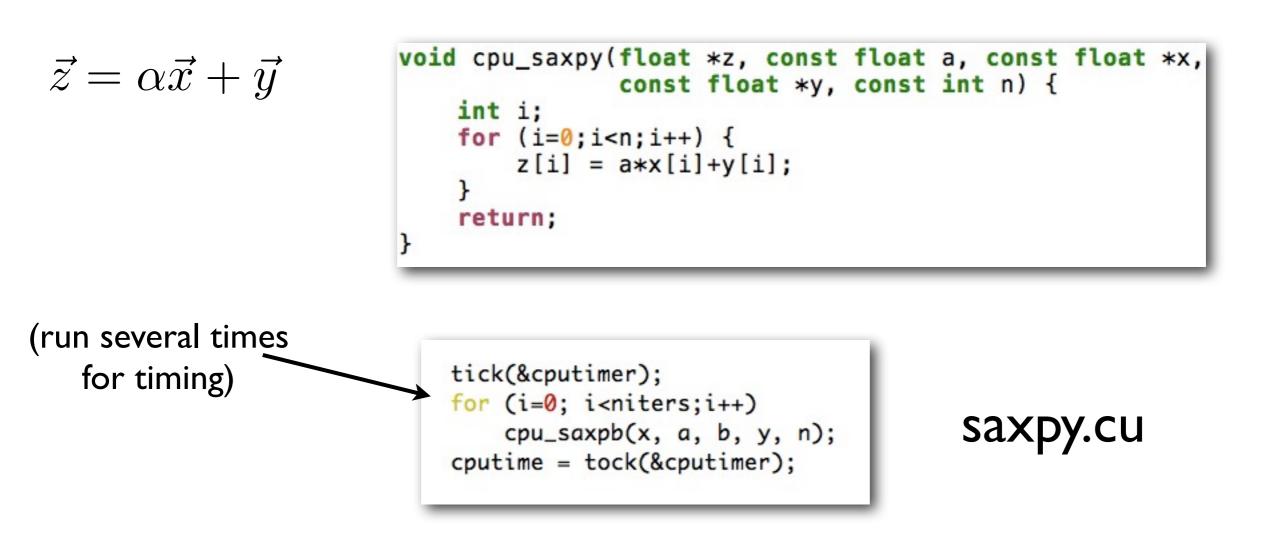
cl_wernel MKernel; hKernel = clCreateKernel(hProgram, "opencl_saxpb", &err); chkterr, "Create Kernel");

chk(err, "Create yd");

/* setup parameter values */
err = clSetKerneLArg(NAmrel, 0, sizeof(cl_men), (void *)&ad);
err = clSetKerneLArg(NAernel, 1, sizeof(cl_float), (void *)&a);
err = clSetKerneLArg(NAernel, 2, sizeof(cl_float), (void *)&a);
err = clSetKerneLArg(NAernel, 3, sizeof(cl_men), (void *)&a);
chk(err, "Set args");

/* execute kernel */ const size_t knsize*n; const size_t kblocksize*blocksize; err = clEngweueWDRangeKernel(hCndQueue, hKernel, 1, 0, Eknsize, &kblocksize, 0, 0, 0);

chklerr, "Enqueue Kernel");

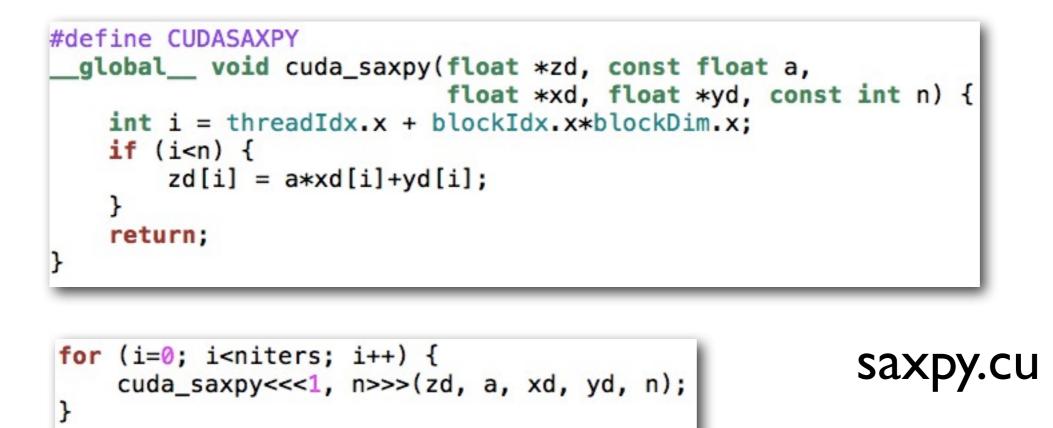

cUteleaseMemObject(xd); cUteleaseMemObject(yd); cUteleaseProgram(Program); cUteleaseKernel(NKernel); cUteleaseKernel(NKernel); cUteleaseContext(bcontext);

Let's get straight to it

- From login node, ssh to arc01 (devel node of accelerator research cluster)
- •cp -r /scinet/course/intro-gpu/ .;
 cd intro-gpu
- source setup
- •cd saxpy
- make clean all
- •./saxpy --help
- •./saxpy

Question: How would we OpenMP this? MPI this?

$$\vec{z} = \alpha \vec{x} + \vec{y}$$


saxpy.cu

Very fine-grained parallelism. Each core does one (or few) tasks.

Type "make", and "./saxpy"

$$\vec{z} = \alpha \vec{x} + \vec{y}$$

For loop over elements is implied by the call; n in the <<<>>'s invokes n of these kernels in parallel.


```
/* run GPU code */
CHK_CUDA( cudaMalloc(&xd, n*sizeof(float)) );
CHK_CUDA( cudaMalloc(&yd, n*sizeof(float)) );
CHK_CUDA( cudaMalloc(&zd, n*sizeof(float)) );
tick(&gputimer);
CHK_CUDA( cudaMemcpy(xd, x, n*sizeof(float), cudaMemcpyHostToDevice) );
CHK_CUDA( cudaMemcpy(yd, y, n*sizeof(float), cudaMemcpyHostToDevice) );
for (i=0; i<niters; i++) {</pre>
    cuda_saxpy<<<1, n>>>(zd, a, xd, yd, n);
}
CHK_CUDA( cudaMemcpy(zcuda, zd, n*sizeof(float), cudaMemcpyDeviceToHost) );
gputime = tock(&gputimer);
CHK_CUDA( cudaFree(xd) );
CHK_CUDA( cudaFree(yd) );
CHK_CUDA( cudaFree(zd) );
```

saxpy.cu

GPU Memory is separate from system memory (on card). Have to allocate/free it, and copy data GPU↔CPU

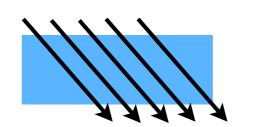

```
/* run GPU code */
CHK_CUDA( cudaMalloc(&xd, n*sizeof(float)) );
CHK_CUDA( cudaMalloc(&yd, n*sizeof(float)) );
CHK_CUDA( cudaMalloc(&zd, n*sizeof(float)) );
tick(&gputimer);
CHK_CUDA( cudaMemcpy(xd, x, n*sizeof(float), cudaMemcpyHostToDevice) );
CHK_CUDA( cudaMemcpy(yd, y, n*sizeof(float), cudaMemcpyHostToDevice) );
for (i=0; i<niters; i++) {</pre>
    cuda_saxpy<<<1, n>>>(zd, a, xd, yd, n);
}
CHK_CUDA( cudaMemcpy(zcuda, zd, n*sizeof(float), cudaMemcpyDeviceToHost) );
gputime = tock(&gputimer);
CHK_CUDA( cudaFree(xd) );
CHK_CUDA( cudaFree(yd) );
CHK_CUDA( cudaFree(zd) );
```

saxpy.cu

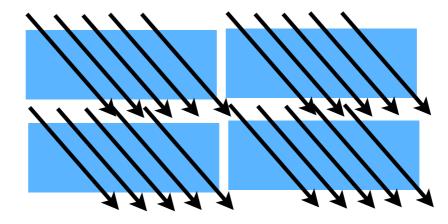
Notes:

- CHK_CUDA -- test for error cord. More later.
- Allocating, copying to GPU memory: SLOW compared to computing capability of GPU. Avoid wherever possible.
- What happens if you try

 ./saxpy --nvals=200 ? ./saxpy --nvals=2048 ?

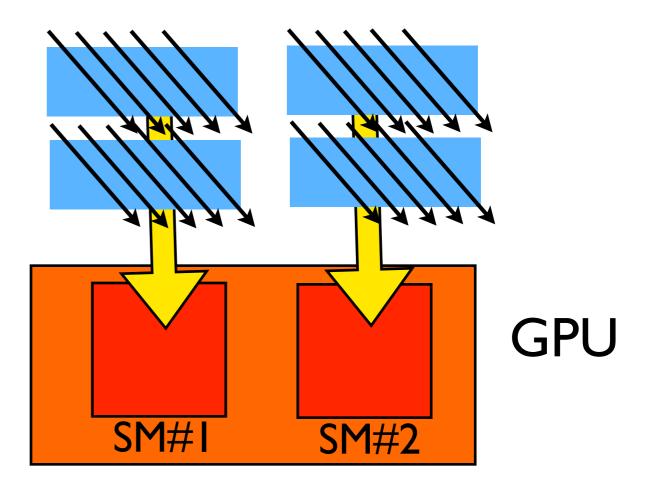


Threads, Blocks, Grids


- CUDA threads are organized into blocks
- Threads operate in SIMD(ish) manner -- each executing same instructions in lockstep.
- Only difference are thread ids
- Can have a grid of multiple blocks

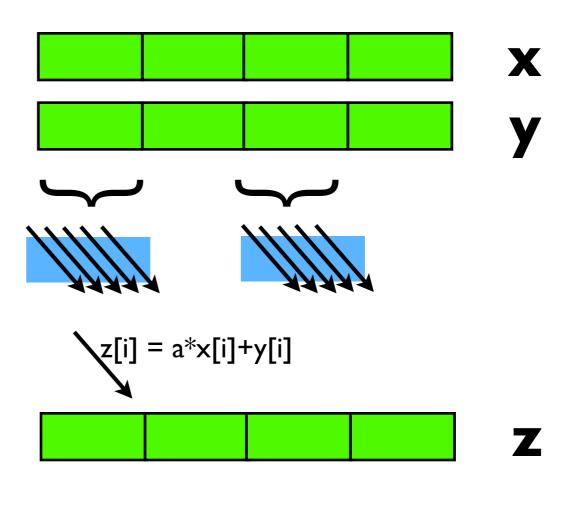
CUDA Thread

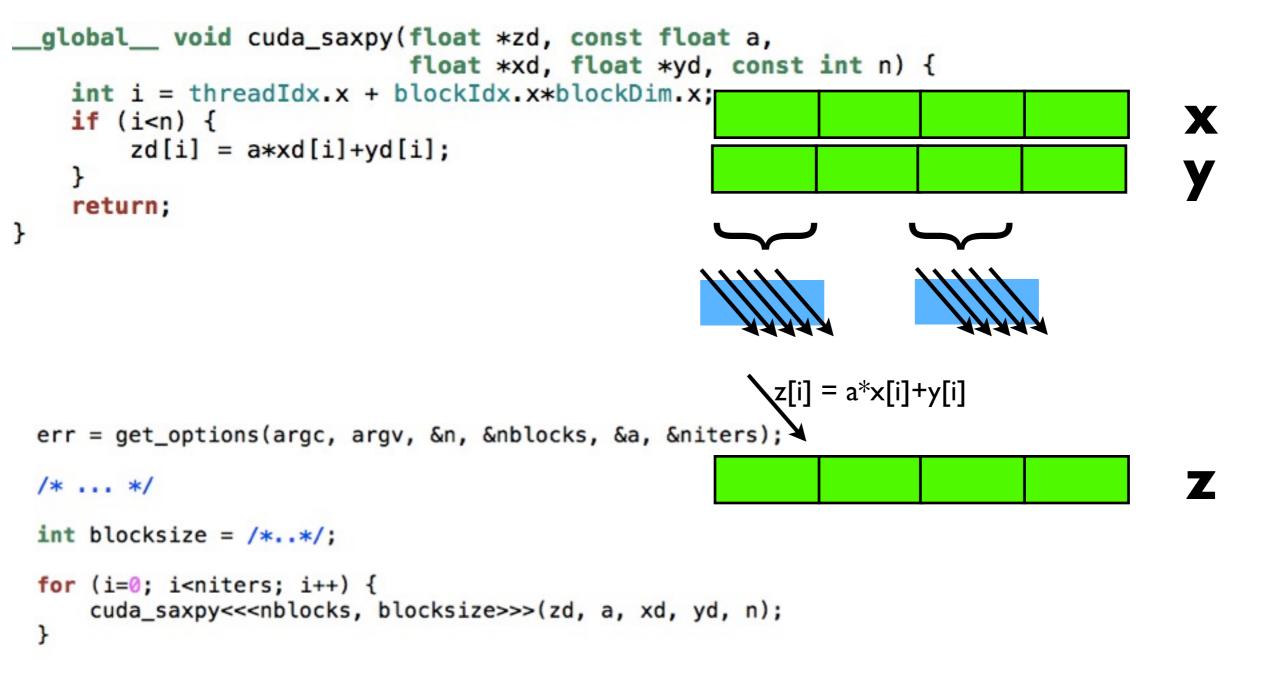
Block of CUDA Threads



Grid of CUDA Blocks

CUDA - H/W mapping


- Blocks are assigned to a particular SM
 - Executed there one 'warp' at a time (typically 32 threads)
- Multiple blocks may be on SM concurrently
 - Good; latency hiding
 - Bad SM resources must be divided between blocks
- If only use I Block I SM


Multi-block z=ax+y

- Break input, output vectors into blocks
- Within each block, thread index specifies which item to work on
- Each thread does one update, puts results in z[i]

Multi-block z=ax+y

Hands on -- do multi-block saxpy Enable use of multiple blocks (== multiple SMs!)

