
Modern Fortran
for

Scientific Programming
Jonathan Dursi

Course Overview
(Times very approximate)

• Intro, History (10 min)
• New syntax (30 min), Hands on #1(60 min)
• Functions, Modules (45 min), Hands on #2 (30 min)
• Lunch (1 hr)
• New Array Features (15 min), Hands on #3 (30 min)
• Pointers & Interfaces (30 min), Hands on #4 (30 min)
• Derived Data Types and Objects (30 min)
• Interoperability with C,Python (30 min)
• Coarrays (30 min)

Fortran

• Only major compiled programming language
designed specifically for scientific
programming.

• Powerful array operations; many mathematical
functions (Bessel functions!) built in; designed
to enable compiler optimizations for fast
code

Fortran

• Oldest (54-57 yrs) still-used programming
language.

• Most people come to Fortran via being given
old code by someone.

• Can’t understand the old code, or quirks of
modern language, without understanding it’s
history

A Brief History of
Fortran

• 1957 - J.W. Backus et al. In
Proceedings Western Joint
Computer Conference, Los
Angeles, California,
February 1957.

• IBM 704
• (Arguably) first modern

compiled programming
language.

• Idea of compilers at all was
controversial at time.

http://www.softwarepreservation.org/projects/FORTRAN/

http://www.softwarepreservation.org/projects/FORTRAN/index.html
http://www.softwarepreservation.org/projects/FORTRAN/index.html

http://en.wikipedia.org/wiki/File:Fortran_acs_cover.jpeg

http://en.wikipedia.org/wiki/File:Fortran_acs_cover.jpeg
http://en.wikipedia.org/wiki/File:Fortran_acs_cover.jpeg

FORTRAN (1957)
• Fixed-column format to

simplify punched cards
• C in column 1 - comment
• Line labels in cols 2-5
• Continuation character in

col 6
• Code in cols 7-72.
• Continued until

Fortran90!
http://en.wikipedia.org/wiki/File:FortranCardPROJ039.agr.jpg

http://upload.wikimedia.org/wikipedia/commons/thumb/5/58/FortranCardPROJ039.agr.jpg/800px-FortranCardPROJ039.agr.jpg
http://upload.wikimedia.org/wikipedia/commons/thumb/5/58/FortranCardPROJ039.agr.jpg/800px-FortranCardPROJ039.agr.jpg

FORTRAN (1957)
• Variables did not need

declaration
• Any variables used

starting with i,j,k,l,m,n
were assumed integer, all
others real.

• Saved punched cards.
• Idea is with us today -

terrible idea.
• Already had

multidimensional arrays!
http://en.wikipedia.org/wiki/File:FortranCardPROJ039.agr.jpg

http://upload.wikimedia.org/wikipedia/commons/thumb/5/58/FortranCardPROJ039.agr.jpg/800px-FortranCardPROJ039.agr.jpg
http://upload.wikimedia.org/wikipedia/commons/thumb/5/58/FortranCardPROJ039.agr.jpg/800px-FortranCardPROJ039.agr.jpg

Incremental changes

• FORTRAN II (1958) - subroutines and
functions (good!) common blocks (terrible,
terrible). Still machine dependent (READ
INPUT TAPE)

• FORTRAN III - inline assembly - never
released

• FORTRAN IV (1961) - removed machine
dependancies

Many implementations,
standardization

• FORTRAN66:
• double precision, complex, logical types
• intrinsic and external routines

• With implementation of standard, loss of
machine dependency, started gaining wide use
on many computers

FORTRAN77

• The most common to see “in the wild” of old
code today

• if/else/endif, better do loops, control of
implicit typing

• Character strings, saved variables, IO
improvements

• Approved in 1978, beginning long tradition of
“optimistic” naming of standards by year.

The interregnum
• Programming languages and techniques were

moving quite quickly
• Several attempts were made to make new

version, but standardization process very
slow, failed repeatedly.

• Absent new real standard, implementations
began to grow in many different directions

• Some extensions became quasi-standard,
many were peculiar to individual compilers.

Fortran90

• Enormous changes; the basis of modern
Fortran (not FORTRAN!)

• Free form, array slices, modules, dynamic
memory allocation, derived types...

