
Interpolation & ODEs
Scientific Computing Course, Jan 2013

Homework

• Questions about
Make for targets

• Imagine we had the
following very simple
(1d) diffusion in
diffuse.cxx:

Homework

• And a main program
which drove it,
main.cxx

Homework

• We might have a
Makefile that looks
like this:

Homework

• But we can add a
different main()
which does a couple
simple tests on the
diffusion routine
(unit or integrated?)

Homework

• And create a
makefile to
automatically
compile this and run
it:

Git Bisect
• Version Control (git) and automation

(make) are tools to make your computing
life better and more productive.

• Note that the tests had main return zero
on success and non-zero on failure, by long
convention.

• Now let’s say I had been developing this
program for a while without testing, and
then...

Git Bisect

• Bah.

• We could use git diff
to figure out what
code change caused
the bug..

Git Bisect
• But we’re not sure

when the bug was
introduced, so it’s a
little hard to figure
out which commit
caused it.

• Could checkout
different versions and
test...

known bad

known
good

Git Bisect
known bad known

good

find culprit via
“make runtests”

Git Bisect

commit that broke the test

by this known
incompetent

who changed these files

Ah ha! One
of my dx’s
is wrong.

HEAD is now
the first broken

commit

git bisect reset
to get back to
the way things

were.

Testing

• Note that:

• the more frequent the checkins, and

• the more specific the unit tests,

• the more precisely this will hone in on the error.

Git Bisect
• If you

• commit regularly,

• have a good test suite,

• have build/test automation,

• Then those tools can help you automatically
find where bugs were introduced.

• Even without automation (say bug introduced
before the tests were), you can use git bisect

• $ git help bisect

Final Testing Note

• You’re not finished when you fix a bug.

• If it’s the sort of bug that could conceivably crop up
again, add a test for it, in your test suite or just in the
code (eg, assert(n > 0) .)

• Nothing is more frustrating than finding and
fixing the same bug twice.

Interpolation & ODEs
Scientific Computing Course, Jan 2013

Interpolation

• We’re often given, or
compute, discrete data

• But to use our
mathematical machinery
on it we need
continuous function

• Or need to know value
between points, if even
just to plot.

Interpolation

• Interpolation returns a
function that passes
through all input points,

• Or values of that function
at intermediate points.

• Not what you want when
you have noisy data: fitting
or regression. Different
topic.

Polynomial interpolation

• Common approach

• For n points, use n-1th
order polynomial: n
coefficients

• Solve a linear system
(nonlinear in input data)

y1 = a0 + a1x
1
1 + · · · + an�1x

n�1
1

y2 = a0 + a1x
1
2 + · · · + an�1x

n�1
2

· · ·
yn = a0 + a1x

1
n + · · · + an�1x

n�1
n

y = Xa

0

BB@

y1

y2

· · ·
yn

1

CCA =

0

BB@

1 x1 x

2
1 . . . x

n�1
1

1 x2 x

2
2 . . . x

n�1
2

· · ·
1 xn x

2
n . . . x

n�1
n

1

CCA

0

BB@

a0

a1

· · ·
an�1

1

CCA

Polynomial Interpolation

• Common approach

• For n points, use n-1th
order polynomial: n
coefficients

• Solve a linear system
(nonlinear in input data)

Basis Functions

• Here we’re solving for
parameters which generate
a linear combination of
basis functions

• The basis functions here
are 1, x, x2, x3, ...

• They can be any other
functions that span the
relevant function space.

y1 = a0 + a1x
1
1 + · · · + an�1x

n�1
1

y2 = a0 + a1x
1
2 + · · · + an�1x

n�1
2

· · ·
yn = a0 + a1x

1
n + · · · + an�1x

n�1
n

y = Xa

0

BB@

y1

y2

· · ·
yn

1

CCA =

0

BB@

1 x1 x

2
1 . . . x

n�1
1

1 x2 x

2
2 . . . x

n�1
2

· · ·
1 xn x

2
n . . . x

n�1
n

1

CCA

0

BB@

a0

a1

· · ·
an�1

1

CCA

Orthogonal Basis Functions
• We have to solve a linear

system, which is expensive

• Can’t just write down form for
(say) a1 without calculating all
others; basis functions overlap.

• If the basis functions are
orthogonal in some (any)
sense, can skip this; can
calculate individual coefficients
explicitly

• Any set of basis functions can
be orthogonalized

y =
X

i

aifi(x)

hy, fj(x)i =
X

i

ai hfi(x), fj(x)i

hy, fj(x)i =
X

i

ai�i,j

aj = hy, fj(x)i

Orthogonal Basis Functions

• In polynomials, there are
several ways of
orthogonalization (depending
on your inner product)

• Lagrange interpolating
polynomials particularly
straightforward

• Functions in a Fourier series
are orthogonal

lj =
Q

m6=j(x� xm)
Q

m6=j(xj � xm)

Piecewise Interpolation
• Often don’t want a

single, global closed-form
function to describe our
data.

• (But note: spectral
methods)

• Global function very
dependent on every
piece of data

• That high order
polynomial - very wiggly

Piecewise Interpolation

• In each between-points,
perform an interpolant
as before based on
nearby points.

• Piecewise constant; pick
value of closest point

• Linear: draw a straight
line between
neighbouring points, etc.

Piecewise Interpolation

• In each between-points,
perform an interpolant as
before based on nearby
points.

• Piecewise constant; pick
value of closest point

• Linear: draw a straight line
between neighbouring
points, etc.

Piecewise Polynomial
interpolant(x,y,newx,p) =

 find i : xi < newx < xi+1

 build lagrange polynomial
 from (xi-p/2,...,xi+p/2+1),
 (yi-p/2,...,yi+p/2+1)

 interpolate to newx

Piecewise Interpolation
• There’s obviously some

sense in which higher-
order local interpolants
approximate the “true”
function better.