Multi-block z=ax+y

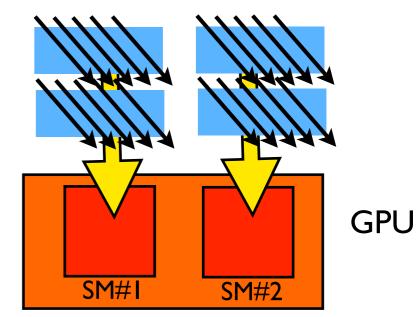
#define CUDASAXPY

__global__ void cuda_saxpy(float *zd, const float a, float *xd, float *yd, const

```
int i = threadIdx.x + blockIdx.x*blockDim.x;
if (i<n) {
    zd[i] = a*xd[i]+yd[i];
}
return;
}</pre>
```

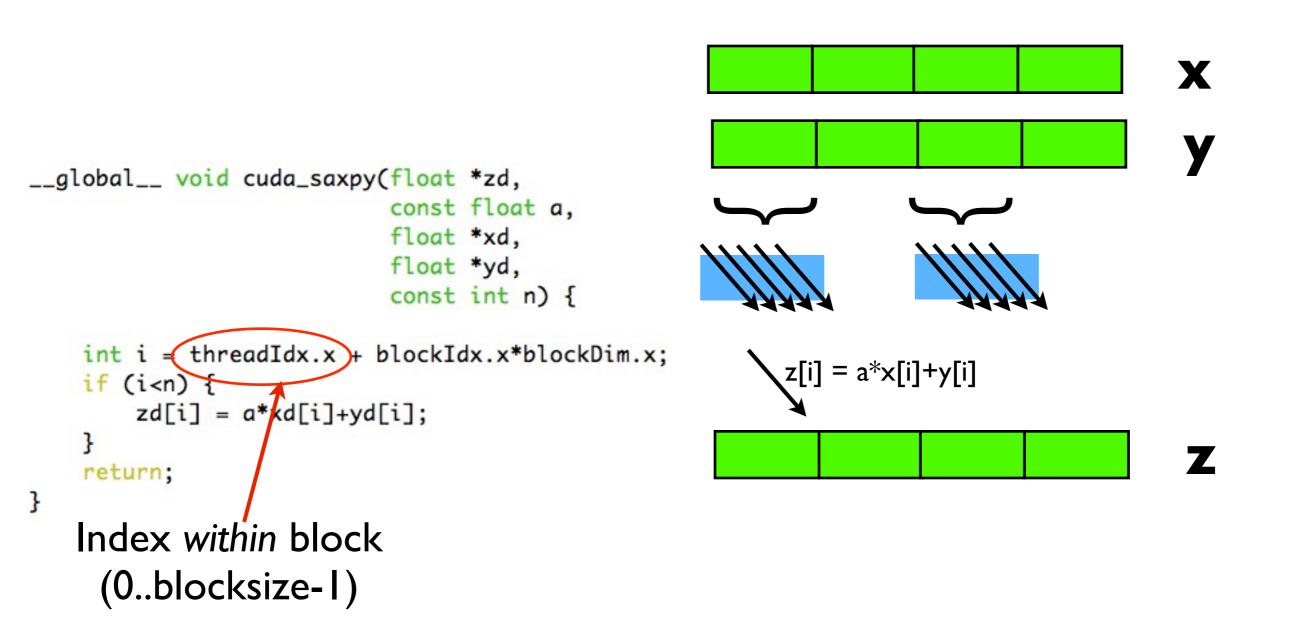


```
blocksize = (n+nblocks-1)/nblocks;
for (i=0; i<niters; i++) {
    cuda_saxpy<<<nblocks, blocksize>>>(zd, a, xd, yd, n);
}
```

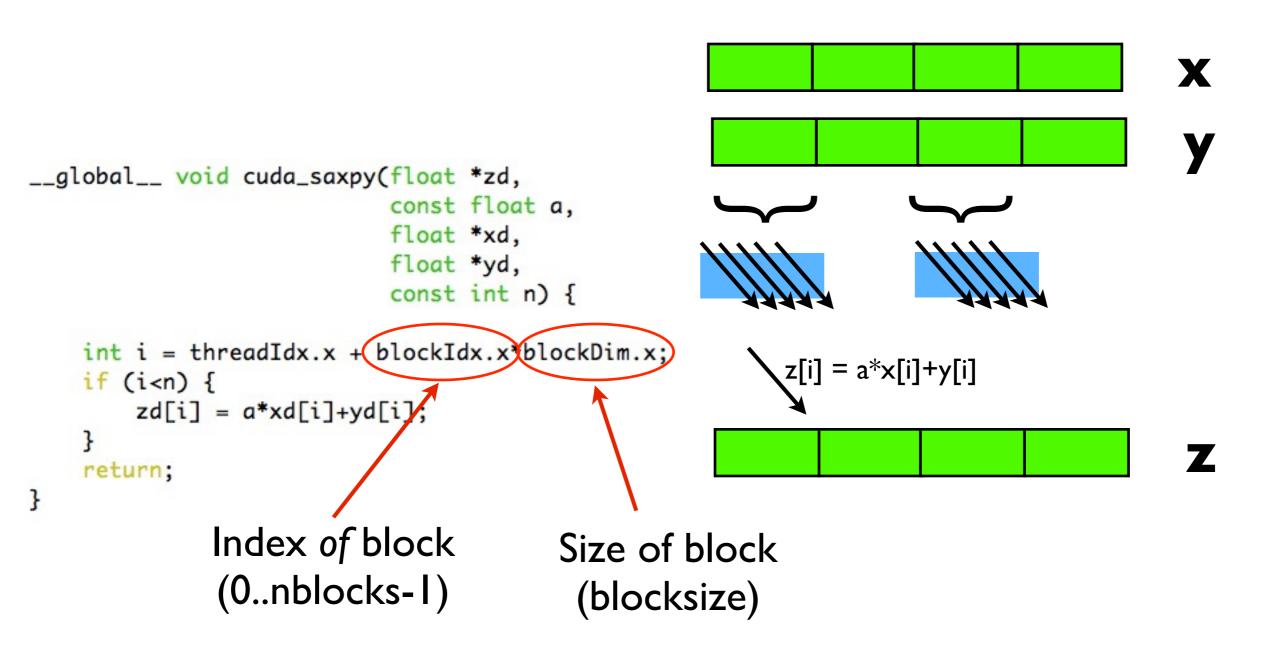


More blocks →more SMs → more FLOPs

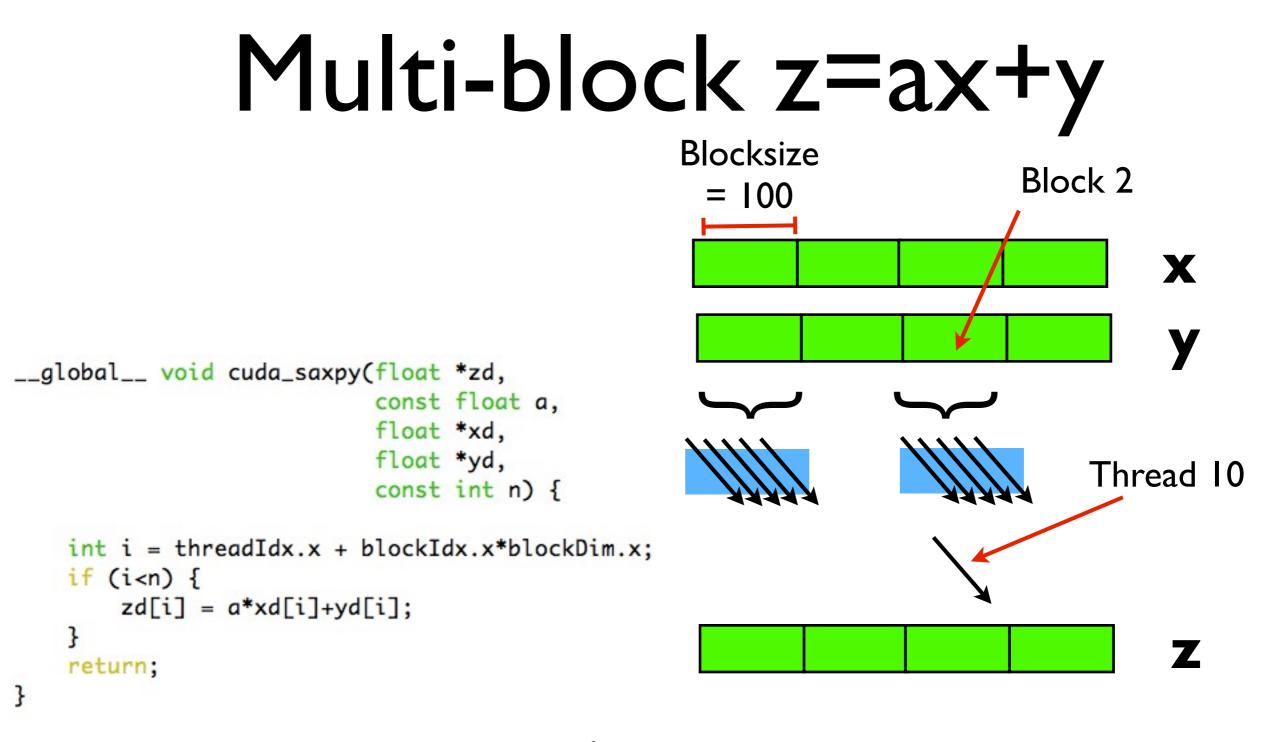
• We can use 1024 threads/ block:


Multiple calcs, so timing not dominated by memory copy

arc01-\$./block-saxpy --nblocks=1 --nvals=1024 --niters=100 Using: n=1024, nblocks=1, niters=100, a=5.000000 CPU time = 0.56 millisec, GFLOPS = 0.003657 GPU time = 0.81 millisec, GFLOPS = 0.002528 CUDA and CPU results differ by 0.000000 arc01-\$ arc01-\$ arc01-\$./block-saxpy --nblocks=8 --nvals=8192 --niters=100 Using: n=8192, nblocks=8, niters=100, a=5.000000 CPU time = 4.462 millisec, GFLOPS = 0.003672 GPU time = 0.85 millisec, GFLOPS = 0.01928 CUDA and CPU results differ by 0.000000



Multi-block z=ax+y



Multi-block z=ax+y

i = 10 + 2*100 = 210 zd[210] = a*xd[210] + yd[210]

Multi-block z=ax+y

}

}

return;

- Now the "if" makes sense:
- Number of work items may not be evenly divided by block size
- Make sure we don't "go off the end"
- What happens in the if statement?
- Thread divergence

zd[i] = a*xd[i]+yd[i];

Multi-block z=ax+y

}

3

return;

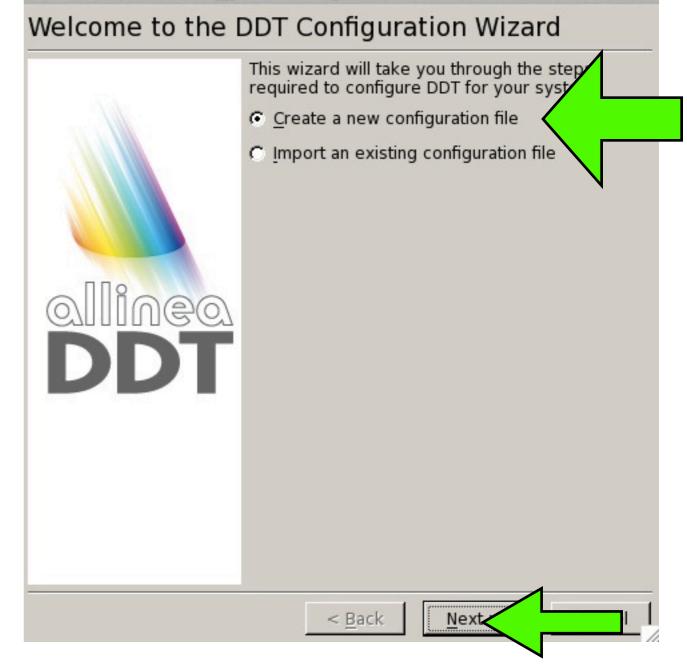
- All threads in a thread block go through kernel in same order.
- Threads in a warp go through in lock step.
- All threads go through if clauses (and else), even if they don't need results
 - (Don't get stored)
- Can be very wasteful!
- Highly "branchy" code not very good for GPUs

```
SciNet
```