• Changes so major that took several years for
compilers to catch up.

• Modern fortran

And since...
• Fortran95 - modest changes to Fortran90, killed

off some deprecated F77 constructs.

• Fortran 2003 - bigger change; object-oriented, C
interoperability. Most compilers have pretty
good F2003 support.

• Fortran 2008 - mostly minor changes, with one
big addition (coarray), other parallel stuff.
Compiler-writers getting there.

F90, F95, F2003, F2008..

• We won’t distinguish between versions; we’ll
just show you a lot of useful features of
modern fortran.

• Will only show widely-implemented features
from 2003 and 8, with exception of coarrays;
these are being implemented and are very
important.

New Format,
New Syntax

Free
Format:
some
highlights

samples/freeform/
freeform.f90

Columns no longer significant;
can start at left margin

Implicit none.
Always, always use.

Variable declaration syntax changed
(more later)

Lines can be up to 132 char long;
to continue, put & at end of line.

 ! for comments;
comments out rest of line.

Numeric line labels are strongly
discouraged, but control
structures can be named
(more later)

<, > vs .lt., .gt.
<=, >= .le., .ge.
==, /= .eq., .neq.

Program, procedure can contain
other procedures

“program x” or “function y” ended by
“end program x” or “end function y”

Free Format Summary
• Case doesn’t matter (except strings)
• Lines can start anywhere, can be 132 cols

long
• Continue with an & at end of line
• Can continue a single line 255 times
• Comments - !, can start anywhere, comments

out rest of line
• Compilers can usually handle both old fixed

format and modern free format, but not
within the same file.

Variable Declarations

• Implicit none turns
off all implicit typing.

• Was a common F77
extension, but not
part of a standard.

• DO THIS. Without,
(eg) variable typos
don’t get caught.

Variable Declarations

• This is going to be a
recurring theme for
several features.

• You do a little more
typing and make things
explicit to compiler.

• Then compiler can
catch errors, optimize,
better.

Variable Declarations
• The “::” separating type

and name is new
• Type declarations can

now have a lot more
information

• Many attributes of
variables set on
declaration line

• :: makes it easier for
you, compiler, to see
where attributes stop
and variable names
begin

Variable Declarations

• Parameter attribute -
for values which will be
constants.

• Compiler error if try to
change them.

• Useful for things which
shouldn’t change.

• F77 equivalent:
 integer i
 parameter (i=5)

Variable Declarations
• Initialization of variables

at declaration time
• Required for

parameters (because
can’t change them
later), can be done for
other variables.

• Can do anything that
compiler can figure out
at compile time,
including math.

Variable Declarations
• Initializing variables this way

gives unexpected behaviour in
functions/subroutines “for
historical reasons”.

• Initialized variables given the
“save” attribute

• eg, integer, save, i=5

• Value saved between calls. Can
be handy - but not threadsafe.

• Initialization done only first
time through.

• Not a problem for main
program, parameters.

samples/variables/initialization/initialization.f90

Kinds
• Reals, Double

precisions, really
different “kinds” of
same “type” - floating
pt real #s.

• Kinds introduced to
give enhanced version
of functionality of
non-standard but
ubiquitous constructs
like REAL*8

samples/variables/kinds/realkinds.f90

Kinds
• real32, real64 defined

in iso_fortran_env in
newest compilers
(gfortran 4.6, ifort 12)

• selected_real_kind(N):
returns kind parameter
for reals with N
decimal digits of
precision

samples/variables/kinds/realkinds.f90

Kinds

• Default real is
generally 4-byte (32-
bit) real, has 6 digits
of precision and a
range of 37 in the
exponent.

Kinds
• Many built-in (‘intrinsic’)

functions which give info
about properties of a
variable’s numerical type.

• precision - #digits of
precision in decimal

• range - of exponent

• tiny, huge - smallest, largest
positive represented
number

• epsilon - machine epsilon

• several others

samples/variables/kinds/realkinds.f90

Kinds

• Similar constructs
for integers

• selected int kind(N):
kind can represent
all N-digit decimal
numbers.

• huge(N): largest
positive number of
that type

samples/variables/kinds/intkinds.f90

Kinds
• Similar constructs

for integers
• selected int kind(N):

kind can represent
all N-digit decimal
numbers.

