Interpolation \& ODEs

Scientific Computing Course, Jan 2013

Homework

- Questions about Make for targets
- Imagine we had the following very simple (Id) diffusion in diffuse.cxx:

```
void derivative(double *y, double *x, double *d2y, int n) {
    for (int i=1; i<n-1; i++) {
        double dxl = x[i+1] - x[i-1];
        double dxr = x[i] - x[i-1];
        double dx = 0.5*(dxl + dxr);
        dZy[i] = ((y[i+1] - y[i])/dxr - (y[i] - y[i-1])/dxl ) / dx;
    }
    return;
}
void diffuse(double *tin, double *tout, double *x, int n, double coeff) {
    double *deriv = new double[n];
    derivative(tin, x, deriv, n);
    for (int i=1; i<n-1; i++) {
        tout[i] = tin[i] - coeff*deriv[i];
    }

\section*{Homework}
- And a main program which drove it, main.cxx
```

double *old = tin;

```
double *old = tin;
double *cur = tout;
double *cur = tout;
const int nsteps = 100;
const int nsteps = 100;
for (int step=0; step < nsteps; step++) {
for (int step=0; step < nsteps; step++) {
    diffuse(old, cur, x, npts, coeff);
    diffuse(old, cur, x, npts, coeff);
    double *tmp = old;
    double *tmp = old;
    old = cur;
    old = cur;
    cur = tmp;
    cur = tmp;
}
}
out = fopen(outfilename,"w");
out = fopen(outfilename,"w");
if (!out) {
if (!out) {
    fprintf(stderr,"Could not open file \"%s\"; exiting\n", out
    fprintf(stderr,"Could not open file \"%s\"; exiting\n", out
    return -1;
    return -1;
}
}
fprintf(out, "%d\n", npts);
```

fprintf(out, "%d\n", npts);

```

\section*{Homework}
\[
\begin{aligned}
& \text { CXXFLAGS }=-02 \text {-Wall }-\mathrm{g} \\
& \text { CXX }=\mathrm{g++} \\
& \text { LDLIBS }=-\mathrm{lm}
\end{aligned}
\]
all: main
main: main.o diffuse.o
\$(CXX) -o \$@ \$(LDLIBS) \$^ Makefile that looks like this:
main.o: main.cxx diffuse.h
```

 $(CXX) -c -o $@ $(CXXFLAGS) $<
    ```
diffuse.o: diffuse.cxx
```

 $(CXX) -c -o $@ $(CXXFLAGS) $<
    ```
clean:
    rm -f \({ }^{*}\). o output*.txt \({ }^{*} \sim\) main

\section*{Homework}
- But we can add a different main() which does a couple simple tests on the diffusion routine (unit or integrated?)
```

int main(int argc, char **argv) {
int err;
int allerr=0;
int n=100;
printf("Performing Constant Test...\n");
err = doConstTest(n);
if (!err)
printf("PASS\n");
else
printf("FAIL\n");
allerr += err;
printf("Performing Linear Test...\n");
err = doLinearTest(n);
if (!err)
printf("PASS\n");
else
printf("FAIL\n");
allerr += err;
return allerr;

```
\}

\section*{Homework}
- And create a makefile to automatically compile this and run it:
\[
\begin{aligned}
& \text { CXXFLAGS }=-02 \text {-Wall }-\mathrm{g} \\
& \text { CXX }=9++ \\
& \text { LDLIBS }=-\mathrm{lm}
\end{aligned}
\]
all: main tests
main: main.o diffuse.o
\$(CXX) -o \$@ \$(LDLIBS) \$^
tests: tests.o diffuse.o
```

 $(CXX) -o $@ $(LDLIBS) $^
    ```
runtests: tests
./tests

\section*{Git Bisect}
- Version Control (git) and automation (make) are tools to make your computing life better and more productive.
- Note that the tests had main return zero on success and non-zero on failure, by long convention.
- Now let's say I had been developing this program for a while without testing, and then...