GPGPU Performance Tip #1

}

 Avoid lots of branches in GPGPU code.


```
int i = threadIdx.x + blockIdx.x*blockDim.x;
if (i<n) {
    zd[i] = a*xd[i]+yd[i];
}
return;</pre>
```


X DDT Configuration Wizard

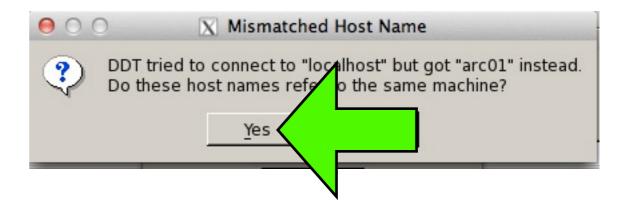
Let's see what's going on here in more detail with a GPU debugger

- Get a node;
- qsub -I -X -l
 nodes=1:ppn=8:gpus=2,wa
 lltime=1:00:00
- cd intro-gpu, source setup
- Type 'ddt' to launch the Allinea DDT debugger:

OpenMPI

X DDT Configuration Wizard

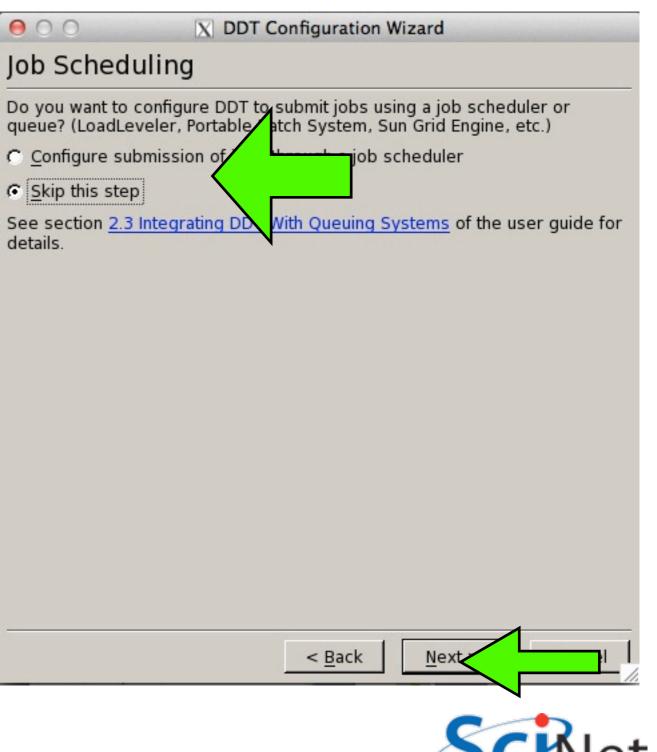
MPI Implementation

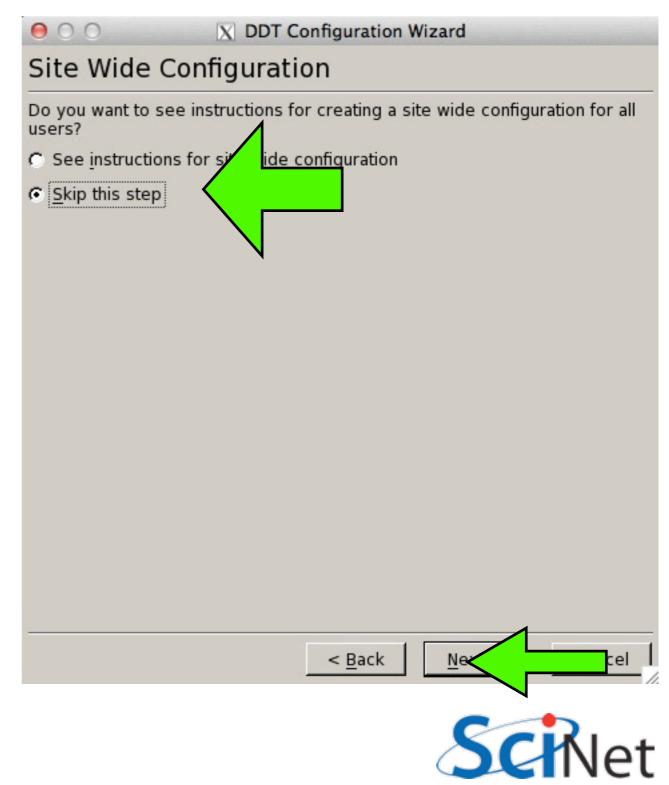

Please select your MPI implementation from the box below (or select "None" if you do not wish to use MPI with DDT).

< Back

Next >

If you do not know which MPI implementation you are using select the "Generic" option, which should work for most implementations.


- Let's see what's going on here in more detail with a GPU debugger
- Type 'ddt' to launch the Allinea DDT debugger:


- Let's see what's going on here in more detail with a GPU debugger
- Type 'ddt' to launch the Allinea DDT debugger:

- Let's see what's going on here in more detail with a GPU debugger
- Type 'ddt' to launch the Allinea DDT debugger:

- Let's see what's going on here in more detail with a GPU debugger
- Type 'ddt' to launch the Allinea DDT debugger:

Allinea Distributed Debugging Tool v3.0 Session Control Search View Help Current Group Focus on current: © Group Manually Launch a Program
Session Control Search View Help E Manually Launch a Program
Image: Section of the sec
Create Group
Create Group
Project Files 🗗 × Attach to a Running Program Locals Current Line(s) Current Stack
Search Search Open Core Files Current Line(s) & X
Image: Search with the search withe search with the search with the search with the search wi
Bource Tree DDDT Restore a Checkpoint Quit
E Source Files
Input/Output Breakpoints Watchpoints Tracepoints Stacks Evaluate
Stacks Expression Value
Processes Function
DDT 3.0

000	X Allinea Distributed Debugging Tool v3.0	
Session Control Search Vie		
	Application: /home/ljdursi/course/intro-gpu/saxpy/answers/block-saxpy	
Current Group: Fo		
	Run Without MPI Support	
Create Group	Options: OpenMPI, no queue Change	
Project Files 🗗 🛛		Current Line(s) Current Stack
Search 😪		ne(s) ♂×
Project Files Source Tree	Advanced >>	
🕀 💼 Header Files	<u>R</u> un Cancel	
🗄 🛅 Source Files		
x 🗾		
Input/Output Breakpoints		8 ×
Input/Output	♂ × Expression Value	
Output For Rank: 0 😤		
1		
	t to the mpirun process with this MPI	
Type here ('Enter' to send):	More *	
		DDT 3.0

לנ

000)			X Allinea Distributed Debugging Tool v3.0	
Session	Co	ntrol Se <u>a</u> rch <u>V</u> iew <u>H</u> elp			
		<u>F</u> ocus On Current	•	🗂 🕶 🛜 🕶	
Current		<u>S</u> tep Threads Together		ocess 🔿 Thread 🖵 Step Threads Together	
current		<u>P</u> lay/Continue	F9		
hreads:		Pause	F10		
roject Fil	•	Add <u>B</u> reakpoint		Locals Current Line(s)	Curren
Search	(1)	Step <u>I</u> nto	F5	▲ Current Line(s)	carrer
	3	Step <u>O</u> ver	F8	Variable Name Value	
⊕ <u></u> ⊡ a	$\langle \mathbf{I} \rangle$	Step O <u>u</u> t	F6	s(int argc, char **argv, int *n, int *nb, float *a, int *	
🕂 🞹 b	-	Run To <u>L</u> ine		<pre>pt timeval *timer);</pre> Et timeval *timer); Et timeval *timer);	
🕂 📶 b		<u>D</u> own Stack Frame	Ctrl+D	<pre>ruct timeval *timer);</pre>	
		Up S <u>t</u> ack Frame	Ctrl+U	rgc, char **argv) { 1000;	
÷ ‴ C		Botto <u>m</u> Stack Frame	Ctrl+B	locks=1; h = 5.;	
÷ C	1 1	<u>S</u> end Signal	Ctrl+S	r;	
÷.Н с	Ö	<u>C</u> heckpoint	+	*x, *y, *z, *zcuda; *xd, *yd, *zd;	
+. ₩ C +. ₩ C		Restore Checkpoint	•	abserr;	
d I		<u>M</u> essages	+	=5: Type: none selected	
Input/O		Default Breakpoints	×.	Stop at exit/_exit Evaluate	
nput/Out		Memory Debugging Options	j	Stop at <u>a</u> bort/fatal MPI Error	
րություն				Stop on throw (C++ exceptions)	
				Stop on <u>c</u> atch (C++ exceptions)	
				Stop on <u>f</u> ork	
				Stop on exec	
				 Stop on CUDA kernel launch 	
Type her	re ('	Enter' to send):		More -	

000		ea Distributed Debugging Tool	v3.0		
	8 🗣 🕴 👔 🔰 🗖 🕶 🛜 🕶	Chan Throads Together			
	Over (F8) urrent: Process Thread	Step Inreads logether			
Threads:					
CUDA Threads (Kernel 1)	Block 0 🛨 0 🕂 Thread 0 🛨	0 ÷ 0 ÷ Go (Grid size: 8x1 B	lock size: 1024x1x1	
Project Files 🗗 🗙 🦷 Search	<pre>block-saxpy.cu 5 #include <sys time.h=""></sys></pre>			Locals	Current Line(s) Current Stack
 i i atomic.cc i bad_alloc.cc i bad_cast.cc i bad_typeid.cc i bitmap_alloca i block-saxpyc i chrono.cc 	<pre>6 #include <math.h> 7 8 #define CHK_CUDA(e) {if (e != 6 9 10 #define CUDASAXPY</math.h></pre>	at *zd, const float a, flo blockIdx.x*blockDim.x;		-a	Value 0x200110000 5 0x200100000 0x200108000 8192
Input/Output Breakpoints	Watchpoints Tracepoints Stacks		ł	Evaluate	8
Input/Output			8×	Expression Value	
Type here ('Enter' to send):			More •		
Type here (chiter to send).					Ready
		Y			Ineduy

Session Control Search Vi Help	ool v3.0		
▶ · · · · · · · · · · · · · · · ·			
Current Group: All Step r (F8) urrent: C Process C Thread F Step Threads Together			
Threads:			
CUDA Threads (Kernel 1) Block 0 + 0 + Thread 0 + 0 + 0 + Go	Grid size: 8x1	Block size: 1024x1x1	
Project Files		Locals Current Lin Variable N	
<pre> # m atomic.cc</pre>		%s\n •a •a •xd	0x200110000 5 0x200100000 0x200108000
<pre>imap_alloca 13 int i = threadIdx.x + blockIdx.x*blockDim.x; if (i<n) td="" {<=""><td></td><td>n</td><td>8192</td></n)></pre>		n	8192
		Type: none	e selected
Input/Output Breakpoints Watchpoints Tracepoints Stacks		Evaluate	8
Input/Output	₽×	Expression Value	
Type here ('Enter' to send):	More •		
			Ready

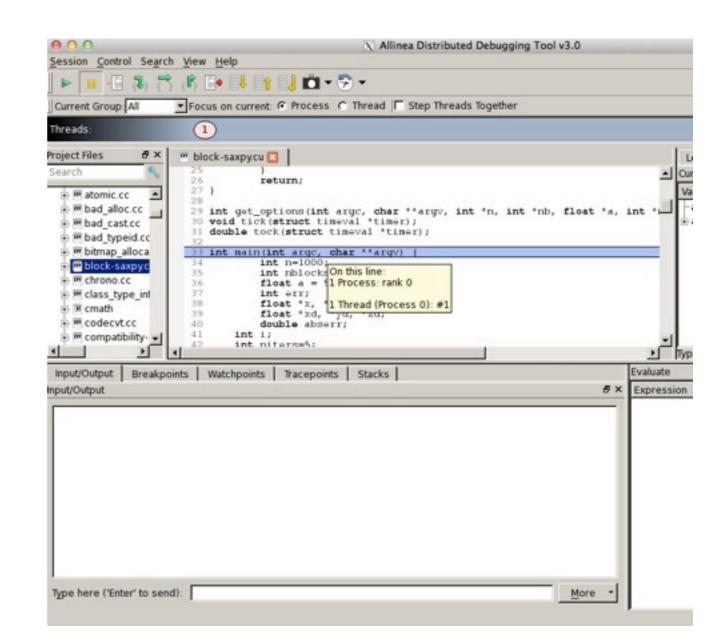
000	X Allinea Distributed Debugging Tool v3.0	STIT P.D. I
Session Control Search		
🕨 🔢 🕄 🖏	{ i < i < i < i < i < i < i < i < i < i	
Current Group: All	Focus on current: Process C Thread Step Threads Together	
Threads:		
CUDA Threads (Kernel 1)	Block 0 🗧 0 🗧 Thread 0 🛨 0 🛨 0 🗧 Go 🛛 Grid size: 8x1 Block size:	1024x1x1
Project Files Search Search	<pre>11global void cuda_saxpy(float *zd, const float a, float *xd, float *; 12 13 int i = threadIdx.x + blockIdx.x*blockDim.x; 14 if (i<n) *x,="" *y,="" *z,="" 15="" 16="" 17="" 18="" 19="" 20="" 21<="" a,="" const="" cpu_saxpy(float="" float="" pre="" return;="" void="" zd[i]="a*xd[i]+yd[i];" {="" }=""></n)></pre>	Locals Current Line(s) Current Current Line(s) Variable Name Value ini 0 mn 8192
Input/Output Breakpoi		A
nput/Output	₽ × Expressio	n Value
, Type here ('Enter' to send	I): More •	

- Can play with first numbers of "block" and "thread" to see different block, thread
- value shown of i should change
- Does i give what you'd expect?