• huge(N): largest
positive number of
that type

Strings
• Character types are

usually used for
strings

• Specify length
• Padded by blanks
• Intrinsic trim() gets

rid of blanks at end
• Can compare strings

with <,>,==, etc.
• Concatenate with //

Strings

• Characters have kinds too
• gfortran has partial support for

selected_char_kind(“ISO_10646”) for
unicode strings.

Array declarations

• Array declarations
have changed, too:

• dimension is now an
attribute

• Can easily declare
several arrays with
same dimension

Do loops

• Do loops syntax has
had some changes

• do/enddo - was a
common extension,
now standard.

samples/variables/doloops/doi.f90

Do loops
• All constructs now have

end constructname to end.
• Named constructs

(program, subroutine)
require, eg, end program
doi.

• Helps catch various
simple errors
(mismatched ends, etc.)

Do loops
• Can name control

structures like do, if
statements now, too.

• Handy for
documentation, or to
distinguish deeply-nested
loops.

• Again, can help catch
mismatched loops.

• enddo or end do; fortran
isn’t picky about spaces. samples/variables/doloops/nameddo.f90

Do loops
• Do loops don’t even

need a i=1,n
• do/enddo
• Will loop forever
• Can control looping with

cycle, exit
• exit - exits loop. (exit

loopname can exit out of
nested loops)

• cycle - jumps back to do
samples/variables/doloops/cycleexit.f90

Cycle/exit

samples/variables/doloops/cycleexit.f90

Do while
• do while - repeats as

long as precondition is
true.

• Seems like it should be
useful, but in practice,
just do/enddo with exit
condition is usually
cleaner.

samples/variables/doloops/dowhile.f90

Hands on #1
• In workedexample/f77 is a simplified, F77-

ized version of a fluid-dynamics code from Ue-
Li Pen, CITA, U of Toronto (http://
www.cita.utoronto.ca/~pen/MHD/)

• Today we’ll be translating it to a very modern
Fortran

• ssh -Y in to login nodes, then to devel nodes,
then compile (using make) and run (./hydro)

http://www.cita.utoronto.ca/~pen/MHD/
http://www.cita.utoronto.ca/~pen/MHD/
http://www.cita.utoronto.ca/~pen/MHD/
http://www.cita.utoronto.ca/~pen/MHD/

Hands on #1

• Outputs a .pbm file;
use “display
dens.pbm” to see the
result of dense blob
of fluid moving
through a light
medium.

Hands on #1
• In workedexamples/freeform, have partly

converted the program to new freeform
format, with enddos, ending procedures,
implicit nones, and new variable declaration
syntax.

• Finish doing so - just need to do program
hydro, subroutine color, subroutine
outputpbm, function cfl. Fix indenting (Don't
need to start at col 7 anymore).

• ~1 hr (for getting logged in and everything
working)

Procedures and
modules

• Several enhancements to how procedures
(functions, subroutines) are defined

• Modules are ways of organizing procedures,
definitions, into sensible units for ease of code
maintenance, clarity

Modules
• Easiest to show by

example
• Here, the gravity

module defines a
constant, and contains
a function

• Main program “use”s
the module, has access
to both.

• “Use” goes before
“implicit none”

samples/procedures/simplemod/simplemod.f90

Compiling & Running
• When compiling the code

a gravity.mod file is
created

• Machine-generated and -
readable “header” file
containing detailed type,
other information about
contents of module

• Not compatible between
different compilers,
versions.

Modules

• function gravforce can
“see” the module-
wide parameter
defined above.

• So can main program,
through use
statement.

samples/procedures/simplemod/simplemod.f90

use module, only :

• Best practice is to
only pull in from the
module what you
need

• Otherwise, everything.
• Adds some clarity and

documentation, good
for maintainability

samples/procedures/simplemod/simplemod2.f90

Modules usually get their own files

• For encapsulation
• For ease of re-use
• Here’s a slightly

expanded module;
• Let’s see how to

compile it.
• (Main program hasn’t

changed much).

samples/procedures/multifilemod/gravity.f90

Modules usually get their own files

• Compiling gravity.f90
now gives both an .o
file (containing the
code) and the .mod
file as before.