\section*{Git Bisect}
- Bah.
- We could use git diff to figure out what code change caused the bug..
```

gpc-f103n084-\$ make runtests
g++ -c -o tests.o -02 -Wall -g tests.cxx
g++ -c -o diffuse.o -02 -Wall -g diffuse.cxx
g++ -o tests -lm tests.o diffuse.o
./tests
Performing Constant Test...
FAIL
Performing Linear Test...
FAIL
make: *** [runtests] Error 2
gpc-f103n084-\$

```
(1) compute •calcul

\section*{known bad}

Git Bisect
gpc-f103n084-\$ git log
commit a333719bb5c8bfb@a46211bd3914329a8d4383fe Author: Jonathan Dursi <ljdursiescinet.utoronto. ca> Date: Wed Jan 30 16:16:32 \(2013-0500\)
- But we're not sure when the bug was introduced, so it's a little hard to figure out which commit caused it.
- Could checkout different versions and test...

Allon user-specified output file nome
 Author: Jonathan Dursi <ljdursiescinet.utoronto.ca> Date: Wed Jan 30 16:12:41 2013 -0500

Allow user-specified input filename
commit cd5c32f3307e5d11b170ef001e9c6428e84d73cd Author: Jonathan Dursi <ljdursiescinet.utoronto.ca> Date: Wed Jan 30 16:03:51 2013 -0500

Have \(\times\) read in from the input file
cormit e641ddffd255ef4f495e81217cbf2fd7c634efae
Author: Jonathan Dursi <ljdursiescinet.utoronto.ca>
Date: Wed Jan 30 16:01:32 2013 -0500
Add \(\times\) for non-uniform grid
commit \(2 f 367 \mathrm{~d} 4220393 \mathrm{eb} 1 \mathrm{e} 85 \mathrm{aafec} 18487 \mathrm{df40a8fb} 159\) Author: Jonathan Dursi <ljdursiescinet.utoronto.ca> Date: Wed Jan 30 15:55:52 2013 -0500

Better names for derivative arguments
commit ffd76e9e72b6e4746e8666e8e529f35ff38edb64 Author: Jonathan Dursi <ljdursiescinet.utoronto.ca> Date: Wed Jan 30 15:53:37 2013 -0500

Get rid of extraneous files
cormit 8be8a4e5e83ca89b5d67ca5df2cc1298a6987e31
Author: Jonathan Dursi <ljdursiescinet.utoronto.ca> Date: Wed Jan 30 15:52:46 2013 -0500

Move diffusion into diffuse.cxx
commit afb7ad5fc0ec13c7fdc8ffb92318d3ffd7e95c02
Author: Jonathan Dursi <ljdursiescinet.utoronto.ca>
CiNet Date: Tue Jan 29 09:34:59 \(2013-0500\)

\section*{Git Bisect}

\$ git bisect good afb7ad5fc0ec13c7fdc8ffb92318d3ffd7e95c02
Bisecting: 3 revisions left to test after this (roughly 2 steps)
[2f367d4220393eb1e85aafec18487df40a8fb159] Better names for derivative arguments
\$ git bisect run make runtests running make runtests

g++ -c -o tests.o -02 -Wall -g tests.cxx

\section*{find culprit via \\ "make runtests"}
g++ -c -o diffuse.o -02 -Wall -g diffuse.cxx
g++ -o tests -lm tests.o diffuse.o
./tests
Performing Constant Test...
PASS
Performing Linear Test...
PASS
Bisecting: 1 revision left to test after this (roughly 1 step)
- compute \(\bullet\) calcu

\section*{Git Bisect}
```

Bisecting: 0 revisions left to test after this (roughly 0 steps)
[e641ddffd255ef4f495e81217cbf2fd7c634efae] Add x for non-uniform grid
running make runtests
./tests
Performing Constant Test...
FAIL
Performing Linear Test...
FAIL
make: *** [runtests] Error 2
commit that broke the test

```

```

e641ddffd255ef4f495e81217cbf2fd7c634efae is the first bad commit
commit e641ddffd255ef4f495e81217cbf2fd7c634efae
Author: Jonathan Dursi ljdursi@scinet.utoronto.ca by this knOWM
Date: Wed Jan 30 16:01:32 2013-0500 vo incompetent
Add \times for non-uniform grid

