
An Introduction to
GPGPU with CUDA

Aug 2011

Upcoming GPU events:
•GPGPU Research Workshop - TB

•Monthly cross-campus GPGPU meetings - TBA

•ECE Graduate GPGPU course - Spring 2012

•Astronomy/Physics GPGPU minicourse/modular course -
 Spring 2012

•https://support.scinet.utoronto.ca/courses

•https://support.scinet.utoronto.ca/mailman/listinfo/scinet-
gpgpu

https://support.scinet.utoronto.ca/mailman/listinfo/scinet-gpgpu
https://support.scinet.utoronto.ca/mailman/listinfo/scinet-gpgpu
https://support.scinet.utoronto.ca/mailman/listinfo/scinet-gpgpu
https://support.scinet.utoronto.ca/mailman/listinfo/scinet-gpgpu

Your graphics card is probably
faster than your computer.

• Graphics
performance has
grown by leaps and
bounds

• Driven by gamers

...but it’s not magic

• CPU - very
flexible, easy to
program

• GPU - almost all
transistors go to
cores and
mathematics.

...but it’s not magic
• All cores in a

“multiprocessor
unit” have same
control, cache

• Act in lock step
• Do same

computations on
different data

• “Data parallel”
• Very small cache

(48KB/SM)

If it works, it’s great..

• GPU: ~448
compute cores,
into ~14 streaming
multiprocessors
(SM)

• ~32 threads
operate at once

..and it often does.
• Much of scientific

computing is “data
parallel”

• Same operation on
each
• cell of grid
• particle in

domain
• piece of input

What we’ll be covering

• Plan - have you leave being able to start
developing simple (single GPU) codes in
CUDA

• Know where to look for libraries,
development tools

• Know what to think about for more advanced
applications

Why CUDA?
• GPGPU used to be pretty

bad; put array in as ‘textures’,
have each point in your grid
be a vertex that maps the
texture...

• Much better now: CUDA
(NVidia), OpenCL (NVidia,
Apple,AMD)...

NVidia SC2007
tutorial slides

Open standard

•Driven by Apple (comes
standard in Snow Leopard,
Lion)

•NVIDIA, AMD, Intel, IBM (Cell)

•Exposes a consistent, GPU-like
interface to any multicore
system

Heterogeneous,
Open

• Can work with various
hardware

• IBM Cell, AMD processors, ATI
cards, NVidia cards, Intel
processors

• Multi- and Many- core

• SC09 demo: parallel CFD
running on all of the above at
once in same program, using
MPI to tie them together

CUDA

OpenCL

CUDA vs
OpenCL kernel

code
• Since maps to similar

hardware, basic concepts the
same

• Some terminology changes;
some better, some worse.

• Kernels not really that
different.

CUDA OpenCL

__global__ __kernel

__device__ (function)

__constant__ __constant

__device__ (mem) __global

__shared__ __local

Local Mem Private Mem

__syncthreads() barrier()

CUDA

OpenCL

Why CUDA?
• Doesn’t really make a

difference.

• Kernels (where all the hard
work goes) are almost
identical.

• Boilerplate, which is
straightforward (copy memory,
launch kernel) is different but
not all that important

• CUDA makes easy things easy,
so we’ll use that.

• Both are about the same for
more complicated situations
(multi-GPU, etc)

Let’s get straight to it

• From login node, ssh to arc01 (devel node of
accelerator research cluster)

•cp -r /scinet/course/intro-gpu/ . ;
cd intro-gpu

•source setup
•cd saxpy
•make clean all
•./saxpy --help
•./saxpy

saxpy.cu

Question: How would we OpenMP this? MPI this?

(run several times
for timing)

~z = ↵~x + ~y

saxpy.cu

Very fine-grained parallelism.
Each core does one (or few) tasks.

Type “make”, and “./saxpy”

~z = ↵~x + ~y

saxpy.cu

For loop over elements is implied by the call;
n in the <<<>>>’s invokes n of these kernels in parallel.