• Compiling the main
program
(multifilemod.f90)
requires the .mod file.

samples/procedures/multifilemod/Makefile

.mod needed for compilation
• ...because needs the

type information of
the constants,

• and type
information, number
and type of
parameters, for the
function call.

• Can’t compile
without these

samples/procedures/multifilemod/multifilemod.f90

.o needed for linking
• Linking, however,

doesn’t require
the .mod file

• Only requires the .o
file from the module
code.

• .mod file analogous
(but better than) .h
files for C code.

samples/procedures/multifilemod/Makefile

Compiling and running

• So compile files with modules first, so
those that need them have the .mod files

• Link the .o files

Private and public
• Not all of a module’s

content need be public
• Can give individual

items public or private
attribute

• “private” makes
everything private by
default

• Allows hiding
implementation-
specific routines

samples/procedures/multifilemod/gravity.f90

Procedures

• We’ve already seen
procedures defined in
new style; let’s look
more closely.

• Biggest change: intent
attribute to “dummy
variables” (eg,
parameters passed in/
out).

samples/procedures/funcsub/procedures.f90

Procedures
• Again, make expectations

more explicit, compiler can
catch errors, optimize.

• Intent(in) - read only. Error
to change.

• Intent(out) - write only.
Value undefined before set.

• Intent(inout) - read/write.
(eg, modify region of an
array)

• Also documentation of a
sort.

samples/procedures/funcsub/procedures.f90

Functions
• Can be typed a couple of ways.
• Old-style still works (real

function square..)
• Give a result variable different

from function name; set that,
type that
 result (xsquared)
 real :: xsquared

• Explicitly type the function
name, set that as return value
 real :: cube

• Function values don’t take
intent

samples/procedures/funcsub/procedures.f90

Procedure interfaces
• The interface to a procedure

consists of
• A procedure’s name
• The arguments, their names,

types and all attributes
• For functions, the return

value name and type
• Like a C prototype, but more

detailed info
• .mod files contain explicit

interfaces to all public module
procedures.

Procedure interfaces
• To see where interfaces

become necessary, consider
this sketch of a routine to do
trapezoid-rule integration

• We want to use a passed-in
function f, but we don’t know
anything about it - type, # of
arguments, etc.

• Need to “type” f the same way
you do with xlo, xhi, n.

• You do that for procedures
with interfaces

http://en.wikipedia.org/wiki/
File:Trapezoidal_rule_illustration_small.svg

http://en.wikipedia.org/wiki/File:Trapezoidal_rule_illustration_small.svg
http://en.wikipedia.org/wiki/File:Trapezoidal_rule_illustration_small.svg
http://en.wikipedia.org/wiki/File:Trapezoidal_rule_illustration_small.svg
http://en.wikipedia.org/wiki/File:Trapezoidal_rule_illustration_small.svg

Procedure interfaces

• Define f as a parameter, give its
type via an interface.

• Can then use it, and at compile
time compiler ensures function
passed in matches this
interface.

• samples/procedures/interface/
integrate.f90

Recursive procedures

• By default, Fortran procedures
cannot call themselves
(recursion)

• Can be enabled by giving the
procedure the recursive
attribute

• Subroutines, functions
• Recursive functions must use

“result” keyword to return
value.

samples/procedures/recursive/integrate.f90

Pure procedures

• Procedures are pure or
impure depending on
whether or not they have
“side effects”:
• Changing things other

than their dummy
arguments

• Modifying save variables
• Modifying module data
• Printing, etc.

samples/procedures/purity/purity.f90

Pure procedures

• Optimizations can be made
for pure routines which
can’t for impure

• Label known-pure routines
with the pure attribute.

• Almost all the procedures
we’ve seen so far are pure.

samples/procedures/purity/purity.f90

Optional Arguments

• Can make
arguments optional
by using the optional
attribute.

• Use present to test.
• Can’t use tol if not

present; have to use
another variable.

samples/procedures/optional/integrate.f90

Optional Arguments
• When calling the

procedure, can use
the optional
argument or not.

