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Homework

• Questions about 
Make for targets

• Imagine we had the 
following very simple 
(1d) diffusion in 
diffuse.cxx:



Homework

• And a main program 
which drove it, 
main.cxx



Homework

• We might have a 
Makefile that looks 
like this:



Homework

• But we can add a 
different main() 
which does a couple 
simple tests on the 
diffusion routine 
(unit or integrated?)



Homework

• And create a 
makefile to 
automatically 
compile this and run 
it:



Git Bisect
• Version Control (git) and automation 

(make) are tools to make your computing 
life better and more productive.

• Note that the tests had main return zero 
on success and non-zero on failure, by long 
convention.

• Now let’s say I had been developing this 
program for a while without testing, and 
then...



Git Bisect

• Bah.

• We could use git diff 
to figure out what 
code change caused 
the bug..



Git Bisect
• But we’re not sure 

when the bug was 
introduced, so it’s a 
little hard to figure 
out which commit 
caused it.

• Could checkout 
different versions and 
test...

known bad

known 
good



Git Bisect
known bad known 

good

find culprit via 
“make runtests”



Git Bisect

commit that broke the test

by this known 
incompetent

who changed these files



Ah ha!  One
of my dx’s 
is wrong.

HEAD is now
the first broken

commit

git bisect reset
to get back to 
the way things 

were.



Testing

• Note that:

• the more frequent the checkins, and 

• the more specific the unit tests, 

• the more precisely this will hone in on the error.



Git Bisect
• If you 

• commit regularly,

• have a good test suite,

• have build/test automation,

• Then those tools can help you automatically 
find where bugs were introduced.

• Even without automation (say bug introduced 
before the tests were), you can use git bisect

• $ git help bisect



Final Testing Note

• You’re not finished when you fix a bug.

• If it’s the sort of bug that could conceivably crop up 
again, add a test for it, in your test suite or just in the 
code (eg, assert(n > 0) . )

• Nothing is more frustrating than finding and 
fixing the same bug twice.
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Interpolation

• We’re often given, or 
compute, discrete data

• But to use our 
mathematical machinery 
on it we need 
continuous function

• Or need to know value 
between points, if even 
just to plot.



Interpolation

• Interpolation returns a 
function that passes 
through all input points,

• Or values of that function 
at intermediate points.

• Not what you want when 
you have noisy data: fitting 
or regression. Different 
topic.



Polynomial interpolation

• Common approach

• For n points, use n-1th 
order polynomial: n 
coefficients

• Solve a linear system 
(nonlinear in input data)
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Polynomial Interpolation

• Common approach

• For n points, use n-1th 
order polynomial: n 
coefficients

• Solve a linear system 
(nonlinear in input data)



Basis Functions

• Here we’re solving for 
parameters which generate 
a linear combination of 
basis functions

• The basis functions here 
are 1, x, x2, x3, ...

• They can be any other 
functions that span the 
relevant function space.
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Orthogonal Basis Functions
• We have to solve a linear 

system, which is expensive

• Can’t just write down form for 
(say) a1 without calculating all 
others; basis functions overlap.

• If the basis functions are 
orthogonal in some (any) 
sense, can skip this; can 
calculate individual coefficients 
explicitly

• Any set of basis functions can 
be orthogonalized
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Orthogonal Basis Functions

• In polynomials, there are 
several ways of 
orthogonalization (depending 
on your inner product)

• Lagrange interpolating 
polynomials particularly 
straightforward

• Functions in a Fourier series 
are orthogonal 

lj =
Q

m6=j(x� xm)
Q

m6=j(xj � xm)



Piecewise Interpolation
• Often don’t want a 

single, global closed-form 
function to describe our 
data.

• (But note: spectral 
methods)

• Global function very 
dependent on every 
piece of data

• That high order 
polynomial - very wiggly 



Piecewise Interpolation

• In each between-points, 
perform an interpolant 
as before based on 
nearby points.

• Piecewise constant; pick 
value of closest point 

• Linear: draw a straight 
line between 
neighbouring points, etc.



Piecewise Interpolation

• In each between-points, 
perform an interpolant as 
before based on nearby 
points.

• Piecewise constant; pick 
value of closest point 

• Linear: draw a straight line 
between neighbouring 
points, etc.



Piecewise Polynomial
interpolant(x,y,newx,p) = 

    find i : xi < newx < xi+1

    build lagrange polynomial
     from (xi-p/2,...,xi+p/2+1), 
     (yi-p/2,...,yi+p/2+1)

    interpolate to newx



Piecewise Interpolation
• There’s obviously some 

sense in which higher-
order local interpolants 
approximate the “true” 
function better.

• Can formalize this intuition 
with Taylor series analysis. 

• Approximation error of a 
pth order polynomial leaves 
error of only O(∆xp+1) 



Danger!  Danger!
• Thinking in terms of  O(∆xp+1) can be 

helpful; error converging faster rather than 
slower is good.  But remember:

• Assumes smooth underlying function

• Higher order - more sensitive to ringing

• Performs abysmally at extrapolation 

• Needs more data - more difficulty at ends 
of domain

• Statement of asymptotics.   For a given ∆x, 
a specific pth-order accurate approximation 
may or may not be more accurate than a 
specific (p-1)th order method.