```
:100644 100644 24dfc324a72163252edb63cb013606cacad72c61 bde5145d11d29c687ccf50a007ce547bf66ecacf M :100644 100644 c9ef874c3fb731454965f43087856dfd809de2e2 bfdebae4341e1dfde11fc0905ff0831da312120c M :100644 100644 79e12641dbcc2e8776a7d45da99b6ca9e644ea7b 7984946e380d7ddd63318a59301f0ef9136 ~ M \(: 100644100644\) 7b8da7f207dc9ca8346d2108f2d4644d8062b17f fc5be55fed2e275ee73257b80f88973eb41
bisect run success
diffuse.cxx diffuse.h main.cxx tests.cxx
compute •calcul
canada

\section*{HEAD is now the first broken \\ commit}
```

gpc-f103n084-\$ git show HEAD diffuse.cxx
commit e641ddffd255ef4f495e81217cbf2fd7c634efae
Author: Jonathan Dursi ljdursi@scinet.utoronto.ca
Date: Wed Jan 30 16:01:32 2013-0500
Add x for non-uniform grid
diff --git a/diffuse.cxx b/diffuse.cxx
index 24dfc32..bde5145 100644
--- a/diffuse.cxx
+++ b/diffuse.cxx
@@ -1,18 +1,21 @@
-// assumes regular spacing
-void derivative(double *y, double *d2y, int n) {
+void derivative(double *y, double *x, double *d2y, int n) {
for (int i=1; i<n-1; i++) {
d2y[i] = (y[i+1] - 2.*y[i] + y[i-1]);
double dxl = x[i+1] - x[i-1];
double dxr = x[i] - x[i-1];
double dx = 0.5*(dxl + dxr);
d2y[i] = ((y[i+1] - y[i])/dxr - (y[i] - y[i-1])/dxl) / dx;
}
return;
}
double *deriv = new double[n];
derivative(tin, deriv, n);
derivative(tin, x, deriv, n);
for (int i=1; i<n-1; i++) {
tout[i] = tin[i] - coeff*deriv[i];
}
gpc-f103n084-\$ git bisect reset

```
git bisect reset
to get back to
the way things

\section*{Testing}
- Note that:
- the more frequent the checkins, and
- the more specific the unit tests,
- the more precisely this will hone in on the error.
- compute \(\bullet\) calcul

\section*{Git Bisect}
- If you
- commit regularly,
- have a good test suite,
- have build/test automation,
- Then those tools can help you automatically find where bugs were introduced.
- Even without automation (say bug introduced before the tests were), you can use git bisect
- \$ git help bisect

\section*{Final Testing Note}
- You're not finished when you fix a bug.
- If it's the sort of bug that could conceivably crop up again, add a test for it, in your test suite or just in the code (eg, assert (n > 0) .)
- Nothing is more frustrating than finding and fixing the same bug twice.
- compute \(\bullet\) calcul

\title{
Interpolation \& ODEs
}

Scientific Computing Course, Jan 2013

\section*{Interpolation}
- We're often given, or compute, discrete data
- But to use our mathematical machinery on it we need continuous function
- Or need to know value between points, if even just to plot.


\section*{Interpolation}
- Interpolation returns a function that passes through all input points,
- Or values of that function at intermediate points.
- Not what you want when you have noisy data: fitting or regression. Different topic.