• Makes sense to leave
optional arguments at
end - easier to figure
out what’s what
when it’s omitted.

samples/procedures/optional/optional.f90

Keyword Arguments
• To avoid ambiguity with

omitted arguments - or
really whenever you
want - you can specify
which value is which
explicitly.

• Don’t have to be in
order.

• Can clarify calls of
routines with many
arguments.

samples/procedures/optional/optional.f90

Procedures & Modules
Summary

• Modules let you bundle procedures, constants
in useful packages.

• Can have public, private components
• Compiling them generates a .mod file

(needed for compiling anything that does a
“use modulename”) and an .o file (where the
code goes, needed to link together the
program).

Procedures & Modules
Summary

• New syntax for functions/subroutines: intent
(IN/OUT/INOUT)

• New syntax for function return values; result
or explicit typing of function in argument list.

• Procedures have interfaces, which are needed
for (eg) passing functions

• Optional/keyword arguments
• Pure/recursive procedures

Hands on #2

• In workedexamples/modules, have have
pulled the PBM stuff out into a module.

• Do the same with the hydro routines. What
needs to be private? Public?

• The common block (thankfully) only contains
constants, can make those module parameters

• ~30 min

Fortran arrays

• Fortran made for dealing with scientific data
• Arrays built into language
• The type information associated with an

array includes rank (# of dimension), size,
element type, stride..

• Enables powerful optimizations,
programmer-friendly features.

Fortran arrays

• Can be manipulated
like simple scalar
variables

• Elementwise
addition,
multiplication..

samples/arrays/basic.f90

Array constructors
• Can have array

constants like
numerical constants

• use [] or (/ /), then
comma-separated
list of values.

• Implied do loops
can be used in
constructors

• (Variables have to
be defined)

[1,2,3,4,5] or (/1,2,3,4,5/)

[(i,i=1,5)]

[((i*j,j=1,3),i=1,5)]

Elementwise operations
• Elementwise operations

can be */+-, or
application of an
elemental function.

• Math intrinsics are all
elemental - applied to
array, applies to every
element.

• Order of execution
undefined - allows
vectorization,
parallelization.

samples/arrays/elementwise.f90

Elemental Functions
• User can create their

own elemental functions
• Label any scalar function

with “elemental” -
should (until recently,
must) be pure, so can be
applied everywhere at
same time.

• Faster than in loop.
• Can also take multiple

arguments: eg
 z = addsquare(x,y) samples/arrays/elemental.f90

Array comparisons

• Array comparisons
return an array of
logicals of the same size
of the arrays.

• Can use any and all to
see if any or all of those
logicals are true.

samples/arrays/compare.f90

Array masks

• These logical arrays can
be used to mask several
operations

• Only do sums, mins, etc
where the mask is true

• Eg, only pick out positive
values.

• Many array intrinsics
have this mask option

samples/arrays/mask.f90

Where construct
• The where construct

can be used to easily
manipulate sections of
array based on arbitrary
comparisons.

• Where construct => for
whatever indices the
comparison is true, set
values as follow;
otherwise, set other
values.

samples/arrays/where.f90

Forall construct
• Forall is an array

assignment statement
• Each line in forall has to be

independent. All done “at
once” - no guarantees as
to order

• If (say) 2 lines in the forall,
all of the first line is done,
then all of the second.

• Any functions called must
be pure

• Can be vectorized or
parallelized by compiler

samples/arrays/forall.f90

Array Sections
• Generalization of array

indexing
• Familiar to users of

Matlab, IDL, Python..
• Can use “slices” of an

array using “index
triplet”
• [start]:[end][:step]

• Default start=1, default
end=size, default step=1.

• Can be used for each
index of multid array

a([start]:[end][:step])

a = [1,2,3,4,5,6,7,8,9,10]

a(7:) == [7,8,9,10]
a(:3) == [1,2,3]
a(2:4) == [2,3,4]
a(::3) == [1,4,7,10]
a(2:4:2) == [2,4]
a(2) == 2
a(:) == [1,2,3,4,5,6,7,8,9,10]

Array Sections

• This sort of thing is very
handy in numerical
computation

• Replace do-loops with
clearer, shorter, possibly
vectorized array
operations

• Bigger advantage for
multidimensional arrays samples/arrays/derivative.f90

Array Sections
• The previous sorts of array

sections - shifting things leftward
and rightward - are so common
there are intrinsics for them

• +ve shift shifts elements
leftwards (or array bounds
rightwards).

