
HPC Best Practices

Ontario Summer School on
High Performance Computing

Scott Northrup
SciNet HPC Consortium

Compute Canada

June 28th, 2012

Outline

1 Work-flow

2 Batch Computing

3 Data Management
File Systems and I/O
Data Management
Parallel I/O

4 Development Overview
Compilers
Libraries

5 Performance Analysis

Acknowledgments

Contributing Material

HPC Best Practices - G. Baolai, SHARCNET

The Parallel File System and I/O - R. van Zon, SciNet

Monitoring Job Efficiently - R. van Zon, SciNet

Profiling and Tuning - L. J. Dursi, SciNet

Tuning MPI - L. J. Dursi, SciNet

Work-flow

Typical Simulation/Analysis Work-flow

pre-process (grid creation, partitioning)

solve/analysis

postpones (data-mining, generate plots)

Automate

learn and use script languages (bash, python)

use scheduler efficiently (job size, dependencies)

add data management into work-flow from beginning

Work-flow

Typical Simulation/Analysis Work-flow

pre-process (grid creation, partitioning)

solve/analysis

postpones (data-mining, generate plots)

Automate

learn and use script languages (bash, python)

use scheduler efficiently (job size, dependencies)

add data management into work-flow from beginning

Batch Computing

Batch computing

SciNet systems are batch compute clusters

Computing by submitting batch jobs to the scheduler.

When you submit a job, it gets placed in a queue.

Job priority is based on allocation and fairshare.

When sufficient nodes are free to execute a job, it starts the
job on the appropriate compute nodes.

Jobs remain ‘idle’ until resources become available.

Jobs can be temporarily ‘blocked’ if you submit too much.

Batch computing

Components

Torque: Resource manager providing control over batch jobs and
distributed compute nodes.

Moab: A policy-based job scheduler and event engine that
enables utility-based computing for clusters.

Fairshare: Mechanism using past utilization for prioritization.

Job cycle

Preparation

Compile

Test on devel
node

Determine
resources

Write job
script

llsubmit
qsub

Monitor

Job queued?

When will it
run?

What else is
queued?

Efficiency?

qstat -f
checkjob
showstart

showbf
showq

Control

Cancel job

Ssh to nodes

Interactive jobs

Debug queue

canceljob
top

qsub -I
qsub -q debug

Reports

Check .o/.e
jobname.{o,e}
usage stats on:
Scinet web
portal

showstats -u

Job cycle

Preparation

Compile

Test on devel
node

Determine
resources

Write job
script

llsubmit
qsub

Monitor

Job queued?

When will it
run?

What else is
queued?

Efficiency?

qstat -f
checkjob
showstart

showbf
showq

Control

Cancel job

Ssh to nodes

Interactive jobs

Debug queue

canceljob
top

qsub -I
qsub -q debug

Reports

Check .o/.e
jobname.{o,e}
usage stats on:
Scinet web
portal

showstats -u

Job cycle

Preparation

Compile

Test on devel
node

Determine
resources

Write job
script

llsubmit
qsub

Monitor

Job queued?

When will it
run?

What else is
queued?

Efficiency?

qstat -f
checkjob
showstart

showbf
showq

Control

Cancel job

Ssh to nodes

Interactive jobs

Debug queue

canceljob
top

qsub -I
qsub -q debug

Reports

Check .o/.e
jobname.{o,e}
usage stats on:
Scinet web
portal

showstats -u

Job cycle

Preparation

Compile

Test on devel
node

Determine
resources

Write job
script

llsubmit
qsub

Monitor

Job queued?

When will it
run?

What else is
queued?

Efficiency?

qstat -f
checkjob
showstart

showbf
showq

Control

Cancel job

Ssh to nodes

Interactive jobs

Debug queue

canceljob
top

qsub -I
qsub -q debug

Reports

Check .o/.e
jobname.{o,e}
usage stats on:
Scinet web
portal

showstats -u

Monitoring not-yet-running jobs

qstat and checkjob

Show torque status right away on GPC: qstat

Show moab status (better): checkjob jobid

See more details of the job: checkjob -v jobid
(e.g., why is my job blocked?)

showq

See all the jobs in the queue: showq (from gpc or tcs)

See your jobs in the queue: showq -u user

showstart and showbf

Estimate when a job may start: showbf

Estimate when a queued job may start: showstart jobid

Estimates only!