~z = ↵~x + ~y

saxpy.cu

GPU Memory is separate from system memory (on card).
Have to allocate/free it, and copy data GPU↔CPU

saxpy.cu

Notes:

• CHK_CUDA -- test for error cord. More
later.

• Allocating, copying to GPU memory: SLOW
compared to computing capability of GPU.
Avoid wherever possible.

• What happens if you try
./saxpy --nvals=200 ? ./saxpy --nvals=2048 ?

Threads, Blocks, Grids

• CUDA threads are
organized into blocks

• Threads operate in
SIMD(ish) manner -- each
executing same
instructions in lockstep.

• Only difference are
thread ids

• Can have a grid of
multiple blocks

CUDA Thread

Block of
CUDA Threads

Grid of
CUDA Blocks

CUDA - H/W mapping
• Blocks are assigned to a

particular SM

• Executed there one
‘warp’ at a time
(typically 32 threads)

• Multiple blocks may be on
SM concurrently

• Good; latency hiding

• Bad - SM resources
must be divided
between blocks

• If only use 1 Block - 1 SM

GPU

SM#1 SM#2

Multi-block z=ax+y

• Break input, output
vectors into blocks

• Within each block, thread
index specifies which
item to work on

• Each thread does one
update, puts results in z[i]

y}
z

z[i] = a*x[i]+y[i]

}
x

Multi-block z=ax+y

y}
z

z[i] = a*x[i]+y[i]

}
x

Hands on -- do multi-block saxpy
Enable use of multiple blocks (== multiple SMs!)

Multi-block z=ax+y

y}
z

z[i] = a*x[i]+y[i]

}
x

More blocks →more
SMs → more FLOPs

• We can use 1024 threads/
block:

GPU

SM#1 SM#2

Multiple calcs, so timing not
dominated by memory copy

Multi-block z=ax+y

y}
z

z[i] = a*x[i]+y[i]

}

Index within block
(0..blocksize-1)

x

Multi-block z=ax+y

y}
z

z[i] = a*x[i]+y[i]

}
x

Index of block
(0..nblocks-1)

Size of block
(blocksize)

Multi-block z=ax+y

y}
z

}
x

i = 10 + 2*100 = 210
zd[210] = a*xd[210] + yd[210]

Block 2

Thread 10

Blocksize
= 100

Multi-block z=ax+y

• Now the “if” makes sense:

• Number of work items may
not be evenly divided by
block size

• Make sure we don’t “go off
the end”

• What happens in the if
statement?

• Thread divergence

Multi-block z=ax+y
• All threads in a thread

block go through kernel in
same order.

• Threads in a warp go
through in lock step.

• All threads go through if
clauses (and else), even if
they don’t need results

• (Don’t get stored)

• Can be very wasteful!

• Highly “branchy” code not
very good for GPUs

GPGPU Performance
Tip #1

• Avoid lots of branches in
GPGPU code.

DDT

• Let’s see what’s going on
here in more detail with a
GPU debugger

• Get a node;
• qsub -I -X -l
nodes=1:ppn=8:gpus=2,wa
lltime=1:00:00

• cd intro-gpu, source setup

• Type ‘ddt’ to launch the
Allinea DDT debugger:

DDT

• Let’s see what’s going on
here in more detail with a
GPU debugger

• Type ‘ddt’ to launch the
Allinea DDT debugger:

DDT

• Let’s see what’s going on
here in more detail with a
GPU debugger

• Type ‘ddt’ to launch the
Allinea DDT debugger:

DDT

• Let’s see what’s going on
here in more detail with a
GPU debugger

• Type ‘ddt’ to launch the
Allinea DDT debugger:

DDT

• Let’s see what’s going on
here in more detail with a
GPU debugger

• Type ‘ddt’ to launch the
Allinea DDT debugger:

DDT

DDT

DDT

• Can play with first
numbers of “block” and
“thread” to see different
block, thread

• value shown of i should
change

• Does i give what you’d
expect?