• cshift does circular shift - shifting
off the end of the array “wraps
around”.

• eoshift fills with zeros, or
optional filling.

• Can work on given dimension

a = [1,2,3,4,5]
cshift(a,1) == [2,3,4,5,1]
cshift(a,-1) == [5,1,2,3,4]
eoshift(a,1) ==[2,3,4,5,0]
eoshift(a,-1)==[0,1,2,3,4]

Other important array
intrinsics

• minval/maxval - finds min, max element in an array.
• minloc/maxloc - finds location of min/max element
• product/sum - returns product/sum of array elements
• reshape - Adjusts shape of array data. Eg:

 1,4
 reshape([1,2,3,4,5,6],[3,2]) == 2,5
 3,6

Linear algebra in Fortran

• Comes built in with transpose, matmul,
dot_product for dealing with arrays.

• matmul also does matrix-vector multiplication
• Either use these or system-provided BLAS

libraries - never, ever write yourself.

Linear algebra in Fortran

samples/arrays/matrix.f90

Array sizes and Assumed Shape

samples/arrays/matrix.f90

• Printmat routine here is
interesting - don’t pass
(a,rows,cols), just a.

• Can assume a rank-2 array,
and get size at runtime.

• Simplifies call, and eliminates
possible inconsistency: what if
rows, cols is wrong?

• size(array,dim) gets the size of
array in the dim dimension.

Array sizes and Assumed Shape

samples/arrays/matrix.f90

• Assumed shape arrays (eg,
dimension(:,:)) much better
than older ways of passing
arrays:
 integer nx, ny
 integer a(nx,ny)
or worse,
 integer a(*,ny)

• Information is thrown away,
possibility of inconsistency.

• Here, (:,:) means we know the
rank, but don’t know the size
yet.

Allocatable Arrays
• So far, all our programs have had fixed-size

arrays, set at compile time.
• To change problem size, have to edit code,

recompile.
• Has some advantages (optimization,

determinism) but very inflexible.
• Would like to be able to request memory

at run time, make array of desired size.
• Allocatable arrays are arguably most

important addition to Fortran.

Allocate(), Deallocate()

samples/arrays/allocatable.f90

• Give array a deferred size (eg,
dimension(:)) and the attribute
allocatable.

• When time to allocate it, use
allocate(a(n)).

• Deallocate with deallocate(a).
• In between, arrays can be used

as any other array.

Allocate(), Deallocate()

• If allocation fails (not enough memory available for
request), program will exit.

• Can control this by checking for an optional error code,
 allocate(a(n),stat=ierr)

• Can then test if ierr>0 (failure condition) and handle
gracefully.

• In scientific programming, the default behaviour is often
fine, if abrupt - you either have enough memory to run
the problem, or you don’t.

get_command_argument()

samples/arrays/allocatable2.f90

• Previous version still
depended on a compiled-in
number.

• Can read from file or from
console, but Fortran now has
standard way to get
command-line arguments

• Get the count of arguments,
and if there’s at least one
argument there, get it, read it
as integer, and allocate array.

get_command_argument()

samples/arrays/allocatable2.f90

Hands on #3

• Use array functionality to simplify hydro code
-- don't need to pass, array size, and can
simplify mathematics using array operations.

• In workedexamples/arrays, have modified
hydro to allocate u, and pbm to just take array.

• Do the same with the fluid dynamic routines in
solver.f90

• ~30 min

Fortran Pointers
• Pointers, or references,

refer to another
variable.

• Eg, p does not contain a
real value, but a
reference to another
real variable.

• Once associated with
another variable, can
read/write to it as if it
were stored “in” p.

real, target :: x = 3.2
real, pointer:: p

p => x

x

3.2

p x

Fortran Pointers

samples/pointers/ptr1.f90

Fortran Pointers
• Pointers are either

associated, null, or
undefined; start out life
undefined.