Monitoring running jobs

checkjob

checkjob jobid

showq

showq -r -u $USER

ssh

ssh node (node name from checkjob)

top: shows process state, memory and cpu usage

Job stdout/stderr files

{jobname}.o{jobid}
{jobname}.e{jobid}

Top example

Top example

Control

canceljob

If you spot a mistake: canceljob jobid

qsub for interactive and debug jobs
-I:

Interactive
After qsub, waits for jobs to start.
Usually combined with:

-q debug:

Debug queue has 10 nodes reserved for short jobs.
You can get 1 node for 2 hours, but also
8 nodes, for half an hour.

Job output/error files (*.e / *.o)

Data Management

Disk I/O

Common Uses

Checkpoint/Restart Files

Data Analysis

Data Organization

Time accurate and/or Optimization Runs

Batch and Data processing

Database

Disk I/O

Common Bottlenecks

Mechanical disks are slow!

System call overhead (open, close, read, write)

Shared file system (nfs, lustre, gpfs, etc)

HPC systems typically designed for high bandwidth (GB/s)
not IOPs

Uncoordinated independent accesses

Disk Access Rates over Time

Figure by R. Ross, Argonne National Laboratory, CScADS09

Memory/Storage Latency

Figure by R. Freitas and L Chiu, IBM Almaden Labs, FAST’10

Definitions

IOPs

Input/Output Operations Per Second (read,write,open,close,seek)

I/O Bandwidth

Quantity you read/write (think network bandwidth)

Comparisons

Device Bandwidth (MB/s) per-node IOPs per-node

SATA HDD 100 100 100 100
SSD HDD 250 250 4000 4000
SciNet 5000 1.25 30000 7.5

SciNet Filesystem

File System

1,790 1TB SATA disk drives, for a total
of 1.4PB

Two DCS9900 couplets, each delivering:

4-5 GB/s read/write access (bandwidth)
30,000 IOPs max (open, close, seek, . . .)

Single GPFS file system on TCS and GPC

I/O goes over infiniband (as of April 2012)

File system is parallel!

I/O Software Stack

Parallel File System

Parallel File System

Parallel File System

Parallel File System

Parallel File System

Parallel File System

Parallel File System

Parallel File System

Parallel File System

File Locks

Most parallel file systems use locks to manage concurrent file
access

Files are broken up into lock units

Clients obtain locks on units that they will access before I/O
occurs

Enables caching on clients as well (as long as client has a
lock, it knows its cached data is valid)

Locks are reclaimed from clients when others desire access

Parallel File System

Optimal for large shared files.

Behaves poorly under many small reads and writes, high IOPs

Your use of it affects everybody!
(Different from case with CPU and RAM which are not
shared.)

How you read and write, your file format, the number of files
in a directory, and how often you ls, affects every user!

The file system is shared over the network on GPC:
Hammering the file system can hurt process communications.

File systems are not infinite!
Bandwidth, metadata, IOPs, number of files, space, . . .

Parallel File System

2 jobs doing simultaneous I/O can take much longer than
twice a single job duration due to disk contention and
directory locking.

SciNet: 500+ users doing I/O from 4000 nodes.
That’s a lot of sharing and contention!

I/O Best Practices

Make a plan

Make a plan for your data needs:

How much will you generate,
How much do you need to save,
And where will you keep it?

Note that /scratch is temporary storage for 3 months or less.

Options?

1 Save on your departmental/local server/workstation
(it is possible to transfer TBs per day on a gigabit link);

2 Apply for a project space/HPSS allocation at next RAC call
(but space is very limited);

3 Change storage format.

I/O Best Practices

Monitor and control usage

Minimize use of filesystem commands like ls and du.

Regularly check your disk usage using
/scinet/gpc/bin/diskUsage.

Warning signs which should prompt careful consideration:

More than 100,000 files in your space
Average file size less than 100 MB

Monitor disk actions with top and strace

RAM is always faster than disk; think about using ramdisk.

Use gzip and tar to compress files to bundle many files into
one

Try gziping your data files. 30% not atypical!

Delete files that are no longer needed

Do ”housekeeping” (gzip, tar, delete) regularly.