SciNet
(1)compute •calcu

\section*{Polynomial interpolation}
\[
\begin{aligned}
& y_{1}=a_{0}+a_{1} x_{1}^{1}+\cdots+a_{n-1} x_{1}^{n-1} \\
& y_{2}=a_{0}+a_{1} x_{2}^{1}+\cdots+a_{n-1} x_{2}^{n-1}
\end{aligned}
\]
- Common approach
- For n points, use n - \(\mathrm{l}^{\text {th }}\)
\[
y_{n}=a_{0}+a_{1} x_{n}^{1}+\cdots+a_{n-1} x_{n}^{n-1}
\] order polynomial: n coefficients
- Solve a linear system
\[
\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\cdots \\
y_{n}
\end{array}\right)=\left(\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{n-1} \\
\cdots & & & & \\
1 & x_{n} & x_{n}^{2} & \ldots & x_{n}^{n-1}
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\cdots \\
a_{n-1}
\end{array}\right)
\] (nonlinear in input data)
\[
\mathbf{y}=\mathbf{X a}
\]

\section*{Polynomial Interpolation}
- Common approach
- For n points, use \(\mathrm{n}-\mathrm{I}^{\text {th }}\) order polynomial: n coefficients
- Solve a linear system (nonlinear in input data)

```

In [92]: x = arange(.1,.91,.2); y = rand(5);
...: xx = arange(0,1,.02)
...:
In [93]: plot(x,y,'ro')
Out[93]: [<matplotlib.lines.Line2D at 0x8933070>]
In [94]: polyInterpFun = scipy.interpolate.lagrange(x,y
In [95]: yy = polyInterpFun(xx)
In [96]: plot(xx,yy,'b-')
Out[96]: [<matplotlib.lines.Line2D at 0x8933470>]

```

\section*{Basis Functions}
- Here we're solving for parameters which generate a linear combination of basis functions
\[
\begin{aligned}
& y_{1}=a_{0}+a_{1} x_{1}^{1}+\cdots+a_{n-1} x_{1}^{n-1} \\
& y_{2}=a_{0}+a_{1} x_{2}^{1}+\cdots+a_{n-1} x_{2}^{n-1} \\
& \cdots \\
& y_{n}=a_{0}+a_{1} x_{n}^{1}+\cdots+a_{n-1} x_{n}^{n-1}
\end{aligned}
\]
- The basis functions here are \(I, x, x^{2}, x^{3}, \ldots\)
- They can be any other
\[
\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\cdots \\
y_{n}
\end{array}\right)=\left(\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{n-1} \\
\cdots & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n-1}
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\cdots \\
a_{n-1}
\end{array}\right)
\] functions that span the relevant function space.
\[
\mathbf{y}=\mathbf{X a}
\]

\section*{Orthogonal Basis Functions}
- We have to solve a linear system, which is expensive
- Can't just write down form for (say) al without calculating all others; basis functions overlap.
\[
\begin{aligned}
y & =\sum_{i} a_{i} f_{i}(x) \\
\left\langle y, f_{j}(x)\right\rangle & =\sum_{i} a_{i}\left\langle f_{i}(x), f_{j}(x)\right\rangle \\
\left\langle y, f_{j}(x)\right\rangle & =\sum_{i} a_{i} \delta_{i, j} \\
a_{j} & =\left\langle y, f_{j}(x)\right\rangle
\end{aligned}
\]
- If the basis functions are orthogonal in some (any) sense, can skip this; can calculate individual coefficients explicitly
- Any set of basis functions can be orthogonalized

\section*{Orthogonal Basis Functions}
- In polynomials, there are several ways of orthogonalization (depending on your inner product)
- Lagrange interpolating polynomials particularly
\[
l_{j}=\frac{\prod_{m \neq j}\left(x-x_{m}\right)}{\prod_{m \neq j}\left(x_{j}-x_{m}\right)}
\] straightforward
- Functions in a Fourier series are orthogonal

\section*{Piecewise Interpolation}
- Often don't want a single, global closed-form function to describe our data.
- (But note: spectral methods)
- Global function very dependent on every piece of data
- That high order polynomial - very wiggly


\section*{Piecewise Interpolation}
- In each between-points, perform an interpolant as before based on nearby points.
- Piecewise constant; pick value of closest point
- Linear: draw a straight line between neighbouring points, etc.


