Research Computing with Python, Lecture 7, Numerical Integration and Solving Ordinary Differential Equations

Ramses van Zon

SciNet HPC Consortium

November 25, 2014
(D) compute \bullet calcul

Today's Lecture

- Numerical Integration
- Ordinary Differential Equations
- Little bit of theory
- How to do this in Python
(spoiler: use scipy.integrate)
(D) compute + calcul

Numerical Integration

Numerical Integration

$$
\mathcal{I}=\int_{\mathcal{D}} f(x) d^{d} x
$$

SCiNet
compute * calcul

Numerical Integration Methods

If our integral cannot be computed exactly, what options do we have?

$$
\mathcal{I} \int_{\mathcal{D}} f(x) d^{d} x
$$

Method depends on dimension d, function $f(x)$, and x-domain.
$\mathrm{d}=1$: \quad Regular grid

- Gaussian Quadrature
d small:
- Regular grid
- Recursive Quadrature
d >> 1: \quad Monte Carlo

Regularly spaced grid methods

Problem:

- A curve is given by an function $y=f(x)$.
- The area under the curve is required, between a and b.

Numerical approach:

- Compute the value of y at equally space points x
- Using an interpolation function between those points, compute area

In the figure:

- Linear interpolation: trapezoidal rule
- The shaded area is returned by this approach
- This is an approximation to the actual area.

Equally spaced grid approach

- Compute the value of y at equally space points x
- Trapezoidal rule:
$\mathcal{I}=\left[\frac{1}{2} y_{1}+\sum_{i=2}^{n-1} y_{i}+\frac{1}{2} y_{n}\right] \Delta x$

Example

$$
\mathcal{I}=\int_{0}^{10} \cos \frac{x}{9} \sin ^{2} x d x
$$

```
def \(f(x)\) :
    return \(\cos (x / 9) * \sin (x) * * 2\)
\(a=0\)
\[
b=10
\]
\[
\mathrm{x}=\text { linspace }(\mathrm{a}, \mathrm{~b}, 40)
\]
\[
d x=x[1]-x[0]
\]
\[
y=f(x)
\]
\[
\mathrm{I} 1=(\mathrm{y}[0]+\mathrm{y}[-1]) / 2+\operatorname{sum}(\mathrm{y}[1:-1])
\]
\[
\mathrm{I} 1=\mathrm{I} 1 * \mathrm{dx}
\]
print I1
\[
3.93845493792
\]
```


Different evenly spaced grid approaches

- Trapezoidal

$$
\int_{a}^{a+h} f(x) d x \approx \frac{h}{2}[f(a)+f(a+h)]
$$

- Simpson

$$
\int_{a}^{a+2 h} f(x) d x \approx h\left[\frac{1}{3} f(a)+\frac{4}{3} f\left(a+\frac{h}{2}\right)+\frac{1}{3} f(a+h)\right]
$$

- Bode, Backward differentiation, ...
- Different prefactors, different orders, different points

What you use is the extension of these rules to multiple intervals. CANADA

Unevenly spaced grids

Gaussian quadrature

- Based on orthogonal polynomials on the interval.
- E.g. Legendre, Chebyshev, Hermite, Jacobi polynomials
- Compute and $\mathbf{y}_{\mathbf{i}}=\mathbf{f}\left(\mathbf{x}_{\mathbf{i}}\right)$ then

$$
\int_{a}^{b} f(x) d x \approx \sum_{i=1}^{n} v_{i} f_{i}
$$

$\mathbf{x}_{\mathbf{i}}$ and $\mathbf{v}_{\mathbf{i}}$ from polynomial properties

- Tend to be more accurate than equally spaced approaches

```
# nth order Gauss-Legendre quadrature:
from scipy.integrate import fixed_quad
I2=fixed_quad(f,a,b,n=20) [0]
print I2
3.9363858769075524
```


Accuracy

Was this the right value?

- Always an approximation
- More points means better approxiation
- If curve is smooth, better interpolation means better approximation (why unevenly spaced points helps)
- But how close are we?