I/O Best Practices

Do’s

Write binary format files
Faster I/O and less space than ASCII files.

Use parallel I/O if writing from many nodes

Maximize size of files. Large block I/O optimal!

Minimize number of files. Makes filesystem more responsive!

Don’ts

Don’t write lots of ASCII files. Lazy, slow, and wastes space!

Don’t write many hundreds of files in a 1 directory. (File
Locks)

Don’t write many small files (< 10MB).
System is optimized for large-block I/O.

Data Management

Formats

ASCII

Binary

MetaData (XML)

Databases

Standard Library’s (HDF5,NetCDF)

ASCII

American Standard Code for Information Interchange

Pros

Human Readable

Portable (architecture independent)

Cons

Inefficient Storage

Expensive for Read/Write (conversions)

Native Binary

100100100

Pros

Efficient Storage (256 x floats @4bytes takes 1024 bytes)

Efficient Read/Write (native)

Cons

Have to know the format to read

Portability (Endianness)

ASCII vs. binary

Writing 128M doubles

Format /scratch (GPCS) /dev/shm (RAM) /tmp (disk)

ASCII 173s 174s 260s
Binary 6s 1s 20s

Syntax

Format C FORTRAN

ASCII fprintf() open(6,file=’test’,form=’formatted’)
write(6,*)

Binary fwrite() open(6,file=’test’,form=’unformatted’)
write(6)

Metadata

What is Metadata?

Data about Data

File System: size, location, date, owner, etc.

App Data: File format, version, iteration, etc.

Example: XML

<?xml version="1.0" encoding="UTF-8" ?>
<slice_data>

<format>UTF1000</format>
<verstion>6.8</version>

<date> January 15th, 2010 </date>
<loc> 47 23.516 -122 02.625 </loc>

</slice_data>

Databases

Beyond flat files

Very powerful and flexible storage approach

Data organization and analysis can be greatly simplified

Enhanced performance over seek/sort depending on usage

Open Source Software

SQLite (serverless)
PostgreSQL
mySQL

“Standard” Formats

CGNS (CFD General Notation System)

IGES/STEP (CAD Geometry)

HDF5 (Hierarchical Data Format)

NetCDF (Network Common Data Format)

disciplineX version

Parallel I/O

Sequential I/O (only proc 0 Writes/Reads)

Pro

Trivially simple for small I/O
Some I/O libraries not parallel

Con

Bandwidth limited by rate one client can sustain
May not have enough memory on node to hold all data
Won’t scale (built in bottleneck)

Common Ways of Doing Parallel I/O

N files for N Processes

Pro

No interprocess communication or coordination necessary
Possibly better scaling than single sequential I/O

Con

As process counts increase, lots of (small) files, won’t scale
Data often must be post-processed into one file
Uncoordinated I/O may swamp file system (File LOCKS!)

Common Ways of Doing Parallel I/O

All Processes Access One File

Pro

Only one file
Data can be stored canonically, avoiding post-processing
Will scale if done correctly

Con

Uncoordinated I/O WILL swamp file system (File LOCKS!)
Requires more design and thought

Parallel I/O

What is Parallel I/O?

Multiple processes of a parallel program accessing data (reading or
writing) from a common file.

Parallel I/O

Why Parallel I/O?

Non-parallel I/O is simple but:

Poor performance (single process writes to one file)
Awkward and not interoperable with other tools (each process
writes a separate file)

Parallel I/O

Higher performance through collective and contiguous I/O
Single file (visualization, data management, storage, etc)
Works with file system not against it

Parallel I/O

Available Approaches

MPI-IO: MPI-2 Language Standard

HDF (Hierarchical Data Format)

NetCDF (Network Common Data Format)

Adaptable IO System (ADIOS)

Actively developed (OLCF,SandiaNL,GeorgiaTech) and used
on largest HPC systems (Jaguar,Blue Gene/P)
External to the code XML file describing the various elements
Uses MPI-IO, can work with HDF/NetCDF

Software Development

Software Development

Tools of the Trade

Editors/IDE

Version Control

Build System (make)

Compilers

Libraries

Debuggers (gdb,idb, Allinea DDT)

Memory (valgrind)

I/O (strace)

Performance (gprof,Scalasa,IPM)

Software Development

Tools of the Trade

Editors/IDE

Version Control

Build System (make)