Session Control Search	Allinea Distributed Debugging Tool v3.0			
	yew mep			
Current Group All	Focus on current: @ Process @ Thread IT Step Threads Together			
Threads:				
CUDA Threads (Kernel 1)	Black 이 곳 이 곳 Thread 이 곳 이 곳 이 곳 Go		4x1x1	l.
Project Files Search Search	<pre> #define CUDASANPY </pre>		niable N i n	ame V 0 81
		Evaluate	e: none	selecte
Input/Output Breakpo Input/Output	and a second sec	Expression	Value	T
			8	
Type here ('Enter' to sen	d): More *			

cuda-gdb

```
arc01-$ cuda-gdb ./block-saxpy
NVIDIA (R) CUDA Debugger
3.2 release
[...]
(cuda-gdb) break cuda saxpy
(cuda-gdb) run --nvals=8192 --nblocks=8
Starting program: [...]
[Launch of CUDA Kernel 0 (cuda saxpy) on Device 0]
[Switching to CUDA Kernel 0 (<<<(0,0),(0,0,0)>>>)]
Breakpoint 1, cuda saxpy << <(1,1), (1000,1,1) >>> (zd=0x200102000,
a=5,
    xd=0x200100000, yd=0x200101000, n=1000) at block-saxpy.cu:
13
       int i = threadIdx.x + blockIdx.x*blockDim.x;
13
(cuda-gdb)
```



cuda-gdb

```
(cuda-gdb) step
14 if (i<n) {
(cuda-gdb) print i
$1 = 0
(cuda-gdb) cuda thread 8
[Switching to CUDA Kernel 0 (device 0, sm 0, warp 0, lane 8,
grid 1, block (0,0), thread (8,0,0))]
       if (i<n) {
14
(cuda-gdb) print i
\$2 = 8
(cuda-gdb) cuda block 2
[Switching to CUDA Kernel 0 (device 0, sm 3, warp 0, lane 8,
grid 1, block (2,0), thread (8,0,0))]
       int i = threadIdx.x + blockIdx.x*blockDim.x;
13
(cuda-gdb) step
14 if (i<n) {
(cuda-gdb) print i
$4 = 2056
(cuda-gdb) quit
```


nvcc -G -g

- Note; the -g option to the compiler (nvcc) kept debugging symbols in the host code; the -G option kept the symbols in the kernel code
- Allows use of debugger, better diagnostics.
- But disables many optimizations...

How many threads/ block?

- Should be integral multiple of warp (32)
- No more than max allowed by scheduling hardware
- Can get last number from hardware specs
- But what if will be needed on several machines?
- API can return it:

cudaGetDeviceProperty

```
int i, count;
cudaDeviceProp prop;
CHK_CUDA( cudaGetDeviceCount( &count ));
for (i=0; i<count; i++) {
   CHK_CUDA( cudaGetDeviceProperties( &prop, i ));
   printf("Device %d has:\n",i);
   printf("Device %d has:\n",i);
   printf("\tName %s,\n",prop.name);
   printf("\tNumber of SMs %d,\n",prop.multiProcessorCount);
   printf("\tWarp Size %d,\n",prop.warpSize);
   printf("\tMax Threads/block %d,\n",prop.maxThreadsPerBlock);
```

querydevs.cu

cudaGetDeviceProperty

arc01-5	./querydevs	
Device	0 has:	
	Name	Tesla M2070,
	Number of SMs	14,
	Warp Size	32,
	Max Threads/block	1024,
	Regisgers/block	32768,
	Compute Capability	12.0,
	Global Mem	5375 MB,
	Max Threads/dim	(1024,1024,64),
	Max Blocks/dim	(65535,65535,65535).
	Shared Mem/block	48 kB,
Device	1 has:	
	Name	Tesla M2070,
	Number of SMs	14,
	Warp Size	32,
	Max Threads/block	1024,
	Regisgers/block	32768,
	Compute Capability	/ 2.0,
	Global Mem	5375 MB,
	Max Threads/dim	(1024,1024,64),
	Max Blocks/dim	(65535,65535,65535).
	Shared Mem/block	48 kB,

cudaGetDeviceProperty

All CUDA calls return cudaSuccess on successful completion.

GPU hardware does not try very hard to catch errors/notify you; testing return codes important!

Common to see simple automation like this wrapping all CUDA calls; bare minimum for sensible operation.

Test early, fail often.

Why the .xs?

}

3

return;

- For convenience, CUDA allows thread, block indices to be multidimensional
- Thread blocks can be 3 dimensional (512,512,64)
- Grids of blocks can be 2 dimensional (64k, 64k, 1)
- These variables are of type dim3 or uint3
- CUDA has int1, int2, int3, int4, float1, float2, float3, float4, etc.

zd[i] = a*xd[i]+yd[i];

```
SCINet
```

Why the .xs?

}

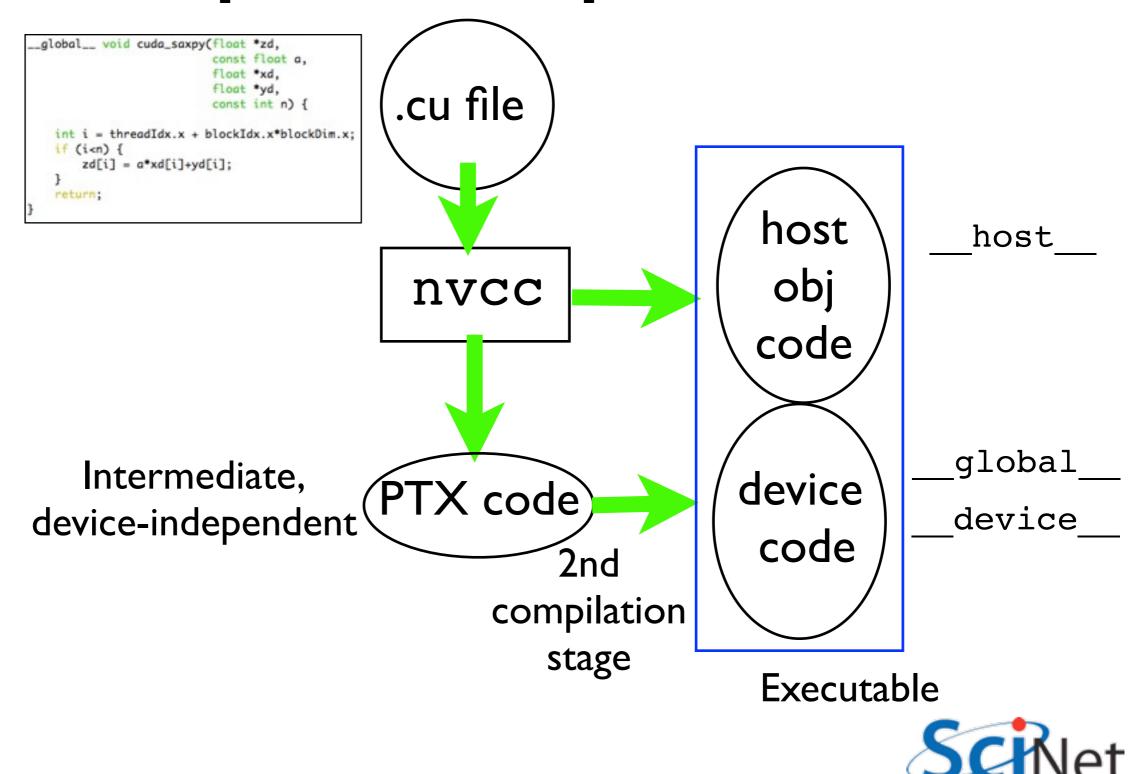
- threadIdx.{x,y,z} thread index
- blockDim.{x,y,z} size of block (# of threads in each dim)
- blockIdx.{x,y,z} block index
- gridDim.{x,y,z} size of grid (# of blocks in each dim)
- warpsize size of warp (int)

```
int i = threadIdx.x + blockIdx.x*blockDim.x;
if (i<n) {
    zd[i] = a*xd[i]+yd[i];
}
return;</pre>
```


Why the ____global ___?

}

}


return;

- _global___ device code that can be seen (invoked) from host.
- host default. Not usually interesting.
- <u>device</u> device code.
 Can be called only from other device code.
- <u>host</u> <u>device</u> compiled for both host and device.

yd[i] = a*xd[i]+b;

```
SCINet
```

Compilation process

Restrictions

- global _____ functions can't recurse, neither can ______ device ____ on non-Fermis
- No function pointers to <u>device</u> functions on non-fermis, can't take address of <u>device</u> function
- Can't have static variables in __global__, __device___ functions
- Can't use varargs with device code

```
return;
```

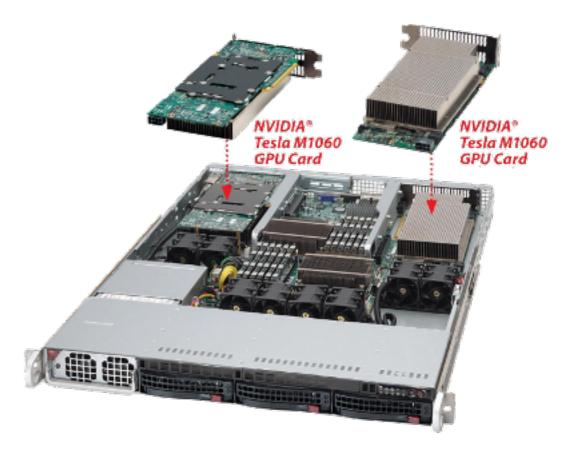
}

Performance

arc01-\$./block-saxpy --nvals=81920 --nblocks=160 Using: n=81920, nblocks=160, niters=5, a=5.000000 CPU time = 2.335 millisec, GFLOPS = 0.07017GPU time = 0.764 millisec, GFLOPS = 0.2145CUDA and CPU results differ by 0.000000

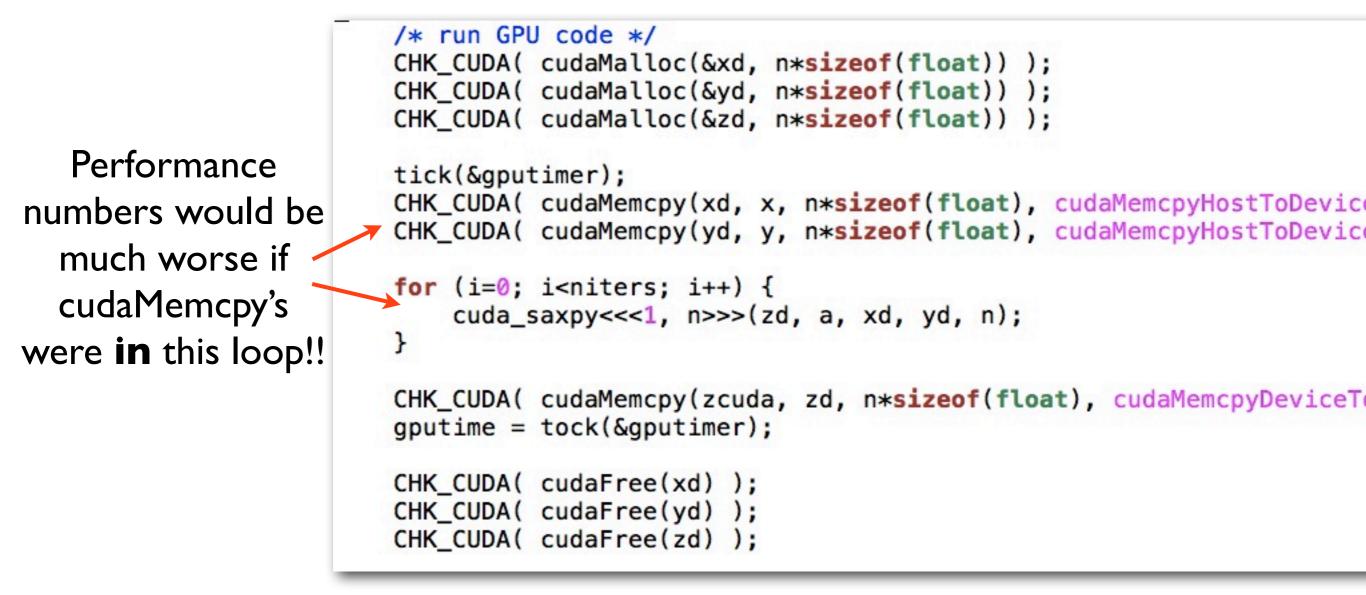
- Why such poor performance? x5550 (CPU) ~ 10 GFLOPS. M2070 (GPU) ~ 1000 GFLOPS
- Arithmetic intensity. Each operation involves taking 2 values from memory, doing very simple operation on them (*,+) and then storing a value into memory.
- Memory costs begin to dominate

arc01-\$./block-saxpy --nvals=81920 --nblocks=160 Using: n=81920, nblocks=160, niters=5, a=5.000000 CPU time = 2.335 millisec, GFLOPS = 0.07017GPU time = 0.764 millisec, GFLOPS = 0.2145CUDA and CPU results differ by 0.000000