Adaptive Integration

Rather than choosing a 'safe' large number of points, we should increase number of points until a given accuracy is achieved

Adaptive Integration

```
#Adaptive Gauss-Legendre integration
from scipy.integrate import quad
I3=quad(f,a,b,epsrel=0.001)
print I3
(3.936385876907544, 0.0009622632189420763)
```


Arguments of interest for quad

f: The function
a,b: The x limits
epsabs: Absolute error tolerance.
epsrel: Relative error tolerance.
limit : An upper bound on the number of subintervals used in the adaptive algorithm.

Numerical Integration in d > 1 but small

Why multidimensional integration is hard:

- Requires $\mathcal{O}\left(\mathbf{n}^{\mathbf{d}}\right)$ points if its 1 d counterpart requires \mathbf{n}.
- A function can be peaked, and peak can easily be missed.
- The domain itself can be complicated.

Numerical Integration in d > 1 but small
So what should you do?

- If you can reduce the d by exploiting symmetry or doing part of the integral analytically, do it!
- If you know the function to integrate is smooth and its domain is fairly simple, you could do repeated 1d integrals (fixed-grid or Gaussian quadrature)
- Otherwise, you'll have to consider Monte Carlo.

Example

$$
\int_{x=0}^{3.14} \int_{y=0}^{3.14} x y d x d y
$$

```
from scipy.integrate
    import dblquad
def f(x,y):
    return x*y
def y1(x):
    return 0
def y2(x):
    return 3.14
a=0; b=3.14
I4=dblquad(f,a,b,y1,y2)
print I4[0]
24.30292804
```


Monte Carlo Integration

Use random numbers to pick points at which to evaluate integrand.

- Convergence always as $1 / \sqrt{\mathbf{n}}$ regardless of d.
- Simple and flexible.

Monte Carlo Integration

- You can find python packages for MC (not in scipy, though)
- But the essence is the same:
(1) Use random numbers to generate points in your domain
(2) Evaluate the function on those points
(3) Average them and compute standard deviation for error.
- One variation is to use a bias in step 1 to focus on regions of interest. Bias can be undone in averaging step
- Another variation is to have each point generated from the previous one plus a random component: MC chain.

Ordinary Differential Equations

Ordinary Differential Equations (ODE)

Lotka-Volterra

$$
\begin{aligned}
& \frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{x}(\alpha-\beta \mathrm{y}) \\
& \frac{\mathrm{dy}}{\mathrm{dt}}=-\mathrm{y}(\gamma-\delta \mathrm{x})
\end{aligned}
$$

Preditor-pray model
Rate equations

$$
\begin{aligned}
& \frac{d x}{d t}=-2 k_{1} x^{2} y+2 k_{2} z^{2} \\
& \frac{d y}{d t}=-k_{1} x^{2} y+k_{2} z^{2} \\
& \frac{d z}{d t}=2 k_{1} x^{2} y-2 k_{2} z^{2}
\end{aligned}
$$

Chemical reactions

Harmonic oscillator

$$
\begin{gathered}
\frac{d x}{d t}=y \\
\frac{d y}{d t}=-x
\end{gathered}
$$

Pendulum
Lorenz system

$$
\begin{gathered}
\frac{\mathrm{dx}}{\mathrm{dt}}=\sigma(\mathrm{y}-\mathrm{x}) \\
\frac{\mathrm{dy}}{\mathrm{dt}}=\mathrm{x}(\rho-\mathrm{z})-\mathrm{y}
\end{gathered}
$$

$$
\frac{d z}{d t}=x y-\beta z \quad \text { SCiNet }
$$

Simplified atmospheric convection

Mathematical Details

- General form:

$$
\sum_{n=0}^{N} a_{n}(t, y) \frac{d^{n} y}{d t^{n}}=f(t, y)
$$

$\mathbf{N}=$ order

- Boundary conditions: much like PDEs: next lecture

- Initial conditions:
$\mathbf{y}, \mathbf{d y} / \mathbf{d t}, \ldots$, at $\mathbf{t}=\mathbf{t}_{\mathbf{0}}$
- Define $\mathbf{y}_{0}=\mathbf{y} ; \mathbf{y}_{1}=\mathbf{d y} / \mathbf{d x}$,
gives a set of first order ODEs
(-) compute + calcul