cuda-gdb
arc01-$ cuda-gdb ./block-saxpy
NVIDIA (R) CUDA Debugger
3.2 release
[...]
(cuda-gdb) break cuda_saxpy
(cuda-gdb) run --nvals=8192 --nblocks=8
Starting program: [...]
[Launch of CUDA Kernel 0 (cuda_saxpy) on Device 0]
[Switching to CUDA Kernel 0 (<<<(0,0),(0,0,0)>>>)]

Breakpoint 1, cuda_saxpy<<<(1,1),(1000,1,1)>>> (zd=0x200102000,
a=5,
 xd=0x200100000, yd=0x200101000, n=1000) at block-saxpy.cu:
13
13! ! int i = threadIdx.x + blockIdx.x*blockDim.x;
(cuda-gdb)

cuda-gdb
(cuda-gdb) step
14! ! if (i<n) {
(cuda-gdb) print i
$1 = 0
(cuda-gdb) cuda thread 8
[Switching to CUDA Kernel 0 (device 0, sm 0, warp 0, lane 8,
grid 1, block (0,0), thread (8,0,0))]
14! ! if (i<n) {
(cuda-gdb) print i
$2 = 8
(cuda-gdb) cuda block 2
[Switching to CUDA Kernel 0 (device 0, sm 3, warp 0, lane 8,
grid 1, block (2,0), thread (8,0,0))]
13! ! int i = threadIdx.x + blockIdx.x*blockDim.x;
(cuda-gdb) step
14! ! if (i<n) {
(cuda-gdb) print i
$4 = 2056
(cuda-gdb) quit

nvcc -G -g

• Note; the -g option to the
compiler (nvcc) kept
debugging symbols in the
host code; the -G option
kept the symbols in the
kernel code

• Allows use of debugger,
better diagnostics.

• But disables many
optimizations...

How many threads/
block?

• Should be integral
multiple of warp (32)

• No more than max
allowed by scheduling
hardware

• Can get last number from
hardware specs

• But what if will be needed
on several machines?

• API can return it:

cudaGetDeviceProperty

querydevs.cu

cudaGetDeviceProperty

cudaGetDeviceProperty

All CUDA calls return cudaSuccess on successful completion.

GPU hardware does not try very hard to catch errors/notify
you; testing return codes important!

Common to see simple automation like this wrapping all
CUDA calls; bare minimum for sensible operation.

Test early, fail often.

Why the .xs?
• For convenience, CUDA

allows thread, block indices
to be multidimensional

• Thread blocks can be 3
dimensional (512,512,64)

• Grids of blocks can be 2
dimensional (64k, 64k, 1)

• These variables are of type
dim3 or uint3

• CUDA has int1, int2, int3,
int4, float1, float2, float3,
float4, etc.

Why the .xs?

• threadIdx.{x,y,z} - thread index

• blockDim.{x,y,z} - size of block
(# of threads in each dim)

• blockIdx.{x,y,z} - block index

• gridDim.{x,y,z} - size of grid
(# of blocks in each dim)

• warpsize - size of warp (int)

Why the __global__?
• __global__ - device code

that can be seen (invoked) from
host.

• __host__ - default. Not
usually interesting.

• __device__ - device code.
Can be called only from other
device code.

• __host__ __device__ -
compiled for both host and
device.

Compilation process
.cu file

nvcc
host
obj

code

PTX code device
 code

Intermediate,
device-independent

2nd
compilation

stage
Executable

__host__

__global__

__device__

Restrictions
• __global__ functions can’t

recurse, neither can
__device__ on non-Fermis

• No function pointers to
__device__ functions on
non-fermis, can’t take address
of __device__ function

• Can’t have static variables in
__global__, __device__
functions

• Can’t use varargs with device
code

Performance

• Why such poor performance? x5550 (CPU) ~ 10
GFLOPS. M2070 (GPU) ~ 1000 GFLOPS

• Arithmetic intensity. Each operation involves taking 2 values
from memory, doing very simple operation on them (*,+)
and then storing a value into memory.