• Can associate them to
a variable with => , or
mark them as not
associated with any
valid variable by
pointing it to null().

real, target :: x = 3.2
real, pointer:: p

p => null()

xp x

Fortran Pointers

• Reading value from or
writing value to a null
pointer will cause
errors, probably crash.

real, target :: x = 3.2
real, pointer:: p

p => null()

xp x

Fortran Pointers

• Fortran pointers can’t
point just anywhere.

• Must reference a
variable with the same
type, that has the target
attribute.

real, target :: x = 3.2
real, pointer:: p

p => x

x

3.2

p x

Fortran Pointers

• Pointers can reference
other pointers.

• One must design
algorithms carefully so
that one doesn’t
deassociate p1 and then
access p2.

real, target :: x = 3.2
real, pointer:: p1, p2

p1 => x
p2 => p1

x

3.2

p1 xp2

Allocating a pointer
• Pointer doesn’t

necessarily have to have
another variable to
target

• Can allocate memory
for p to point to that
does not belong to any
other pointer.

• Must deallocate it when
done

real, pointer:: p

allocate(p)
p = 7.9

7.9

p

Allocating a Pointer

samples/pointers/ptr2.f90

What are they good
for? (1)

• Pointers are essential for
creating, maintaining
dynamic data structures

• Linked lists, trees, heaps..
• Some of these can be

sort-of implemented in
arrays, but very
awkward

• Adaptive meshes, tree-
based particle solvers
need these structures.

http://en.wikipedia.org/wiki/File:Singly-linked-list.svg

http://en.wikipedia.org/wiki/File:Max-Heap.svg

http://en.wikipedia.org/wiki/File:Singly-linked-list.svg
http://en.wikipedia.org/wiki/File:Singly-linked-list.svg
http://en.wikipedia.org/wiki/File:Max-Heap.svg
http://en.wikipedia.org/wiki/File:Max-Heap.svg

What are they good
for? (2)

• A pointer can be of
array type, not just
scalar

• Fortran pointers +
fortran arrays are quite
interesting; can create
“views” of subarrays

x
1 2 3 4 5 6 7

real, target, dimension(7) :: x
real, pointer:: p(:)

p => x(2:6)

p

Array Views

samples/pointers/views.f90

Hands on #4

• Use pointers to provide views into subsets of
the arrays in solver.f90 to clarify the functions.

• In workedexamples/pointers, have started
the process with cfl, hydroflux; try tackling
tvd1d, others.

• ~30 min

Derived Types and Objects
• Often, groups of

variables naturally go
together to represent a
larger structure

• Whenever you find
yourself passing the
same group of variables
to several routines, a
good candidate for a
derived type.

type griddomain
real :: xmin, xmax
real :: ymin, ymax
real :: nx, ny
real, dimension(:,:) :: u

endtype griddomain

type(griddomain) :: g

g % xmin = -1
g % xmax = +1

Derived Types and Objects

• Consider interval
arithmetic (good for
quantification of
uncertainties, etc).

• An interval inherently
has two values
associated with it - the
end points.

• Can make this a type.

samples/derivedtypes/simple/intervalmath.f90

Derived Types and Objects
• Note can access the

fields in the type with
“%”

• typename
(field1val,field2val..)
initializes a value of that
type.

• Can pass values of this
type to functions, etc.,
just like a built-in type.

samples/derivedtypes/simple/intervalmath.f90

Closing Hints

• Always give the compiler info it needs to help you by being
as explicit as possible
• implicit none, end [construct] [name], parameters for

constants, intent in/out, use only, etc.
• Always get as much info from compiler as possible - always

use -Wall (gfortran) or -warn all (ifort).

Useful Resources

• http://fortranwiki.org/
• Reference source; has all standards; Fortran2003/2008

status of major compilers
• http://en.wikipedia.org/wiki/Fortran_language_features

• Succinct summary of new features (spotty past F95)
• http://stackoverflow.com/questions/tagged/fortran

• Programmers Questions & Answers

http://fortranwiki.org
http://fortranwiki.org
http://en.wikipedia.org/wiki/Fortran_language_features
http://en.wikipedia.org/wiki/Fortran_language_features
http://stackoverflow.com/questions/tagged/fortran
http://stackoverflow.com/questions/tagged/fortran