- CPU: 3x(81920) floats read/written in 2.335 ms
 - 401 MB/s
 - Peak ~6GB/sec
 - Max possible flops in this mode: ~IGFLOP (as vs 10)
- GPU:
 - 1227 MB/s
 - Peak ~ 150GB/s
 - Max possible flops in this mode: ~25GFLOP (as vs 1000)

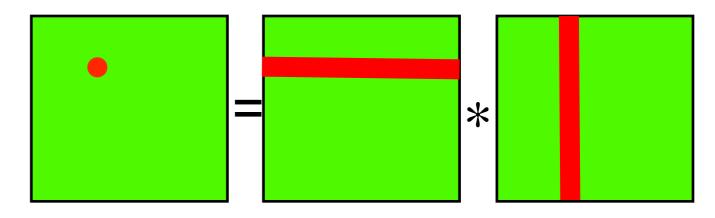
- For all modern processors, memory access is much more expensive than operating on data once it's local.
- Key to high performance is pulling data from memory into cache, registers, etc and operating on it a *lot* once it is local.

arc01-\$.	/block	c-saxpy	ynvals	s=81920	nblo	ocks=16
Using: n=	=81920 ,	, nbloc	cks=160,	niters=	5, a=	5.00000
CPU time	=	2.335	millised	c, GFLOP	S =	0.0701
GPU time	=	0.764	millised	c, GFLOP	S =	0.214
CUDA and	CPU re	esults	differ b	oy 0.000	000	



- For GPU, Memory bandwidth is even more important
- Data has to get from host memory to on-card
- PCle 3.0 16x 16GB/s
- 1/10 of on-card bandwidth!

http://www.microway.com/tesla/IUGPUchassis.html


GPGPU Performance Tip #2

 Wherever possible, avoid copying data back and forth between GPU and CPU.

```
/* run GPU code */
CHK_CUDA( cudaMalloc(&xd, n*sizeof(float)) );
CHK_CUDA( cudaMalloc(&yd, n*sizeof(float)) );
CHK_CUDA( cudaMalloc(&zd, n*sizeof(float)) );
tick(&gputimer);
CHK_CUDA( cudaMemcpy(xd, x, n*sizeof(float), cudaMemcpyHostToDe
CHK_CUDA( cudaMemcpy(yd, y, n*sizeof(float), cudaMemcpyHostToDe
for (i=0; i<niters; i++) {
    cuda_saxpy<<1, n>>>(zd, a, xd, yd, n);
}
CHK_CUDA( cudaMemcpy(zcuda, zd, n*sizeof(float), cudaMemcpyDev
gputime = tock(&gputimer);
CHK_CUDA( cudaFree(xd) );
CHK_CUDA( cudaFree(yd) );
CHK_CUDA( cudaFree(zd) );
```


- blockDim.x, threadIdx.x...
- Use of 2/3d thread blocks, or 2d grids, never strictly necessary...
- But can make code clearer, shorter.
- Clearer code = fewer bugs = good.
- Matrix multiplication

$$C_{i,j} = \sum_{k} A_{i,k} B_{k,j}$$


```
void cpu_sgemm(const float *a, const float *b,
               const int n, float *c) {
    /* this, of course, is a
        terrible implementation */
    int i, j, k;
                                                                              *
    for (i=0;i<n;i++) {</pre>
        for (j=0;j<n;j++) {</pre>
            c[i*n + j] = 0.;
            for (k=0;k<n;k++) {</pre>
                c[i*n + j] += a[i*n + k]*b[k*n + j];
            }
                                                       C_{i,j} = \sum A_{i,k} B_{k,j}
        }
    }
    return;
}
        matmult/matmult.cu
```

SciNet

How are we going to write the simple CUDA version?

- Hands-on:
 - Fill in the blanks:
 - kernel for cuda_sgemm
 - uncomment #define HAVECUDA1
 - calculate block size
 - Compile, run, compare performance and results
 - Play with different matrix sizes, block numbers

```
blocksize = make_uint3( /*?*/, /*?*/ , /*?*/);
gridsize = make_uint3( nblocks, nblocks, 1);
```

cuda_sgemm<<<gridsize, blocksize>>>(ad, bd, n, cd);


```
#define HAVECUDA1
__global__
void cuda_sgemm(const float *ad, const float *bd,
                            const int n, float *cd) {
    int i, j, k;
    i = threadIdx.y + blockIdx.y*blockDim.y;
    j = threadIdx.x + blockIdx.x*blockDim.x;
   if (i<n && j<n) {
        cd[i*n + j] = 0.;
        for (k=0;k<n;k++) {</pre>
            cd[i*n + j] += ad[i*n + k]*bd[k*n + j];
        }
    }
    return;
}
```

blocksize = make_uint3((n+nblocks-1)/nblocks, (n+nblocks-1)/nblocks, 1);

```
arc01-$ ./matmult
Matrix size = 160, Number of blocks = 10.
CPU time = 36.556 millisec, GFLOPS=0.224095
GPU time = 0.532 millisec, GFLOPS=15.398496, diff = 0.029795.
arc01-$ ./matmult --matsize=640 --nblocks=40
Matrix size = 640, Number of blocks = 40.
CPU time = 3008.66 millisec, GFLOPS=0.174260
GPU time = 13.635 millisec, GFLOPS=38.451632, diff = 1.897964.
```

- Good speedup (including memory copy), but results slightly different
- x86: floating pt arithmetic done in registers higher than nominal precision
- Let's fix this by doing math in both kernels with double precision
- cuda_sgemm_dblsum:

```
arc01-$ ./matmult
Matrix size = 160, Number of blocks = 10.
CPU time = 36.556 millisec, GFLOPS=0.224095
GPU time = 0.532 millisec, GFLOPS=15.398496, diff = 0.029795.
```

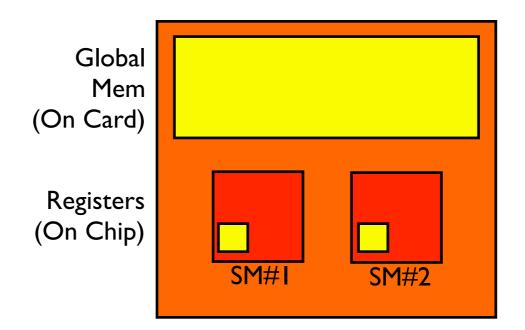
```
arc01-$ ./matmult --matsize=640 --nblocks=40
Matrix size = 640, Number of blocks = 40.
CPU time = 3008.66 millisec, GFLOPS=0.174260
GPU time = 13.635 millisec, GFLOPS=38.451632, diff = 1.897964.
```


2-Dimensional Blocks

- Hands-on:
 - Fill in the blanks:
 - kernel for cuda_sgemm_dblsum
 - uncomment #define HAVECUDA2
 - Compile, run, compare performance and results
 - Play with different matrix sizes, block numbers


```
#define HAVECUDA2
      __global__
      void cuda_sgemm_reg(const float *ad, const float *bd,
                                    const int n, float *cd) {
          int i, j, k;
          double sum=0.;
          i = threadIdx.y + blockIdx.y*blockDim.y;
          j = threadIdx.x + blockIdx.x*blockDim.x;
          if (i<n && j<n) {
              for (k=0;k<n;k++) {</pre>
                  sum += ad[i*n + k]*bd[k*n + j];
              3
              cd[i*n + j] =sum;
          }
          return;
      }
     blocksize = make_uint3( (n+nblocks-1)/nblocks, (n+nblocks-1)/nblocks, 1);
arc01-$ ./matmult --matsize=640 --nblocks=40
Matrix size = 640, Number of blocks = 40.
CPU time = 3053.9 millisec, GFLOPS=0.171678
GPU time = 13.635 millisec, GFLOPS=38.451632, diff = 1.897964.
GPU2 time = 10.968 millisec, GFLOPS=47.801605, diff = 0.000000.
```


Timings:


```
arc01-$ ./matmult --matsize=640 --nblocks=40
Matrix size = 640, Number of blocks = 40.
CPU time = 3053.9 millisec, GFLOPS=0.171678
GPU time = 13.635 millisec, GFLOPS=38.451632, diff = 1.897964.
GPU2 time = 10.968 millisec, GFLOPS=47.801605, diff = 0.000000.
```

Faster, even with double precision sums - why?

CUDA Memories

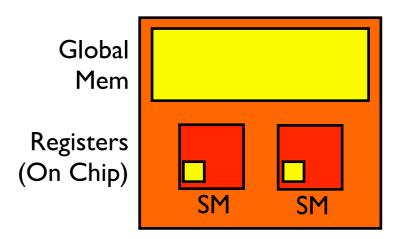
- All HPC, but especially GPU, all about planning memory access to be fast
- Global mem is off the GPU chip (but on the card); ~100 cycle latency
- Thread-local variables get put into registers on each SM - fast (~I cycle) but small

CUDA Memories


Memory	On Chip?	Cached?	R/W	Scope				
Register	On	No	R/W	Thread	Global			
Shared	On	No	R/W	Block	Mem (On Card)			
Global	Off	No	R/W	Kernel, Host	Registers			
Constant	Off	Yes	R	Kernel, Host	(On Chip)	SM#1	SM#2	
Texture	Off	Yes	R(W?)	Kernel, Host				
'Local'*	Off	No	R/W	Thread				

* if you run out of registers, will put 'local' mem in global.

GPGPU Performance Tip #3


- To make the most of the GPU, pull often-used data from large/slow memory to close/small/fast memory
- Tradeoff -- only so much of the fast memory.
- Question would saxpy benefit from loading data onto on-chip memory first?

Shared memory

- Registers are great if each thread needs its own
- Shared memory is seen across all threads within a block
- Declared with ____shared___
- Can define shared array sizes at compile time or at runtime.

Shared memory

}

- Silly example: repeatedly take sines of a 1d array.
- Let's put it in a blocksizesized shared array (much faster than repeatedly using global memory)
- (but could just use register)

```
const int fixedblocksize=16;
__global__
void sin_n_fixedshared(float *cd, const int nsines, const int n,
__shared__ float locdata[fixedblocksize];
```

```
int i=threadIdx.x + blockIdx.x*blockDim.x;
int tid=threadIdx.x;
int j;
if (i<n) {
    locdata[tid] = ad[i];
}
```

```
}
__syncthreads();
if (i<n) {
    for (j=0;j<nsines;j++) {
        locdata[tid] = sin(locdata[tid]);
    }
}
__syncthreads();
if (i<n)
    cd[i] = locdata[tid];</pre>
```

sharedex.cu

Shared memory

}

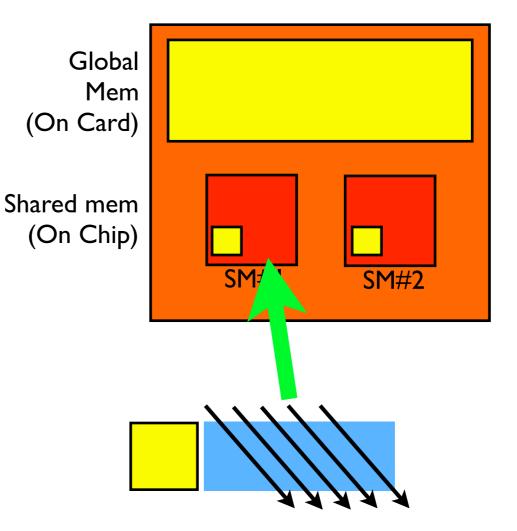
```
    Copy data from global
memory (each thread
responsible for index i)
into shared (responsible
for index idx)
```

• Do computation.

```
const int fixedblocksize=16;
__global__
void sin_n_fixedshared(float *cd, const int nsines, const int n,
__shared__ float locdata[fixedblocksize];
```

```
int i=threadIdx.x + blockIdx.x*blockDim.x;
int tid=threadIdx.x;
int j;
```

```
if (i<n) {
    locdata[tid] = ad[i];
}
___syncthreads();
if (i<n) {
    for (j=0;j<nsines;j++) {
        locdata[tid] = sin(locdata[tid]);
    }
}
___syncthreads();
if (i<n)
    cd[i] = locdata[tid];</pre>
```