SCiNet
(1)

\section*{Piecewise Interpolation}
- In each between-points, perform an interpolant as before based on nearby points.
- Piecewise constant; pick value of closest point
- Linear: draw a straight line between neighbouring points, etc.
```

import scipy
import scipy.interpolate
x = sort(rand(11))
y=\operatorname{sin}(x*2*pi)
xx = arange(0,.99,.005)
nearest = scipy.interpolate.interp1d(x,y,kind='nearest',bounds_error=False)
linear = scipy.interpolate.interp1d(x,y,kind='linear',bounds_error=False)
cubic = scipy.interpolate.interp1d(x,y,kind='cubic',bounds_error=False)
subplot(2,2,1)
plot(x,y,'ro')
xlim([0,1])
title("Data")
subplot(2,2,2)
plot(x,y,'ro')
plot(xx, nearest(xx),'b-')
xlim([0,1])
title("Piecewise Const")
subplot(2,2,3)
plot(x,y,'ro')
plot(xx, linear(xx),'b-')
xlim([0,1])
title("Piecewise Linear")
subplot(2,2,4)
plot(x,y,'ro')
plot(xx, cubic(xx),'b-')
xlim([0,1])
title("Piecewise Cubic")

```

\section*{Piecewise Polynomial} interpolant \((\mathbf{x}, \mathbf{y}\), new \(\mathbf{x}, \mathrm{p})=\)
find i: \(x_{i}<n e w x<x_{i+1}\)
build lagrange polynomial
 \(\left(y_{i-p / 2}, \ldots, y_{i+p / 2+1}\right)\)
interpolate to newx


SCiNet
C)

\section*{Piecewise Interpolation}
- There's obviously some sense in which higherorder local interpolants approximate the "true" function better.
- Can formalize this intuition with Taylor series analysis.
- Approximation error of a \(\mathrm{p}^{\text {th }}\) order polynomial leaves error of only \(\mathrm{O}\left(\Delta \mathrm{x}^{\mathrm{p}^{+1}}\right)\)


SCiNet
C)

\section*{Danger! Danger! \\ - Thinking in terms of \(O\left(\Delta x^{p+1}\right)\) can be} helpful; error converging faster rather than slower is good. But remember:
- Assumes smooth underlying function
- Higher order - more sensitive to ringing
- Performs abysmally at extrapolation
- Needs more data - more difficulty at ends of domain

- Statement of asymptotics. For a given \(\Delta \mathrm{x}\), a specific \(\mathrm{p}^{\text {th }}\)-order accurate approximation may or may not be more accurate than a specific ( \(\mathrm{p}-\mathrm{I}\) ) \({ }^{\text {th }}\) order method.
- Desired properties of interpolant depends on what you're going to use them for
- Piecewise polynomials as above: good, and continuous: but derivatives aren't continuous.
- If needed, use same lower number of points but higher order interpolating polynomial.
- Use extra d.o.f.s to match derivatives at interpolated points.
- Impose some condition at ends of interpolated region.

\section*{Splines}

```

x = sort(rand(7))
y = sin(x*2*pi)
xx = arange(0.,.99,.005)
linear = scipy.interpolate.interp1d(x,y,
kind='linear',bounds_error=False)
spline = scipy.interpolate.
InterpolatedUnivariateSpline(x,y)
plot(x,y,'ro')
plot(xx,linear(xx),'g-')
plot(xx,spline(xx),'b-')

```

\section*{Multidimensional}

\section*{piecewise interpolation}
- Note that piecewise interpolation of irregular multidimensional data is harder
- Not trivial to figure out which region a given point is in
- On regular lattice,
 however, much simpler
- compute \(\bullet\) calcu

\section*{Bilinear interpolation}
- On 2d grids, simple approaches such as bilinear interpolants are sometimes used
\[
\begin{aligned}
f(x, y)= & \left(a_{1}+a_{2}\left(x-x_{0}\right)\right)\left(a_{3}+a_{4}\left(y-y_{0}\right)\right) \\
f(x, y)= & b_{1}+b_{2}\left(x-x_{0}\right) \\
& +b_{3}\left(y-y_{0}\right) \\
& +b_{4}\left(x-x_{0}\right)\left(y-y_{0}\right)
\end{aligned}
\]
- Product of two linear interpolations
- 4 values, 4 unknowns.
- Lends itself to an interesting geometric interpretation.