• Can formalize this intuition
with Taylor series analysis.

• Approximation error of a
pth order polynomial leaves
error of only O(∆xp+1)

Danger! Danger!
• Thinking in terms of O(∆xp+1) can be

helpful; error converging faster rather than
slower is good. But remember:

• Assumes smooth underlying function

• Higher order - more sensitive to ringing

• Performs abysmally at extrapolation

• Needs more data - more difficulty at ends
of domain

• Statement of asymptotics. For a given ∆x,
a specific pth-order accurate approximation
may or may not be more accurate than a
specific (p-1)th order method.

Splines• Desired properties of interpolant
depends on what you’re going to
use them for

• Piecewise polynomials as above:
good, and continuous: but
derivatives aren’t continuous.

• If needed, use same lower number
of points but higher order
interpolating polynomial.

• Use extra d.o.f.s to match
derivatives at interpolated points.

• Impose some condition at ends of
interpolated region.

x = sort(rand(7))
y = sin(x*2*pi)

xx = arange(0.,.99,.005)

linear = scipy.interpolate.interp1d(x,y,
 kind='linear',bounds_error=False)
spline = scipy.interpolate.
 InterpolatedUnivariateSpline(x,y)

plot(x,y,'ro')
plot(xx,linear(xx),'g-')
plot(xx,spline(xx),'b-')

Multidimensional
piecewise interpolation
• Note that piecewise

interpolation of irregular
multidimensional data is
harder

• Not trivial to figure out
which region a given
point is in

• On regular lattice,
however, much simpler

Bilinear interpolation
• On 2d grids, simple

approaches such as bilinear
interpolants are sometimes
used

• Product of two linear
interpolations

• 4 values, 4 unknowns.

• Lends itself to an interesting
geometric interpretation.

http://en.wikipedia.org/wiki/File:Bilinear_interpolation_visualisation.svg

f(x, y) =(a1 + a2(x� x0))(a3 + a4(y � y0))

f(x, y) =b1 + b2(x� x0)
+ b3(y � y0)
+ b4(x� x0)(y � y0)

http://en.wikipedia.org/wiki/File:Bilinear_interpolation_visualisation.svg
http://en.wikipedia.org/wiki/File:Bilinear_interpolation_visualisation.svg

Initial Value ODEs

• Given some initial
conditions and a
differential equation,
evolve the differential
equation.

• Eg, given:

• evolve relevant y(t)

y0 = f(y, t)
(y0, t0)

Initial Value ODEs

• If our f is Lipshitz
continuous
(differentiable), ∃ unique
solution given ICs.

• However, that doesn’t
necessarily mean we can
calculate it well.

• Stability of equation;
stability of method;
accuracy.

y0 = f(y, t)
(y0, t0)

Equation stability
• Some systems are

inherently challenging to
integrate

• Eigenvalues > 1; small
deviations pull you
further away from
solution

• Since small errors will
always creep in (Part II),
very challenging for
correctness.

Equation stability

• Accuracy: how close to
you stay to current
solution?

• Stability: how do nearby
solutions diverge from
each other?

Method stability

• Even with perfectly well-
behaved functions, some
methods can be unstable

• Errors grow without
bound

• Often see oscilatory
behaviour

Euler’s Method
• Simplest possible

integration method

• stepsize h

• Calculate local deriviative,
and approximate (first term
in Taylor’s series):

dy
dt

����
(y0,t0)

= f(y0, t0)

y(t0 + h) ⇡ y0 + h
dy
dt

����
(y0,t0)

⇡ y0 + hf(y0, t0)

Accuracy

• Accuracy improves with
smaller stepsize

• As with interpolation, error
in a linear step from Taylor
series is

• “Too large” h - unstable.

• Also as with interpolation,
can improve accuracy with
higher-order methods.

O(h2)

Backward Euler

• Solve for step implicitly

• Take slope approximation
as slope at new point

• Same accuracy as forward
Euler, better stability

dy
dt

����
(y0+�y,t0+h)

= f(y0 + �y, t0 + h)

y(t0 + h) ⇡ y0 + h
dy
dt

����
(y0+�y,t0+h)

y0 + �y ⇡ y0 + hf(y0 + �y, t0 + h)

Predictor-Corrector

• As with interpolation, can
get higher accuracy by
using more points

• Can evaluate f anywhere

• Predictor-corrector: take
forward Euler step, use f
value there to improve
estimate.

Error estimation
• Note! With multiple function

evaluations, one can use different
combinations of them to derive
different estimates.

• Can use higher- and lower- order
methods, and use difference to infer
error in estimate.

• This allows adaptive stepsizing to satisfy
an error tolerance. Redo with smaller
step if error too large.

• Without error estimate, all one can do
is say whether solution “looks good” or
not.

Multi-step methods
• More complex approaches are

tradeoffs between stability, accuracy,
and cost (function evaluation or
nonlinear solves)

• Take multiple function evaluations
between t and t+∆t, and use the
combination of those to get next
value

• Runge-Kutta methods are classics of
these kinds.

• Again, can return error estimates.

Multi-stage methods

• Multiple function evaluations “for
free”; use previous evaluations!

• Require something special to start.

Don’t Repeat Yourself
(Or Others)

• ODEs, interpolation very common

• Very well established techniques, code, for doing this.

• Except for most trivial cases, do not code yourself. Libraries
will do this for you.

• GSL (gnu scientific library) ubiquitious, has several methods for
both.

• Allows you to easily experiment with different methods without
rewriting code.

Interpolation

ODE Integration