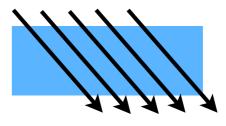

sharedex.cu

shared

arrays

- If declared in device code, must be sized at compile time.
- No sharedMalloc (all threads in block would have to agree)
- can use consts or #defines to size array, or other approach to maintain flexibility


```
const int fixedblocksize=16;
__global__
void sin_n_fixedshared(float *cd, const int nsines, const int n, float *ad) {
    __shared__ float locdata[fixedblocksize];
    int i=threadIdx.x + blockIdx.x*blockDim.x;
    int tid=threadIdx.x;
    int j;
    if (i<n) {
        locdata[tid] = ad[i];
    }
    __syncthreads();
    if (i<n) {
        for (j=0;j<nsines;j++) {</pre>
            locdata[tid] = sin(locdata[tid]);
        }
    }
    __syncthreads();
    if (i<n)
        cd[i] = locdata[tid];
}
```


sin_n_fixedshared<<<gridsize, blocksize>>>(cd, N, n, ad);

sharedex.cu

_____syncthreads()

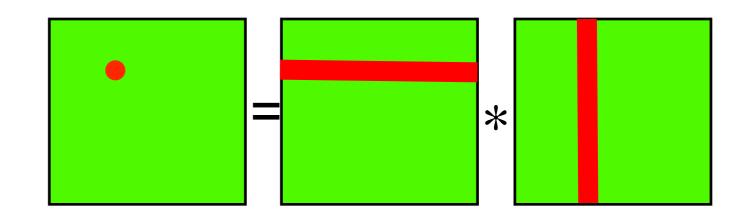
- Computation must wait until all threads have brought in their data
- Not all memory accesses may take same length of time
- <u>syncthreads()</u> waits until all threads in block are at same point.
- No equivalent between blocks
- Loop must similarly wait for computation

Atomic operations

- When accessing shared memory, must be sure multiple threads are not updating same value at same time
- Overwrite or worse!
- Race condition
- Some atomic operations.
 Serialize results; only if no other way

int atomicAdd(int* address, int val);

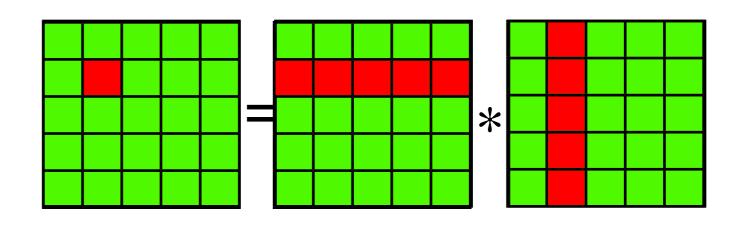

```
__global__
void sin_n_externshared(float *cd, const int nsines, const int n, float *ad) {
    extern __shared__ float shared_data[];
    float *locdata=shared_data;
    int i=threadIdx.x + blockIdx.x*blockDim.x;
    int tid=threadIdx.x;
    int j;
    if (i<n) {
        locdata[tid] = ad[i];
    }
    __syncthreads();
    if (i<n) {
        for (j=0;j<nsines;j++) {</pre>
                                                sharedex.cu
            locdata[tid] = sin(locdata[tid]);
        }
    }
    __syncthreads();
    if (i < n)
        cd[i] = locdata[tid];
}
sin_n_externshared<<<gridsize, blocksize, blocksize.x*sizeof(float)>>(cd, N, n, a
   Optional 3rd argument - size (in bytes)
   of shared memory to allocate per block
```


extern _____shared

```
__global__
void sin_n_externshared(float *cd, const int nsines, const int n, float *ad) {
    extern __shared__ float shared_data[]:
    float *locdata=shared_data;
    int i=threadIdx.x + blockIdx.x*blockDim.x;
    int tid=threadIdx.x;
    int j;
    if (i<n) {
        locdata[tid] = ad[i];
    }
    __syncthreads();
    if (i<n) {
        for (j=0;j<nsines;j++) {</pre>
            locdata[tid] = sin(locdata[tid]);
    3
    __syncthreads();
                                                Comes in as one array; can type,
    if (i<n)
        cd[i] = locdata[tid];
                                                    name it anything you like
}
```


Memory usage in SGEMM

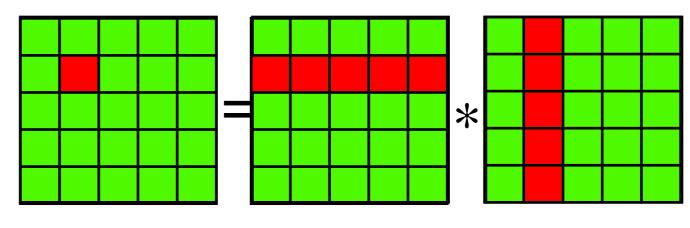
- How can we exploit this?
- N³ multiplies, adds
- 2N² data
- Regular access
- Opportunity for high memory re-use
- Need to find ways to bring data into shared memory (incurring global mem overhead once), use it several times



$$C_{i,j} = \sum_{k} A_{i,k} B_{k,j}$$

Memory usage in SGEMM

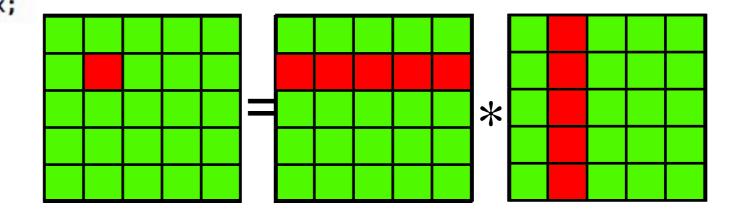
- One nice thing about matrix multiplication same as block multiplication, each subblock is a matrix mult
- Neighbouring threads within block all see nearby rows, columns
- Pull whole block in
- If b blocks in each dim, each data only pulled in 2b times, not 2n times



$$C_{bi,bj} = \sum_{k} A_{bi,bk} B_{bk,bj}$$

Hands on

- Change one of the matrix multiplier kernels to use shared memory
- use fixed blocksize if you like (easier)
- Assume blocksize divides matrix size (easier)
- Two "tiles" of A and B, and loop from k=0..n/ (blocksize) to do block matrix mult.


$$C_{bi,bj} = \sum_{k} A_{bi,bk} B_{bk,bj}$$

Memory usage in SGEMM

```
int i = threadIdx.x + blockIdx.x*blockDim.x;
int i = threadIdx.x + blockIdx.x*blockDim.x;
int locj = threadIdx.y;
int locj = threadIdx.y;
int locn = blockDim.x;
__shared___atile[TILESIZE][TILESIZE];
__shared___btile[TILESIZE][TILESIZE];
//...
```



```
double sum = 0;
```

```
for (each tile) {
    //..load in tiles
    for (k=0; k<locn; k++) {
        sum += atile[loci*locn + k]*
            btile[k*locn + locj];
    }
}
c[i*n + j] = sum;</pre>
```

$$C_{bi,bj} = \sum_{k} A_{bi,bk} B_{bk,bj}$$

Orig \$./matmult --matsize=160 --nblocks=10 Matrix size = 160, Number of blocks = 10. CPU time = 14.093 millisec. GPU time = 4.416 millisec. CUDA and CPU results differ by 0.162872

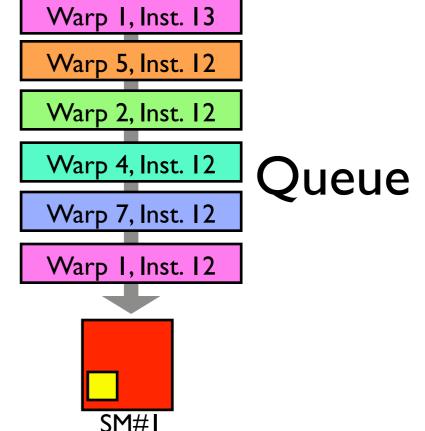
Double Prec. sum

```
$ ./matmult --matsize=160 --nblocks=10
Matrix size = 160, Number of blocks = 10.
CPU time = 14.047 millisec.
GPU time = 2.219 millisec.
CUDA and CPU results differ by 0.000000
```

Shared

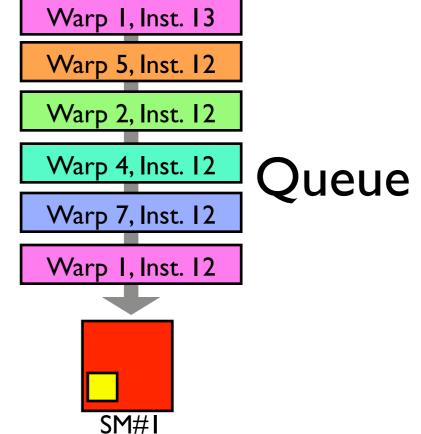
```
$ ./matmult --matsize=160 --nblocks=10
Matrix size = 160, Number of blocks = 10.
CPU time = 14.041 millisec.
GPU time = 0.998 millisec.
CUDA and CPU results differ by 0.000000
```


Making effective use of CUDA memories

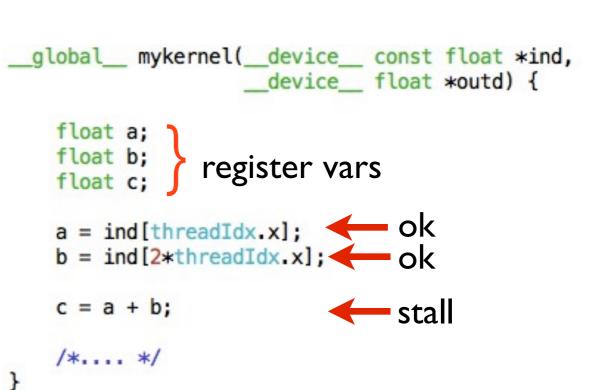

- Preload data wherever possible
- Global memory -
 - Coalesced access
 - Make use of 128B (or, maybe, 32B) at a time
- Profiler to see what's happening
- Shared memory
 - Bank conflicts

Memory	On Chip?	Cached?	R/W	Scope
Register	On	No	R/W	Thread
Shared	On	No	R/W	Block
Global	Off	No	R/W	Kernel, Host
Constant	Off	Yes	R	Kernel, Host
Texture	Off	Yes	R(W?)	Kernel, Host
'Local'*	Off	No	R/W	Thread

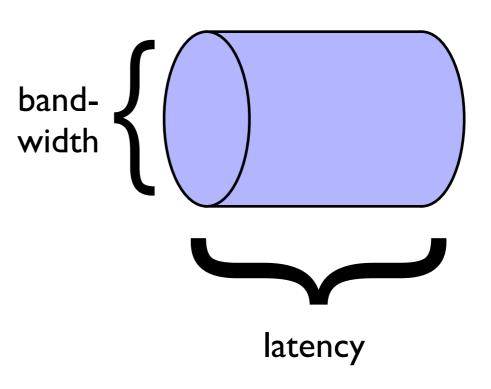
Stalling on Memory Access

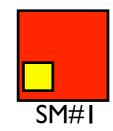

- Graphics card schedules by the warp on an SM
- All warps that are ready to execute get scheduled
- Not ready to execute stalled on memory access
- Nothing ready SM sits idle.

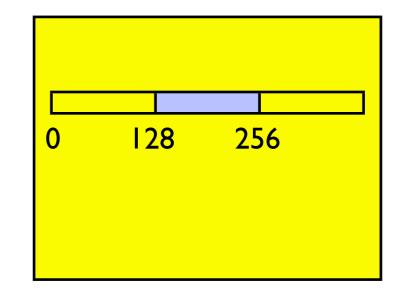
Stalling on Memory Access

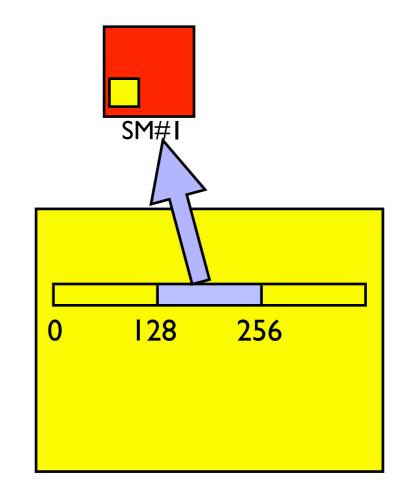

- Two ways to ensure no idle SM:
 - Lots of warps (=blocks*threads/32); hide latency with other threads.
 - Little or no stalling on memory access; hide latency within threads.
- Sometimes work to counter purposes! Must experiment to see what works best for your algorithm.

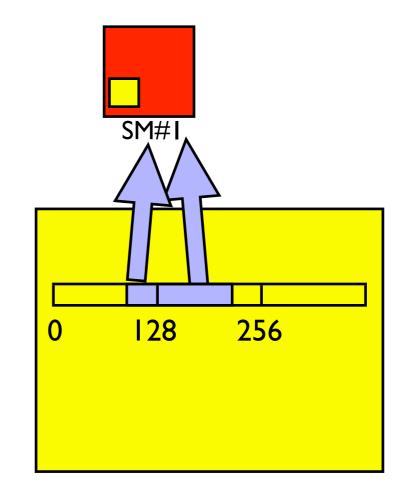
Stalling happens on use.


- Kernel does not stall on loading data
- Stalls when data not yet ready needs to be used
- Can "preload" data that you will need at beginning of kernel
- Hide latency by doing as much work as possible before need bulk of data.