\section*{Initial Value ODEs}
- Given some initial conditions and a differential equation, evolve the differential equation.
- Eg, given:
\[
\begin{array}{r}
\mathbf{y}^{\prime}=\mathbf{f}(\mathbf{y}, t) \\
\left(\mathbf{y}_{0}, t_{0}\right)
\end{array}
\]
- evolve relevant \(y(t)\)

\section*{Initial Value ODEs}
- If our \(\mathbf{f}\) is Lipshitz continuous (differentiable), \(\exists\) unique solution given ICs.
- However, that doesn't necessarily mean we can calculate it well.

- Stability of equation; stability of method; accuracy.
\[
\mathbf{y}^{\prime}=\mathbf{f}(\mathbf{y}, t)
\]
\[
\left(\mathbf{y}_{0}, t_{0}\right) \text { SCiNet }
\]

\section*{Equation stability}
- Some systems are inherently challenging to integrate
- Eigenvalues > I; small deviations pull you further away from solution
- Since small errors will always creep in (Part II),
 very challenging for correctness.

\section*{Equation stability}
- Accuracy: how close to you stay to current solution?
- Stability: how do nearby solutions diverge from each other?

(compute •calcul canad

\section*{Method stability}
- Even with perfectly wellbehaved functions, some methods can be unstable
- Errors grow without bound
- Often see oscilatory behaviour


\section*{Euler's Method}
- Simplest possible integration method
- stepsize \(h\)
- Calculate local deriviative, and approximate (first term in Taylor's series):
```

def eulerStep(f, yo, to, dt):
dydt = f(yo, to)
return yo + dydt * dt
def f(y,t):
return 1.2*y
xx = arange(0, 2,.025)
for y in [.25,.5,1,1.5,2]:
plot(xx,y*exp(1.2*xx),'g-')
ys = [1]; ts = [0]; dt = .1;
for t in arange(.1,2,.1):
newy = eulerStep(f, ys[-1], ts[-1], dt)
ts.append(t)
ys.append(newy)
plot(ts,ys,'ro-)

```
\(\left.\frac{d \mathbf{y}}{d t}\right|_{\left(y_{0}, t_{0}\right)}=\mathbf{f}\left(\mathbf{y}_{0}, t_{0}\right)\)
\(\mathbf{y}\left(t_{0}+h\right) \approx \mathbf{y}_{0}+\left.h \frac{d \mathbf{y}}{d t}\right|_{\left(y_{0}, t_{0}\right)}\)
    \(\approx \mathbf{y}_{0}+h \mathbf{f}\left(\mathbf{y}_{0}, t_{0}\right)\)


\section*{Accuracy}
- Accuracy improves with smaller stepsize
- As with interpolation, error in a linear step from Taylor series is
\[
\mathcal{O}\left(h^{2}\right)
\]
- "Too large" h - unstable.
- Also as with interpolation, can improve accuracy with higher-order methods.


\section*{Backward Euler}
- Solve for step implicitly

- Take slope approximation as slope at new point
- Same accuracy as forward Euler, better stability
\[
\begin{aligned}
\left.\frac{d \mathbf{y}}{d t}\right|_{\left(y_{0}+\Delta y, t_{0}+h\right)} & =\mathbf{f}\left(\mathbf{y}_{0}+\Delta y, t_{0}+h\right) \\
\mathbf{y}\left(t_{0}+h\right) & \approx \mathbf{y}_{0}+\left.h \frac{d \mathbf{y}}{d t}\right|_{\left(y_{0}+\Delta y, t_{0}+h\right)} \\
\mathbf{y}_{0}+\Delta \mathbf{y} & \approx \mathbf{y}_{0}+h \mathbf{f}\left(\mathbf{y}_{0}+\Delta y, t_{0}+h\right)
\end{aligned}
\]

\section*{Predictor-Corrector}
- As with interpolation, can get higher accuracy by using more points
- Can evaluate \(\mathbf{f}\) anywhere

- Predictor-corrector: take forward Euler step, use f value there to improve estimate.
(D) compute•calcul
canada

\section*{Error estimation}
- Note! With multiple function evaluations, one can use different combinations of them to derive different estimates.
- Can use higher- and lower- order methods, and use difference to infer error in estimate.