• Memory costs begin to dominate

arc01-$./block-saxpy --nvals=81920 --nblocks=160
Using: n=81920, nblocks=160, niters=5, a=5.000000
CPU time = 2.335 millisec, GFLOPS = 0.07017
GPU time = 0.764 millisec, GFLOPS = 0.2145
CUDA and CPU results differ by 0.000000

Memory Bandwidth

• CPU: 3x(81920) floats read/written in 2.335 ms

• 401 MB/s

• Peak ~6GB/sec

• Max possible flops in this mode: ~1GFLOP (as vs 10)

• GPU:

• 1227 MB/s

• Peak ~ 150GB/s

• Max possible flops in this mode: ~25GFLOP (as vs 1000)

arc01-$./block-saxpy --nvals=81920 --nblocks=160
Using: n=81920, nblocks=160, niters=5, a=5.000000
CPU time = 2.335 millisec, GFLOPS = 0.07017
GPU time = 0.764 millisec, GFLOPS = 0.2145
CUDA and CPU results differ by 0.000000

Memory Bandwidth

• For all modern processors,
memory access is much
more expensive than
operating on data once it’s
local.

• Key to high performance is
pulling data from memory
into cache, registers, etc and
operating on it a lot once it
is local.

arc01-$./block-saxpy --nvals=81920 --nblocks=160
Using: n=81920, nblocks=160, niters=5, a=5.000000
CPU time = 2.335 millisec, GFLOPS = 0.07017
GPU time = 0.764 millisec, GFLOPS = 0.2145
CUDA and CPU results differ by 0.000000

Memory Bandwidth

• For GPU, Memory
bandwidth is even more
important

• Data has to get from host
memory to on-card

• PCIe 3.0 16x - 16GB/s

• 1/10 of on-card bandwidth!
http://www.microway.com/tesla/1UGPUchassis.html

http://www.microway.com/tesla/1UGPUchassis.html
http://www.microway.com/tesla/1UGPUchassis.html

Memory Bandwidth

Performance
numbers would be

much worse if
cudaMemcpy’s

were in this loop!!

GPGPU Performance
Tip #2

• Wherever possible, avoid
copying data back and
forth between GPU and
CPU.

2-Dimensional Blocks

• blockDim.x, threadIdx.x...

• Use of 2/3d thread
blocks, or 2d grids, never
strictly necessary...

• But can make code
clearer, shorter.

• Clearer code = fewer
bugs = good.

• Matrix multiplication

= *

Ci,j =
X

k

Ai,kBk,j

2-Dimensional Blocks

= *

Ci,j =
X

k

Ai,kBk,j

matmult/matmult.cu

2-Dimensional Blocks

= *

Ci,j =
X

k

Ai,kBk,j

How are we going to write the simple CUDA
version?

2-Dimensional Blocks
• Hands-on:

• Fill in the blanks:

• kernel for
cuda_sgemm

• uncomment
#define HAVECUDA1

• calculate block size

• Compile, run, compare
performance and results

• Play with different matrix
sizes, block numbers

arc01-$./matmult
Matrix size = 160, Number of blocks = 10.
CPU time = 36.556 millisec, GFLOPS=0.224095
GPU time = 0.532 millisec, GFLOPS=15.398496, diff = 0.029795.

arc01-$./matmult --matsize=640 --nblocks=40
Matrix size = 640, Number of blocks = 40.
CPU time = 3008.66 millisec, GFLOPS=0.174260
GPU time = 13.635 millisec, GFLOPS=38.451632, diff = 1.897964.

2-Dimensional Blocks
• Good speedup (including

memory copy), but
results slightly different

• x86: floating pt arithmetic
done in registers higher
than nominal precision

• Let’s fix this by doing
math in both kernels with
double precision

• cuda_sgemm_dblsum:

arc01-$./matmult
Matrix size = 160, Number of blocks = 10.
CPU time = 36.556 millisec, GFLOPS=0.224095
GPU time = 0.532 millisec, GFLOPS=15.398496, diff = 0.029795.

arc01-$./matmult --matsize=640 --nblocks=40
Matrix size = 640, Number of blocks = 40.
CPU time = 3008.66 millisec, GFLOPS=0.174260
GPU time = 13.635 millisec, GFLOPS=38.451632, diff = 1.897964.