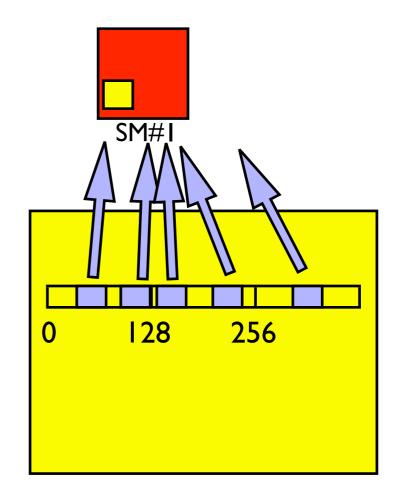

Keep memory accesses going


- Make maximum use of memory bandwidth hardware provides
- To fully use a pipe, must have bandwidth x latency memory accesses 'in flight'.
- Little's Law, Queueing theory - <u>http://en.wikipedia.org/</u> wiki/Little%27s_law

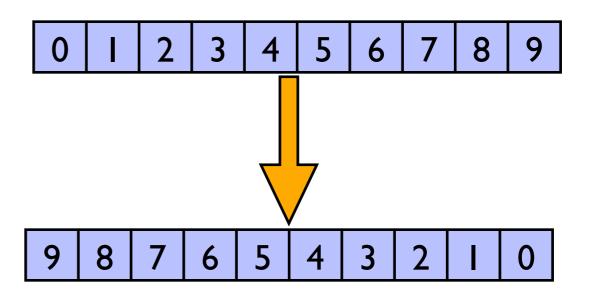

- Global memory is slow
- Get as much out of it per access as possible
- HW reads 128 byte lines from global memory (Fermi: can turn off caching and read 4x 32byte segments)
- Want to make the most of this



- Corresponds to 4B for each thread in a warp
- If each thread in warp reads consecutive float, aligned w/ boundary, can be coalesced into 1 read: high bandwidth
- Warp can continue after
 I global read cycle

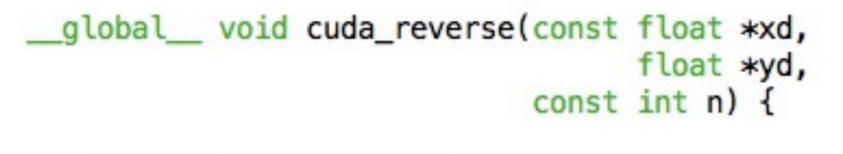


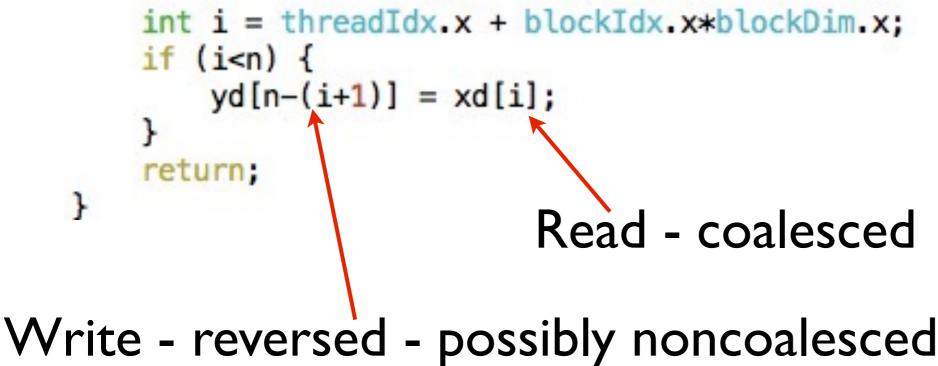
- If each thread in warp reads consecutive float, but offset, can be coalesced into 2 read: reduced bandwidth
- Warp can continue after
 2 global read cycle (and 128B of bandwidth wasted)


- Random access is a nightmare
- Can potentially take 32 times as long, wasting 97% of available global memory bandwidth

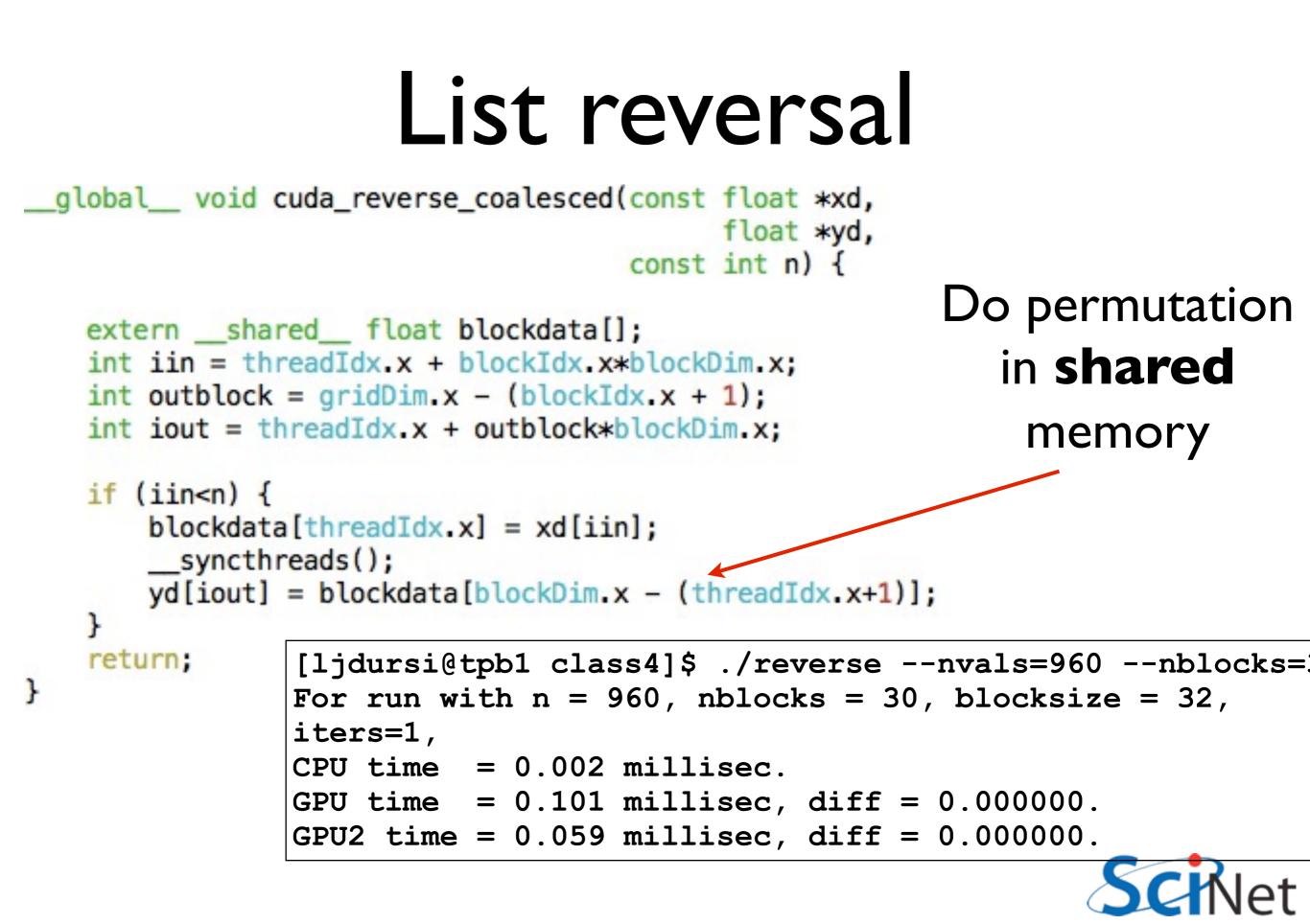
List reversal

- Imagine having to reverse a list
- (Sounds dumb, but matrix transpose, partial pivoting, various graph algorithms require data reordering)
- Obvious way to do this, particularly on older (pre cc 1.2) hardware, doesn't work well:

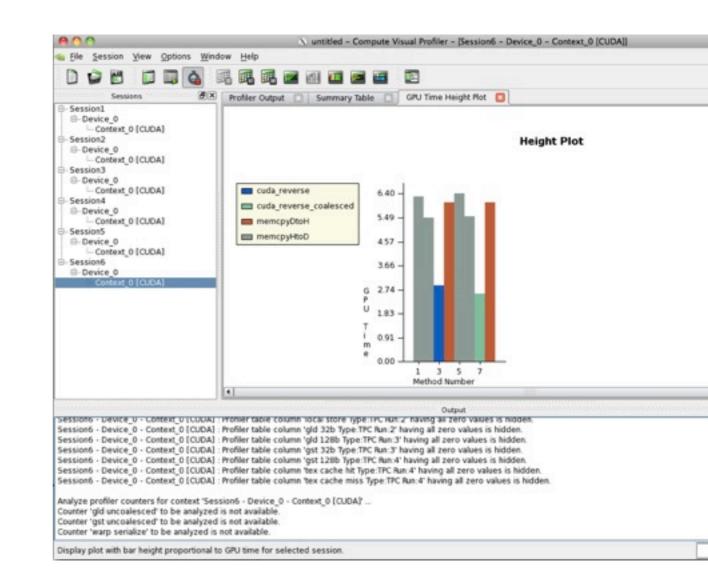

List reversal


```
__global__ void cuda_reverse(const float *xd,
float *yd,
const int n) {
```

```
int i = threadIdx.x + blockIdx.x*blockDim.x;
if (i<n) {
    yd[n-(i+1)] = xd[i];
}
return;
}
Read - coalesced</pre>
```



List reversal



Visual Profiler

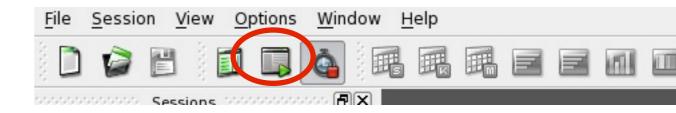
- Sometimes we'd like to see more detail than just integrated timings
- Cuda/OpenCL profiler comes with NVidia SDK
- run with computeprof
- From there, you can run an application and look at timings

Visual Profiler

 Click 'Profile application' to begin getting data,

<u>File Session View Options Window</u>	v <u>H</u> elp								
	B B B								
Sessions Sessions									
\varTheta 🔿 🔿 🔀 Welcome to Compute Vis									
Project————————————————————————————————————									
Recent Profile applica	tion								
Dpen Import CSV									
Create	Help								
Show this dialog on startup									
	Close								

Visual Profiler

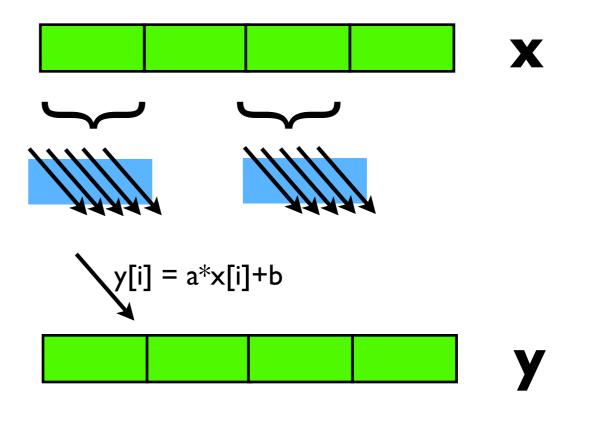

- Click 'Profile application' to begin getting data,
- Enter directory, executable, and arguments of program to profile,

00		X	Session settings
ession (Profiler Cou	unters	Other Options
Session	Name:	Sessio	onl
Launch:		/home/	/ljdursi/gpuclass/class4/reverse" 💌
Working	Directory:	/home	e/ljdursi/gpuclass/class4
Argumer	nts:	nvals	s=960nblocks=30
Max Exe	cution Time:	30	Se
🗶 Enabl	e profiling at	applica	ation launch
	API trace		
	separate wi	ndow	

Visual Profiler

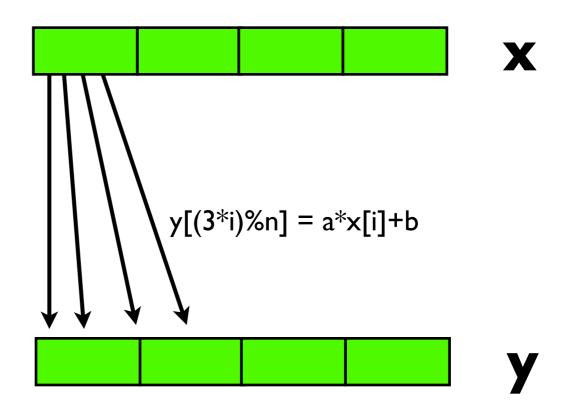
- Click 'Profile application' to begin getting data,
- Enter directory, executable, and arguments of program to profile,
- and then run the program. Program runs several times to get all counter information.

Visual Profiler


- Summary table shows lots of good stuff
- Here we see overall kernel time is about 12% faster, presumably because of roughly ~12% better global memory throughput.