Splines• Desired properties of interpolant 
depends on what you’re going to 
use them for

• Piecewise polynomials as above: 
good, and continuous: but 
derivatives aren’t continuous. 

• If needed, use same lower number 
of points but higher order 
interpolating polynomial.

• Use extra d.o.f.s to match 
derivatives at interpolated points.

• Impose some condition at ends of 
interpolated region.

x = sort(rand(7))
y = sin(x*2*pi)

xx = arange(0.,.99,.005)

linear  = scipy.interpolate.interp1d(x,y,
            kind='linear',bounds_error=False)
spline = scipy.interpolate.
          InterpolatedUnivariateSpline(x,y)

plot(x,y,'ro')
plot(xx,linear(xx),'g-')
plot(xx,spline(xx),'b-')



Multidimensional 
piecewise interpolation
• Note that piecewise 

interpolation of irregular 
multidimensional data is 
harder

• Not trivial to figure out 
which region a given 
point is in

• On regular lattice, 
however, much simpler



Bilinear interpolation
• On 2d grids, simple 

approaches such as bilinear 
interpolants are sometimes 
used

• Product of two linear 
interpolations

• 4 values, 4 unknowns.

• Lends itself to an interesting 
geometric interpretation.

http://en.wikipedia.org/wiki/File:Bilinear_interpolation_visualisation.svg

f(x, y) =(a1 + a2(x� x0))(a3 + a4(y � y0))

f(x, y) =b1 + b2(x� x0)
+ b3(y � y0)
+ b4(x� x0)(y � y0)

http://en.wikipedia.org/wiki/File:Bilinear_interpolation_visualisation.svg
http://en.wikipedia.org/wiki/File:Bilinear_interpolation_visualisation.svg


Initial Value ODEs

• Given some initial 
conditions and a 
differential equation, 
evolve the differential 
equation.  

• Eg, given:

• evolve relevant y(t)

y0 = f(y, t)
(y0, t0)



Initial Value ODEs

• If our f is Lipshitz 
continuous 
(differentiable), ∃ unique 
solution given ICs.

• However, that doesn’t 
necessarily mean we can 
calculate it well.

• Stability of equation; 
stability of method; 
accuracy.

y0 = f(y, t)
(y0, t0)



Equation stability
• Some systems are 

inherently challenging to 
integrate

• Eigenvalues > 1; small 
deviations pull you 
further away from 
solution

• Since small errors will 
always creep in (Part II), 
very challenging for 
correctness.



Equation stability

• Accuracy: how close to 
you stay to current 
solution?

• Stability: how do nearby 
solutions diverge from 
each other?



Method stability

• Even with perfectly well-
behaved functions, some 
methods can be unstable

• Errors grow without 
bound

• Often see oscilatory 
behaviour



Euler’s Method
• Simplest possible 

integration method

• stepsize h

• Calculate local deriviative, 
and approximate (first term 
in Taylor’s series):

dy
dt

����
(y0,t0)

= f(y0, t0)

y(t0 + h) ⇡ y0 + h
dy
dt

����
(y0,t0)

⇡ y0 + hf(y0, t0)



Accuracy

• Accuracy improves with 
smaller stepsize

• As with interpolation, error 
in a linear step from Taylor 
series is

• “Too large” h - unstable.

• Also as with interpolation, 
can improve accuracy with 
higher-order methods.

O(h2)



Backward Euler

• Solve for step implicitly

• Take slope approximation 
as slope at new point

• Same accuracy as forward 
Euler, better stability

dy
dt

����
(y0+�y,t0+h)

= f(y0 + �y, t0 + h)

y(t0 + h) ⇡ y0 + h
dy
dt

����
(y0+�y,t0+h)

y0 + �y ⇡ y0 + hf(y0 + �y, t0 + h)



Predictor-Corrector

• As with interpolation, can 
get higher accuracy by 
using more points

• Can evaluate f anywhere

• Predictor-corrector: take 
forward Euler step, use f 
value there to improve 
estimate.



Error estimation
• Note!  With multiple function 

evaluations, one can use different 
combinations of them to derive 
different estimates.

• Can use higher- and lower- order 
methods, and use difference to infer 
error in estimate.

• This allows adaptive stepsizing to satisfy 
an error tolerance.  Redo with smaller 
step if error too large.

• Without error estimate, all one can do 
is say whether solution “looks good” or 
not.



Multi-step methods
• More complex approaches are 

tradeoffs between stability, accuracy, 
and cost (function evaluation or 
nonlinear solves)

• Take multiple function evaluations 
between t and t+∆t, and use the 
combination of those to get next 
value

• Runge-Kutta methods are classics of 
these kinds.

• Again, can return error estimates.



Multi-stage methods

• Multiple function evaluations “for 
free”; use previous evaluations!

• Require something special to start.



Don’t Repeat Yourself
(Or Others)

• ODEs, interpolation very common

• Very well established techniques, code, for doing this.

• Except for most trivial cases, do not code yourself.  Libraries 
will do this for you.

• GSL (gnu scientific library) ubiquitious, has several methods for 
both.

• Allows you to easily experiment with different methods without 
rewriting code.



Interpolation



ODE Integration