2-Dimensional Blocks
• Hands-on:

• Fill in the blanks:

• kernel for
cuda_sgemm_dblsum

• uncomment
#define HAVECUDA2

• Compile, run, compare
performance and results

• Play with different matrix
sizes, block numbers

arc01-$./matmult --matsize=640 --nblocks=40
Matrix size = 640, Number of blocks = 40.
CPU time = 3053.9 millisec, GFLOPS=0.171678
GPU time = 13.635 millisec, GFLOPS=38.451632, diff = 1.897964.
GPU2 time = 10.968 millisec, GFLOPS=47.801605, diff = 0.000000.

Timings:

Faster, even with double precision sums - why?

arc01-$./matmult --matsize=640 --nblocks=40
Matrix size = 640, Number of blocks = 40.
CPU time = 3053.9 millisec, GFLOPS=0.171678
GPU time = 13.635 millisec, GFLOPS=38.451632, diff = 1.897964.
GPU2 time = 10.968 millisec, GFLOPS=47.801605, diff = 0.000000.

CUDA Memories

• All HPC, but especially
GPU, all about planning
memory access to be fast

• Global mem is off the
GPU chip (but on the
card); ~100 cycle latency

• Thread-local variables get
put into registers on each
SM - fast (~1 cycle) but
small

SM#1 SM#2

Global
Mem

(On Card)

Registers
(On Chip)

CUDA Memories

SM#1 SM#2

Global
Mem

(On Card)

Registers
(On Chip)

Memory
On

Chip? Cached? R/W Scope

Register On No R/W Thread

Shared On No R/W Block

Global Off No R/W Kernel, Host

Constant Off Yes R Kernel, Host

Texture Off Yes R(W?) Kernel, Host

‘Local’* Off No R/W Thread

* if you run out of registers, will put ‘local’ mem in global.

GPGPU Performance
Tip #3

• To make the most of the
GPU, pull often-used data
from large/slow memory
to close/small/fast
memory

• Tradeoff -- only so much
of the fast memory.

• Question - would saxpy
benefit from loading data
onto on-chip memory
first?

SM#1 SM#2

Global
Mem

(On Card)

Registers
(On Chip)

Shared memory

• Registers are great if each
thread needs its own

• Shared memory is seen
across all threads within a
block

• Declared with
__shared__

• Can define shared array
sizes at compile time or
at runtime.

SM SM

Global
Mem

Registers
(On Chip)

sharedex.cu

Shared memory

• Silly example: repeatedly
take sines of a 1d array.

• Let’s put it in a blocksize-
sized shared array (much
faster than repeatedly
using global memory)

• (but could just use
register)

sharedex.cu

Shared memory

• Copy data from global
memory (each thread
responsible for index i)
into shared (responsible
for index idx)

• Do computation.

__shared__ arrays

• If declared in device
code, must be sized at
compile time.

• No sharedMalloc (all
threads in block would
have to agree)

• can use consts or
#defines to size array, or
other approach to
maintain flexibility

SM#1 SM#2

Global
Mem

(On Card)

Shared mem
(On Chip)

sharedex.cu

__syncthreads()
• Computation must wait until

all threads have brought in
their data

• Not all memory accesses
may take same length of time

• __syncthreads() - waits until
all threads in block are at
same point.

• No equivalent between
blocks

• Loop must similarly wait for
computation

Atomic operations

• When accessing shared
memory, must be sure
multiple threads are not
updating same value at
same time

• Overwrite or worse!

• Race condition

• Some atomic operations.
Serialize results; only if no
other way

int atomicAdd(int* address, int val);

sharedex.cu

Optional 3rd argument - size (in bytes)
of shared memory to allocate per block

extern __shared__

Comes in as one array; can type,
name it anything you like

Memory usage in
SGEMM

• How can we exploit this?