First order initial value problem

- Start from the general first order form:

$$
\frac{\mathrm{dy}}{\mathrm{dt}}=\mathrm{f}(\mathrm{t}, \mathrm{y})
$$

- \mathbf{t} is one dimensional, \mathbf{y} can have multiple components
- All approaches will evaluate \mathbf{f} at discrete points $\mathbf{t}_{\mathbf{0}}, \mathbf{t}_{\mathbf{1}}, \ldots$
- Like integration:

$$
y_{\mathrm{n}+1}=\mathrm{y}_{\mathrm{n}}+\int_{\mathrm{t}}^{\mathrm{t}+\mathrm{h}} f\left(\mathbf{t}^{\prime}, \mathrm{y}\left(\mathbf{t}^{\prime}\right)\right) \mathrm{d} \mathrm{t}^{\prime}
$$

- Consecutive points may have a fixed step size $\mathbf{h}=\mathbf{x}_{\mathbf{k}+\mathbf{1}}-\mathbf{x}_{\mathbf{k}}$ or may be adaptive.
- $\mathbf{y}_{\mathbf{n + 1}}$ may be implicitly dependent on $\mathbf{f}\left(\mathbf{y}_{\mathbf{n}+\mathbf{1}}\right)$.

Stiff ODEs

- A stiff ODE is one that is hard to solve, i.e. requiring a very small stepsize \mathbf{h} or leading to instabilities in some algoritms.
- Usually due to wide variation of time scales in the ODEs.
- Not all methods equally suited for stiff ODEs. Implicit ones tend to be better for stiff problems.
compute •calcul
CANADA

ODE solver algorithms: Euler

To solve:

$$
\frac{d y}{d t}=f(t, y)
$$

Simple approximation:

$$
y_{n+1} \approx y_{n}+h f\left(t_{n}, y_{n}\right) \quad \text { "forward Euler" }
$$

Rationale:

$$
y\left(t_{n}+h\right)=y\left(t_{n}\right)+h \frac{d y}{d t}\left(t_{n}\right)+\mathcal{O}\left(h^{2}\right)
$$

So:

$$
y\left(t_{n}+h\right)=y\left(t_{n}\right)+h f\left(t_{n}, y_{n}\right)+\mathcal{O}\left(h^{2}\right)
$$

- $\mathcal{O}\left(\mathbf{h}^{2}\right)$ is the local error.
- For given interval $\left[\mathbf{t}_{\mathbf{1}}, \mathbf{t}_{\mathbf{2}}\right]$, there are $\mathbf{n}=\left(\mathbf{t}_{\mathbf{2}}-\mathbf{t}_{\mathbf{1}}\right) / \mathbf{h}$ steps
- Global error: $\mathbf{n O}\left(\mathbf{h}^{2}\right)=\mathbf{O}(\mathbf{h})$
- Not very accurate, nor very stable (next): don't use.

Stability

Example: solve harmonic oscillator numerically:

$$
\begin{aligned}
& \frac{d x}{d t}=y \\
& \frac{d y}{d t}=-x
\end{aligned}
$$

Using Euler gives

$$
\binom{x_{n+1}}{y_{n+1}}=\left(\begin{array}{cc}
1 & h \\
-h & 1
\end{array}\right)\binom{x_{n}}{y_{n}}
$$

Stability: eigenvalues of that matrix:

$$
\lambda_{ \pm}=1 \pm i h
$$

$$
\left|\lambda_{ \pm}\right|=\sqrt{1+h^{2}}>1
$$

Unstable for any h !