Compilers

Libraries

Debuggers (gdb,idb, Allinea DDT)

Memory (valgrind)

I/O (strace)

Performance (gprof,Scalasa,IPM)

Software Development

Tools of the Trade

Editors/IDE

Version Control

Build System (make)

Compilers

Libraries

Debuggers (gdb,idb, Allinea DDT)

Memory (valgrind)

I/O (strace)

Performance (gprof,Scalasa,IPM)

Software Development

Tools of the Trade

Editors/IDE

Version Control

Build System (make)

Compilers

Libraries

Debuggers (gdb,idb, Allinea DDT)

Memory (valgrind)

I/O (strace)

Performance (gprof,Scalasa,IPM)

Software Development

Tools of the Trade

Editors/IDE

Version Control

Build System (make)

Compilers

Libraries

Debuggers (gdb,idb, Allinea DDT)

Memory (valgrind)

I/O (strace)

Performance (gprof,Scalasa,IPM)

Software Development

Tools of the Trade

Editors/IDE

Version Control

Build System (make)

Compilers

Libraries

Debuggers (gdb,idb, Allinea DDT)

Memory (valgrind)

I/O (strace)

Performance (gprof,Scalasa,IPM)

Software Development

Tools of the Trade

Editors/IDE

Version Control

Build System (make)

Compilers

Libraries

Debuggers (gdb,idb, Allinea DDT)

Memory (valgrind)

I/O (strace)

Performance (gprof,Scalasa,IPM)

Software Development

Tools of the Trade

Editors/IDE

Version Control

Build System (make)

Compilers

Libraries

Debuggers (gdb,idb, Allinea DDT)

Memory (valgrind)

I/O (strace)

Performance (gprof,Scalasa,IPM)

Software Development

Tools of the Trade

Editors/IDE

Version Control

Build System (make)

Compilers

Libraries

Debuggers (gdb,idb, Allinea DDT)

Memory (valgrind)

I/O (strace)

Performance (gprof,Scalasa,IPM)

Version Control

What is it?

A tool for managing changes in a set of files.

Figuring out who broke what where and when.

Why Do it?

Collaboration

Organization

Track Changes

Faster Development

Reduce Errors

Version Control

What is it?

A tool for managing changes in a set of files.

Figuring out who broke what where and when.

Why Do it?

Collaboration

Organization

Track Changes

Faster Development

Reduce Errors

Version Control

What is it?

A tool for managing changes in a set of files.

Figuring out who broke what where and when.

Why Do it?

Collaboration

Organization

Track Changes

Faster Development

Reduce Errors

Collaboration
With others and yourself

Questions

What if two (or more) people want to edit the same file at the
same time?

What if you work on SciNet and on your own computer?

Answers

Option 1: make them take turns

But then only one person can be working at any time
And how do you enforce the rule?

Option 2: patch up differences afterwards

Requires a lot of re-working
Stuff always gets lost

Option 3: Version Control

Collaboration
With others and yourself

Questions

What if two (or more) people want to edit the same file at the
same time?

What if you work on SciNet and on your own computer?

Answers

Option 1: make them take turns

But then only one person can be working at any time
And how do you enforce the rule?

Option 2: patch up differences afterwards

Requires a lot of re-working
Stuff always gets lost

Option 3: Version Control

Collaboration
With others and yourself

Questions

What if two (or more) people want to edit the same file at the
same time?

What if you work on SciNet and on your own computer?

Answers

Option 1: make them take turns

But then only one person can be working at any time
And how do you enforce the rule?

Option 2: patch up differences afterwards

Requires a lot of re-working
Stuff always gets lost

Option 3: Version Control

Collaboration
With others and yourself

Questions

What if two (or more) people want to edit the same file at the
same time?

What if you work on SciNet and on your own computer?

Answers

Option 1: make them take turns

But then only one person can be working at any time
And how do you enforce the rule?

Option 2: patch up differences afterwards

Requires a lot of re-working
Stuff always gets lost

Option 3: Version Control

Collaboration
With others and yourself

Questions

What if two (or more) people want to edit the same file at the
same time?

What if you work on SciNet and on your own computer?

Answers

Option 1: make them take turns

But then only one person can be working at any time
And how do you enforce the rule?