• N3 multiplies, adds

• 2N2 data

• Regular access

• Opportunity for high
memory re-use

• Need to find ways to
bring data into shared
memory (incurring global
mem overhead once), use
it several times

= *

Ci,j =
X

k

Ai,kBk,j

Memory usage in
SGEMM

• One nice thing about
matrix multiplication -
same as block
multiplication, each sub-
block is a matrix mult

• Neighbouring threads
within block all see
nearby rows, columns

• Pull whole block in

• If b blocks in each dim,
each data only pulled in
2b times, not 2n times

= *

Cbi,bj =
X

k

Abi,bkBbk,bj

Hands on

• Change one of the matrix
multiplier kernels to use
shared memory

• use fixed blocksize if you
like (easier)

• Assume blocksize divides
matrix size (easier)

• Two “tiles” of A and B,
and loop from k=0..n/
(blocksize) to do block
matrix mult.

= *

Cbi,bj =
X

k

Abi,bkBbk,bj

Memory usage in
SGEMM

= *

Cbi,bj =
X

k

Abi,bkBbk,bj

Timings:
$./matmult --matsize=160 --nblocks=10
Matrix size = 160, Number of blocks = 10.
CPU time = 14.093 millisec.
GPU time = 4.416 millisec.
CUDA and CPU results differ by 0.162872

$./matmult --matsize=160 --nblocks=10
Matrix size = 160, Number of blocks = 10.
CPU time = 14.047 millisec.
GPU time = 2.219 millisec.
CUDA and CPU results differ by 0.000000

$./matmult --matsize=160 --nblocks=10
Matrix size = 160, Number of blocks = 10.
CPU time = 14.041 millisec.
GPU time = 0.998 millisec.
CUDA and CPU results differ by 0.000000

Orig

Double Prec. sum

Shared

Making effective use of
CUDA memories

• Preload data wherever
possible

• Global memory -

• Coalesced access

• Make use of 128B (or,
maybe, 32B) at a time

• Profiler to see what’s
happening

• Shared memory

• Bank conflicts

Memory
On

Chip? Cached? R/W Scope

Register On No R/W Thread

Shared On No R/W Block

Global Off No R/W Kernel, Host

Constant Off Yes R Kernel, Host

Texture Off Yes R(W?) Kernel, Host

‘Local’* Off No R/W Thread

Stalling on Memory
Access

SM#1

Warp 1, Inst. 12

Warp 5, Inst. 12

Warp 7, Inst. 12

Warp 4, Inst. 12

Warp 2, Inst. 12

Warp 1, Inst. 13

Queue
• Graphics card schedules by the

warp on an SM

• All warps that are ready to
execute get scheduled

• Not ready to execute - stalled
on memory access

• Nothing ready - SM sits idle.

Stalling on Memory
Access

SM#1

Warp 1, Inst. 12

Warp 5, Inst. 12

Warp 7, Inst. 12

Warp 4, Inst. 12

Warp 2, Inst. 12

Warp 1, Inst. 13

Queue

• Two ways to ensure no idle SM:

• Lots of warps
(=blocks*threads/32); hide
latency with other threads.

• Little or no stalling on
memory access; hide latency
within threads.

• Sometimes work to counter
purposes! Must experiment to
see what works best for your
algorithm.

Stalling happens on use.

• Kernel does not stall on
loading data

• Stalls when data not yet
ready needs to be used

• Can “preload” data that
you will need at beginning
of kernel

• Hide latency by doing as
much work as possible
before need bulk of data.

} register vars

ok
ok

stall

Keep memory accesses
going

• Make maximum use of
memory bandwidth
hardware provides

• To fully use a pipe, must
have bandwidth x latency
memory accesses ‘in
flight’.