- This allows adaptive stepsizing to satisfy an error tolerance. Redo with smaller step if error too large.
- Without error estimate, all one can do is say whether solution "looks good" or not.

\section*{Multi-step methods}
- More complex approaches are tradeoffs between stability, accuracy, and cost (function evaluation or nonlinear solves)
- Take multiple function evaluations between t and \(\mathrm{t}+\Delta \mathrm{t}\), and use the combination of those to get next
 value
- Runge-Kutta methods are classics of these kinds.
- Again, can return error estimates.
(compute •calcul canad

\section*{Multi-stage methods}
- Multiple function evaluations "for free"; use previous evaluations!

- Require something special to start.
- compute \(\bullet\) calcu

\section*{Don't Repeat Yourself (Or Others) \\ - ODEs, interpolation very common}
- Very well established techniques, code, for doing this.
- Except for most trivial cases, do not code yourself. Libraries will do this for you.
- GSL (gnu scientific library) ubiquitious, has several methods for both.
- Allows you to easily experiment with different methods without rewriting code.
(1)compute •calcul
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include <gsl/gsl_errno.h>
\#include <gsl/gsl_spline.h>
int
main (void)
{
int i;
double xi, yi, x[10], y[10];
printf ("\#m=0,S=2\n");
for (i = 0; i < 10; i++)
{
x[i] = i + 0.5 * sin (i);
y[i] = i + cos (i * i);
printf ("%g %g\n", x[i], y[i]);
}
printf ("\#m=1,S=0\n");
{
gsl_interp_accel *acc
=-gsl_interp_accel_alloc ();
gsl_spline *spline
= gsl_spline_alloc (gsl_interp_cspline, 10);
gsl_spline_init (spline, x, y, 10);
for (xi = x[0]; xi < x[9]; xi += 0.01)
yi = gsl_spline_eval (spline, xi, acc);
printf ("%g %g\n", xi, yi);
}
gsl spline_free (spline);
gsl_interp_accel_free (acc);

```

\section*{Interpolation}
```

 }
    ```
```

int
func (double t, const double Y[], double f[],
void *params)
{
double mu = *(double *)params;
f[0]=y[1];
f[1] = -y[0] - mu*y[1]*(y[0]*y[0] - 1);
return GSL_SUCCESS;
}
int
jac (double t, const double y[], double *dfdy,
double dfdt[], void *params)
{
double mu = *(double *) params
gsl_matrix_view dfdy_mat
= gsl_matrix_view_array (dfdy, 2, 2);
gsi_matrix * m = \&dfdy_mat.matrix;
gsl_matrix_set (m, 0, 0, 0.0);
gsl_matrix_set (m, 0, 1, 1.0);
gsl_matrix_set (m, 1, 0, -2.0*mu*y[0]*y[1] - 1.0);
gsl matrix set (m, 1, 1, -mu*(y[0]*y[0] - 1.0));
dfdt[0] = 0.0;
dfdt[1] = 0.0;
return GSL_SUCCESS;
}
ODE Integration
int
main (void)
{
double mu = 10;
gsl_odeiv2_system sys = {func, jac, 2, \&mu};
gsl_odeiv2_driver * d =
gs1_odeiv2_driver_alloc_y_new (\&sys, gsl_odeiv2_step_rk8pd,
1e-6, 1e-6, 0.0);
int i;
double t = 0.0, t1 = 100.0;
double y[2]={1.0,0.0};
for (i = 1; i<< 100; i++)
f
double ti = i * tl / 100.0;
int status = gsl_odeiv2_driver_apply (d, \&t, ti, y);
if (status l= GSL_SUCCESS)
{
printf ("error, return value=%d\n", status);
break;
}
printf ("%.5e %.5e %.5e\n", t, y[0], y[1]);
}
gsl_odeiv2_driver_free (d);
return 0;
}

```
```