Method	#Calls	GPU time 🛛 🗸	%GPU time	glob mem read throughpu	glob mem write	glob mem overall thro
1 cuda_reverse	1	2.88	6.95	1.33333	1.33333	2.66667
2 cuda_reverse_coalesced	1	2.56	6.18	1.5	1.5	3
3 memcpyHtoD	4	23.712	57.26			
4 memcpyDtoH	2	12.256	29.59			

Another Example: Multi-block y=ax+b


- Break input, output vectors into blocks
- Within each block, thread index specifies which item to work on
- Each thread does one update, puts results in y[i]

Another Example: Multi-block y=ax+b

- Break input, output vectors into blocks
- Within each block, thread index specifies which item to work on
- Each thread does one update, puts results in y[i]
- But now with a stride:
- Can coalesce reads, writes, but not both.

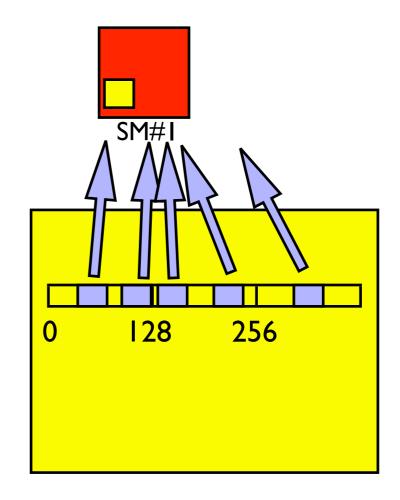
Another Example: Multi-block y=ax+b

• Break input, output

vectors into hlocks

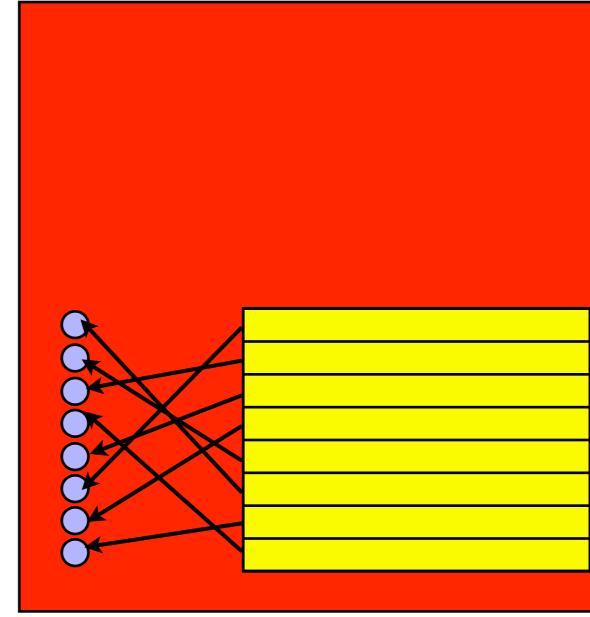
Profiler Output

Γ	Method	#Calls	GPU time 🛛 🗸	%GPU time	glob mem read throughput	glob mem write	glob mem overall	gld efficiency	gst efficiency	instr
1	cuda_saxpb_strided	1	4.608	7.61	18.6806	18.6806	37.3611	0.307692	0.307692	0.14
2	cuda_saxpb	1	3.008	4.97	4.78723	4.78723	9.57447	1	1	0.04
3	memcpyHtoD	4	37.088	61.32						
4	memcpyDtoH	2	15.776	26.08						


- Each thread does one update, puts results in y[i]
- But now with a stride:
- Can coalesce reads, writes, but not both.

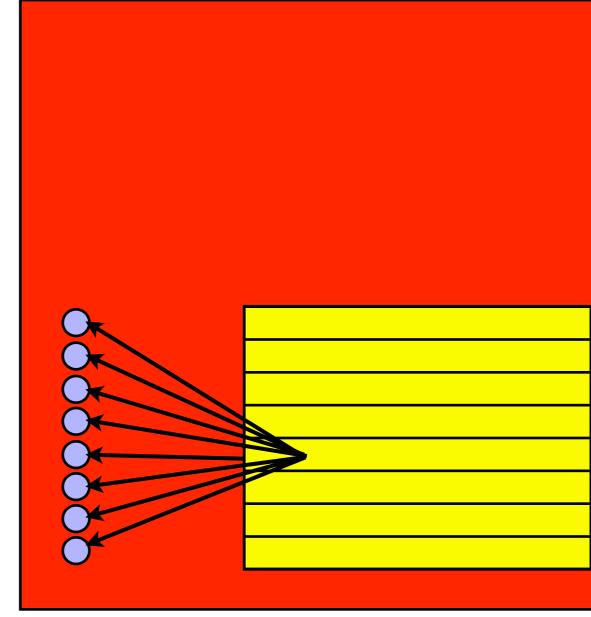
Coalesced Memory Access

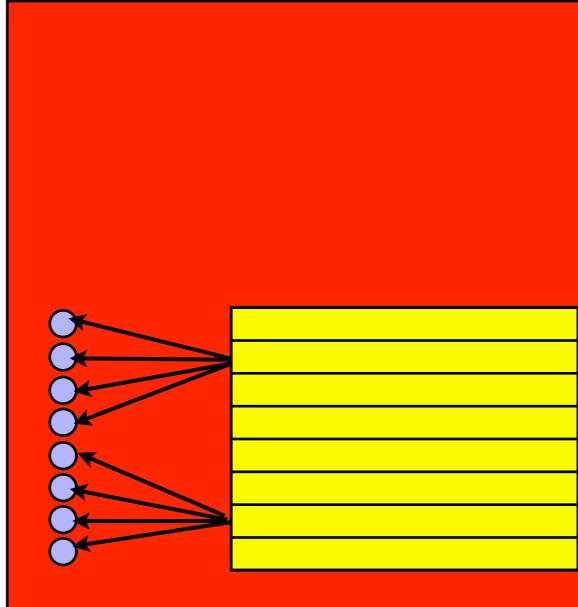
- Rewriting algorithm to ensure coalesced memory access probably most important optimization.
- Try to rearrange data before transfer to device to be in order needed;
- Reorder in shared mem if necessary.


 Each thread in warp accesses different bank: no problem.

Ŏ		

SM#1


 Each thread in warp accesses different bank: no problem.


- Each thread in warp accesses different bank: no problem.
- Each thread accesses same one value: 'broadcast', no problem.

SM#1

- Each thread in warp accesses different bank: no problem.
- Each thread accesses same one value: 'broadcast', no problem.
- Multiple threads need data from same bank: conflict. Accesses are serialized.

SM#I

 Imagine 8 banks, and working on an 8xN matrix

		•	•	•	•	•	•
0	I	2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55
56	57	58	59	60	61	62	63

- Imagine 8 banks, and working on an 8xN matrix
- Row operations are great

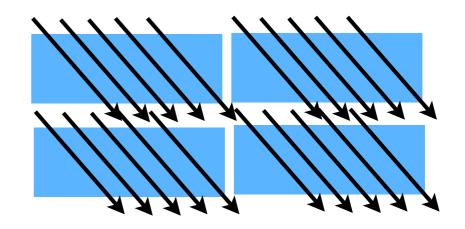
0		2	3	4	5	6	7
8	9	10		12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55
56	57	58	59	60	61	62	63

- Imagine 8 banks, and working on an 8xN matrix
- Row operations are great
- Column operations maximally bad

0	Ι	2	3	4	5	6	7
8	9	10		12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55
56	57	58	59	60	61	62	63

- Imagine 8 banks, and working on an 8xN matrix
- Row operations are great
- Column operations maximally bad
- Solutions
 - Row ops if possible

	-	•	•	•	•	•	•
0		2	3	4	5	6	7
8	9	10		12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55
56	57	58	59	60	61	62	63


- Imagine 8 banks, and working on an 8xN matrix
- Row operations are great
- Column operations maximally bad
- Solutions
 - Row ops if possible
 - Pad matrix with extra column to stride across banks

•	•	•	•	•	•	•	•
0		2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55
56	57	58	59	60	61	62	63

Warps in multi-d blocks

- Easy to see how warps are assigned in I-d block:
 - First 32 = warp0
 - Next 32 = warp1..
- How done in 2d block?
- C ordering: x first, then y
- blockDim.x = 32:
 - warp 0 : blockDim.y = 0
 - warp I: blockDim.y = I..


```
global____void cuda_sgemm_shared(const float *ad, const float *bd,
                                                                   Striding through matrix
                         const int n, float *cd)
                                                                    w/ slow moving index;
 extern ____shared___ float shared_data[];
                                                                   Massive bank conflicts if
  int loci = threadIdx.x;
                                                                     blocksize = warpsize
 int locj = threadIdx.y;
 int tilesize = blockDim.x;
 int bx = blockIdx.x;
  int by = blockIdx.y;
 int i = threadIdx.x + blockIdx.x*blockDim.x;
 int j = threadIdx.y + blockIdx.y*blockDim.y;
 int k;
 int blockk;
 float *atile = &(shared_data[0]);
  float *btile = &(shared_data[tilesize*tilesize]);
 double sum;
 if (i<n && j<n) {
     sum = 0.;
     for (blockk=0; blockk<gridDim.x; blockk++) {</pre>
         /* read in shared data */
          atile[loci*tilesize + locj] = ad[(tilesize*bx+loci)*n + (tilesize*blockk+locj)];
          btile[loci*tilesize + locj] = bd[(tilesize*blockk+loci)*n + (tilesize*by+locj)];
          _____syncthreads();
          for (k=0; k<tilesize; k++)</pre>
              sum += atile[loci*tilesize + k]*btile[k*tilesize + locj];
          ____syncthreads();
      }
      cd[i*n + j] = sum;
  }
                                                         matmult.cu
  return;
```


Image: Session View Options Wind Image: Wind	ow	<u>H</u> elp									
Sessions Sessions Profiler Output 🛛 Summary Table 🛛											
⊡… Session1 ⊡… Device 0	Γ	Method	#Calls	GPU time 🛛 🗸	%GPU time	warp serialize					
Context_0 [CUDA]	1	cuda_sgemm_shared	1	112289	63.09	58021046					
⊡… Session2 ⊡… Device 0	2	cuda_sgemm_shared_transpose	1	53739.4	30.19	0					
Context_0 [CUDA]	3	memcpyHtoD	4	6673.89	3.74						
i⊡ Session3 i⊡ Device_0	4	memcpyDtoH	2	5268.99	2.96						

blocksize = 32 marten\$./matmult --matsize=1536 --nblocks=48 = warpsize Matrix size = 1536, Number of blocks = 48. CPU time = 29466.5 millisec, GFLOPS=0.245966 GPU time = 522.71 millisec, GFLOPS=13.865733, diff = 0.000000. GPU2 time = 128.905 millisec, GFLOPS=56.225572, diff = 0.000000.

4x performance

Memory structure informs block sizes:

- By choosing block size in such a way to maximize global, shared memory bandwidth and preloading data into shared, can extract significant performance
- Get your code working first, then use these considerations to get them working fast

```
$ ./matmult --matsize=1536 --nblocks=24
Matrix size = 1536, Number of blocks = 24.
CPU time = 29467.4 millisec, GFLOPS=0.245958
GPU time = 8.203 millisec, GFLOPS=883.549593, diff = 0.000000.
GPU2 time = 8.122 millisec, GFLOPS=892.361156, diff = 0.000000.
```

 Use tuned code where available (this is still much slower than CUBLAS, MAGMA!)

CUBLAS

```
cublasInit();
CHK_CUBLAS( cublasAlloc(n*n, sizeof(float), (void**)&ad) );
cublasAlloc(n*n, sizeof(float), (void**)&bd);
cublasAlloc(n*n, sizeof(float), (void**)&cd);
tick(&gputimer);
CHK_CUBLAS( cublasSetMatrix(n, n, sizeof(float),
                            a, n, ad, n) );
CHK_CUBLAS( cublasSetMatrix(n, n, sizeof(float),
                            b, n, bd, n) );
cublasSgemm ('n', 'n', n, n, n, 1.0, ad, n, bd, n, 0.0, cd, n);
CHK_CUBLAS( cublasGetError() );
CHK_CUBLAS( cublasGetMatrix (n, n, sizeof(float),
                             cd, n, ccuda, n) ):
gputime = tock(&gputimer);
                                                     cublas.cu
CHK_CUBLAS( cublasFree( ad ) );
CHK_CUBLAS( cublasFree( bd ) );
CHK_CUBLAS( cublasFree( cd ) );
cublasShutdown();
```


CUFFT

```
/* GPU memory allocation */
cudaMalloc((void**)&devPtr, sizeof(cufftComplex)*NX*BATCH);
```

```
/* transfer to GPU memory */
cudaMemcpy(devPtr, data, sizeof(cufftComplex)*NX*BATCH, cudaMemcpyHostToDevice);
```

```
/* creates 1D FFT plan */
cufftPlan1d(&plan, NX, CUFFT_C2C, BATCH);
```

```
/* executes FFT processes */
cufftExecC2C(plan, devPtr, devPtr, CUFFT_FORWARD);
```

```
/* executes FFT processes (inverse transformation) */
cufftExecC2C(plan, devPtr, devPtr, CUFFT_INVERSE);
```

```
/* transfer results from GPU memory */
cudaMemcpy(data, devPtr, sizeof(cufftComplex)*NX*BATCH, cudaMemcpyDeviceToHost);
```

```
/* deletes CUFFT plan */
cufftDestroy(plan);
```

```
/* frees GPU memory */
cudaFree(devPtr);
```

cufft.cu