• Little’s Law, Queueing
theory - http://en.wikipedia.org/
wiki/Little%27s_law

{

{
latency

band-
width

http://en.wikipedia.org/wiki/Little%27s_law
http://en.wikipedia.org/wiki/Little%27s_law
http://en.wikipedia.org/wiki/Little%27s_law
http://en.wikipedia.org/wiki/Little%27s_law

Coalesced Memory
Access

• Global memory is slow

• Get as much out of it per
access as possible

• HW reads 128 byte lines
from global memory
(Fermi: can turn off
caching and read 4x
32byte segments)

• Want to make the most
of this

SM#1

0 128 256

Coalesced Memory
Access

• Corresponds to 4B for
each thread in a warp

• If each thread in warp
reads consecutive float,
aligned w/ boundary, can
be coalesced into 1 read:
high bandwidth

• Warp can continue after
1 global read cycle

SM#1

0 128 256

Coalesced Memory
Access

• If each thread in warp
reads consecutive float,
but offset, can be
coalesced into 2 read:
reduced bandwidth

• Warp can continue after
2 global read cycle (and
128B of bandwidth
wasted)

SM#1

0 128 256

Coalesced Memory
Access

• Random access is a
nightmare

• Can potentially take 32
times as long, wasting
97% of available global
memory bandwidth

SM#1

0 128 256

List reversal

• Imagine having to reverse
a list

• (Sounds dumb, but matrix
transpose, partial
pivoting, various graph
algorithms require data
reordering)

• Obvious way to do this,
particularly on older (pre
cc 1.2) hardware, doesn’t
work well:

0 1 2 3 4 5 6 7 8 9

9 8 7 6 5 4 3 2 1 0

List reversal

Read - coalesced

List reversal

Read - coalesced

Write - reversed - possibly noncoalesced

List reversal

Do permutation
in shared
memory

[ljdursi@tpb1 class4]$./reverse --nvals=960 --nblocks=30
For run with n = 960, nblocks = 30, blocksize = 32,
iters=1,
CPU time = 0.002 millisec.
GPU time = 0.101 millisec, diff = 0.000000.
GPU2 time = 0.059 millisec, diff = 0.000000.

Visual Profiler

• Sometimes we’d like to
see more detail than just
integrated timings

• Cuda/OpenCL profiler
comes with NVidia SDK

• run with computeprof

• From there, you can run
an application and look at
timings

Visual Profiler

• Click ‘Profile application’
to begin getting data,

Visual Profiler

• Click ‘Profile application’
to begin getting data,

• Enter directory,
executable, and
arguments of program to
profile,

Visual Profiler

• Click ‘Profile application’
to begin getting data,

• Enter directory,
executable, and
arguments of program to
profile,

• and then run the
program. Program runs
several times to get all
counter information.

Visual Profiler

• Summary table shows lots of good stuff

• Here we see overall kernel time is about 12% faster,
presumably because of roughly ~12% better global
memory throughput.

Another Example:
Multi-block y=ax+b

• Break input, output
vectors into blocks

• Within each block, thread
index specifies which
item to work on

• Each thread does one
update, puts results in y[i]

x}
y

y[i] = a*x[i]+b

}

Another Example:
Multi-block y=ax+b

• Break input, output
vectors into blocks

• Within each block, thread
index specifies which
item to work on

• Each thread does one
update, puts results in y[i]

• But now with a stride:

• Can coalesce reads,
writes, but not both.

x

y

y[(3*i)%n] = a*x[i]+b

Another Example:
Multi-block y=ax+b

• Break input, output
vectors into blocks

• Within each block, thread
index specifies which
item to work on

• Each thread does one
update, puts results in y[i]

• But now with a stride:

• Can coalesce reads,
writes, but not both.

x

y

y[(3*i)%n] = a*x[i]+b

Coalesced Memory
Access

• Rewriting algorithm to
ensure coalesced
memory access probably
most important
optimization.

• Try to rearrange data
before transfer to device
to be in order needed;

• Reorder in shared mem if
necessary.

SM#1

0 128 256

Shared Memory Bank
Conflicts

• Each thread in warp
accesses different bank:
no problem.

SM#1

Shared Memory Bank
Conflicts

• Each thread in warp
accesses different bank:
no problem.

SM#1

Shared Memory Bank
Conflicts

• Each thread in warp
accesses different bank:
no problem.

• Each thread accesses
same one value:
‘broadcast’, no problem.