Option 2: patch up differences afterwards

Requires a lot of re-working
Stuff always gets lost

Option 3: Version Control

Collaboration
With others and yourself

Questions

What if two (or more) people want to edit the same file at the
same time?

What if you work on SciNet and on your own computer?

Answers

Option 1: make them take turns

But then only one person can be working at any time
And how do you enforce the rule?

Option 2: patch up differences afterwards

Requires a lot of re-working
Stuff always gets lost

Option 3: Version Control

Collaboration
With others and yourself

Questions

What if two (or more) people want to edit the same file at the
same time?

What if you work on SciNet and on your own computer?

Answers

Option 1: make them take turns

But then only one person can be working at any time
And how do you enforce the rule?

Option 2: patch up differences afterwards

Requires a lot of re-working
Stuff always gets lost

Option 3: Version Control

Organize and Track Changes

Question

Want to undo changes to a file

Start work, realize it’s the wrong approach, want to get back
to starting point
Like ”undo” in an editor...
...but keep the whole history of every file, forever

Also want to be able to see who changed what, when

The best way to find out how something works is often to ask
the person who wrote it

Answer

Version Control

Organize and Track Changes

Question

Want to undo changes to a file

Start work, realize it’s the wrong approach, want to get back
to starting point
Like ”undo” in an editor...
...but keep the whole history of every file, forever

Also want to be able to see who changed what, when

The best way to find out how something works is often to ask
the person who wrote it

Answer

Version Control

Organize and Track Changes

Question

Want to undo changes to a file

Start work, realize it’s the wrong approach, want to get back
to starting point
Like ”undo” in an editor...
...but keep the whole history of every file, forever

Also want to be able to see who changed what, when

The best way to find out how something works is often to ask
the person who wrote it

Answer

Version Control

Organize and Track Changes

Question

Want to undo changes to a file

Start work, realize it’s the wrong approach, want to get back
to starting point
Like ”undo” in an editor...
...but keep the whole history of every file, forever

Also want to be able to see who changed what, when

The best way to find out how something works is often to ask
the person who wrote it

Answer

Version Control

What Software to Use

Software

Open Source

Subversion, CVS, RCS
Git, Mercurial, Bazaar

Commercial

Perforce, ClearCase

available as modules on SciNet

Version Control Software

Subversion (svn)

Centralized Version Control

Replaces CVS

Lots of web and GUI integration

Users: GCC, KDE, FreeBSD

Git

Distributed Version Control

*nix command line driven design model

advanced features git-stash, git-rebase, git-cherry-pick

Users: Linux kernel, GNOME, Wine, X.org

Compiler Flags and Optimizations

Numerical Libraries

Numerical Computing

Numerical Methods

Linear algebra

Nonlinear equations

Optimization

Interpolation/Approximation

Integration and differentiation

Solving ODEs

Solving PDEs

FFT

Random numbers and stochastic simulations

Special functions

Numerical Algorithms

Top Ten Algorithms for Science (Jack Dongarra, 2000)

1. Metropolis Algorithm for Monte Carlo
2. Simplex Method for Linear Programming
3. Krylov Subspace Iteration Methods
4. The Decompositional Approach to Matrix Computations
5. The Fortran Optimizing Compiler
6. QR Algorithm for Computing Eigenvalues
7. Quicksort Algorithm for Sorting
8. Fast Fourier Transform
9. Integer Relation Detection
10. Fast Multipole Method

Numerical Algorithms

Argonne National Laboratory GBB

Libraries

Numerical Libraries

BLAS (gotoblas, ATLAS)

LAPACK (ESSL, MKL, ACML)

ScaLAPACK

GSL (GNU Scientific Library)

FFTW

PETSc

TAO

IMSL

NAG

Don’t re-invent the wheel!

Libraries

Numerical Libraries

BLAS (gotoblas, ATLAS)

LAPACK (ESSL, MKL, ACML)

ScaLAPACK

GSL (GNU Scientific Library)

FFTW

PETSc

TAO

IMSL

NAG

Don’t re-invent the wheel!

Performance & Profiling

	Work-flow
	Batch Computing
	
	Data Management
	File Systems and I/O
	Data Management
	Parallel I/O

	Development Overview
	Compilers
	Libraries

	Performance Analysis