ODE algorithms: implicit mid-point Euler

To solve

$$
\frac{d y}{d t}=f(t, y)
$$

Symmetric simple approximation:

$$
y_{n+1} \approx y_{n}+h f\left(x_{n},\left(y_{n}+y_{n+1}\right) / 2\right) \quad \text { "mid-point Euler" }
$$

This is an implicit formula, i.e., has to be solved for $\mathbf{y}_{\mathbf{n}+\mathbf{1}}$.
Example: Harmonic oscillator

$$
\left(\begin{array}{cc}
1 & -\frac{h}{2} \\
\frac{h}{2} & 1
\end{array}\right)\binom{y_{n+1}^{[1]}}{y_{n+1}^{[2]}}=\left(\begin{array}{cc}
1 & \frac{h}{2} \\
-\frac{h}{2} & 1
\end{array}\right)\binom{y_{n}^{[1]}}{y_{n}^{[2]}}
$$

Eigenvalues \mathbf{M} are

$$
\Rightarrow\binom{y_{n+1}^{[1]}}{y_{n+1}^{[2]}}=M \cdot\binom{y_{n}^{[1]}}{y_{n}^{[2]}}
$$

Stable!

$$
\lambda \pm=\frac{(1 \pm i h / 2)^{2}}{1+h^{2} / 4 \text { SCiNet }}
$$

$$
\left|\lambda_{ \pm}\right|=1
$$

ODE solver algorithms: Predictor-Corrector

- Computation of new point
- Correction using that new point
- Gear P.C.: keep previous values of \mathbf{y} to do higher order Taylor series (predictor), then use \mathbf{f} in last point to correct. Can suffer from catestrophic cancellation at very low \mathbf{h}.
- Adams: Similarly uses past points to compute.
- Runge-Kutta: Refines by using mid-points.
- Some schemes require correction until convergence.
- Some schemes can use the jacobian, e.g. the derivatives of the right hand side.

Further ODE solver techniques

Adaptive methods:
As with the integration, rather than taking a fixed \mathbf{h}, vary \mathbf{h} such that the solution has a certain accuracy.

- Don't code this yourself!
- Good schemes are implemented in packages such as scipy.integrate.odeint, scipy.integrate.ode
- odeint uses an Adams integrator for non-stiff problems, and a backwards differentiation method for stiff problem.
- ode is a bit more flexible.

Lotka-Volterra using scipy.integrate.odeint

$$
\begin{aligned}
& \frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{x}(\alpha-\beta \mathrm{y}) \\
& \frac{\mathrm{dy}}{\mathrm{dt}}=-\mathrm{y}(\gamma-\delta \mathrm{x})
\end{aligned}
$$

from scipy.integrate \backslash
import odeint
alpha=0.1
beta=0.015
gamma=0.0225
delta=0.02
def system(z,t):
$x, y=z[0], z[1]$
$d x d t=x *(a l p h a-b e t a * y)$
dydt=-y*(gamma-delta*x)
return [dxdt,dydt]
$\mathrm{t}=$ linspace $(0,300 ., 1000)$
$\mathrm{x} 0, \mathrm{y} 0=1.0,1.0$
sol=odeint (system, $[x 0, y 0], t)$
$\mathrm{X}, \mathrm{Y}=\mathrm{sol}[:, 0], \operatorname{sol}[:, 1]$
plot (X,Y)

Conclusions

Conclusions

- Many different methods for numerical integration and solving ODEs
- Python package scipy.integrate helps you out.
- It has procedures to readily get good results: scipy.integrate.quad and scipy.integrate.odeint
- Unfortunately, hard to get what they really do:
- For scipy.integrate.quad, had to look into the scipy python source to know that it uses Legendre polynomials.
- For scipy.integrate.odeint, had to look into the fortran documentation
- If you're using sciPy for anything but exploration: do you research and learn what they really do!

Next Time

Next and Final Lecture

Thursday November 27, 2014, 11:00 am
 Topic: Partial differential equations

Different location
McLennan Physical Laboratories
MP134
60 St. George Street