SM#1

Shared Memory Bank
Conflicts

• Each thread in warp
accesses different bank:
no problem.

• Each thread accesses
same one value:
‘broadcast’, no problem.

• Multiple threads need
data from same bank:
conflict. Accesses are
serialized.

SM#1

Shared Memory Bank
Conflicts

• Imagine 8 banks, and
working on an 8xN
matrix

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

Ba
nk

 0
Ba

nk
 1

Ba
nk

 2
Ba

nk
 3

Ba
nk

 4
Ba

nk
 5

Ba
nk

 6
Ba

nk
 7

Shared Memory Bank
Conflicts

• Imagine 8 banks, and
working on an 8xN
matrix

• Row operations are great

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

Ba
nk

 0
Ba

nk
 1

Ba
nk

 2
Ba

nk
 3

Ba
nk

 4
Ba

nk
 5

Ba
nk

 6
Ba

nk
 7

Shared Memory Bank
Conflicts

• Imagine 8 banks, and
working on an 8xN
matrix

• Row operations are great

• Column operations
maximally bad

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

Ba
nk

 0
Ba

nk
 1

Ba
nk

 2
Ba

nk
 3

Ba
nk

 4
Ba

nk
 5

Ba
nk

 6
Ba

nk
 7

Shared Memory Bank
Conflicts

• Imagine 8 banks, and
working on an 8xN
matrix

• Row operations are great

• Column operations
maximally bad

• Solutions

• Row ops if possible

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

Ba
nk

 0
Ba

nk
 1

Ba
nk

 2
Ba

nk
 3

Ba
nk

 4
Ba

nk
 5

Ba
nk

 6
Ba

nk
 7

Shared Memory Bank
Conflicts

• Imagine 8 banks, and
working on an 8xN
matrix

• Row operations are great

• Column operations
maximally bad

• Solutions

• Row ops if possible

• Pad matrix with extra
column to stride
across banks

0 1 2 3 4 5 6 7

_ 8 9 10 11 12 13 14

15 _ 16 17 18 19 20 21

22 23 _ 24 25 26 27 28

29 30 31 _ 32 33 34 35

36 37 38 39 _ 40 41 42

43 44 45 46 47 _ 48 49

50 51 58 59 60 61 62 63

Ba
nk

 0
Ba

nk
 1

Ba
nk

 2
Ba

nk
 3

Ba
nk

 4
Ba

nk
 5

Ba
nk

 6
Ba

nk
 7

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

Warps in multi-d blocks

• Easy to see how warps are
assigned in 1-d block:

• First 32 = warp0

• Next 32 = warp1..

• How done in 2d block?

• C ordering: x first, then y

• blockDim.x = 32:

• warp 0 : blockDim.y = 0

• warp 1: blockDim.y = 1..

matmult.cu

Striding through matrix
w/ slow moving index;

Massive bank conflicts if
blocksize = warpsize

marten$./matmult --matsize=1536 --nblocks=48
Matrix size = 1536, Number of blocks = 48.
CPU time = 29466.5 millisec, GFLOPS=0.245966
GPU time = 522.71 millisec, GFLOPS=13.865733, diff = 0.000000.
GPU2 time = 128.905 millisec, GFLOPS=56.225572, diff = 0.000000.

4x performance

blocksize = 32
= warpsize

Memory structure
informs block sizes:

• By choosing block size in such a way to maximize global,
shared memory bandwidth and preloading data into shared,
can extract significant performance

• Get your code working first, then use these considerations to
get them working fast

• Use tuned code where available (this is still much slower than
CUBLAS, MAGMA!)

$./matmult --matsize=1536 --nblocks=24
Matrix size = 1536, Number of blocks = 24.
CPU time = 29467.4 millisec, GFLOPS=0.245958
GPU time = 8.203 millisec, GFLOPS=883.549593, diff = 0.000000.
GPU2 time = 8.122 millisec, GFLOPS=892.361156, diff = 0.000000.

CUBLAS

cublas.cu

CUFFT

cublas.cucufft.cu

