
1/61 – Parallel Debugging with DDT – SciNet

Parallel Debugging with DDT

Ramses van Zon, Jonathan Dursi
SciNet HPC Consortium

University of Toronto

November 28, 2012

2/61 – Parallel Debugging with DDT – SciNet

Outline

I Debugging Basics

I Debugging with the command line: GDB

I Debugging with DDT

3/61 – Parallel Debugging with DDT – SciNet

Debugging basics

4/61 – Parallel Debugging with DDT – SciNet

Debugging basics

Help, my program doesn’t work!
$ icc -O3 answer.c
$./a.out
Segmentation fault↓

a miracle occurs
↓

My program works brilliantly!
$ icc -O3 answer.c
$./a.out
42

I Unfortunately, “miracles” are not yet supported by SciNet.

Debugging:

Methodical process of finding and fixing flaws in software

4/61 – Parallel Debugging with DDT – SciNet

Debugging basics

Help, my program doesn’t work!

$ icc -O3 answer.c
$./a.out
Segmentation fault↓

a miracle occurs
↓

My program works brilliantly!
$ icc -O3 answer.c
$./a.out
42

I Unfortunately, “miracles” are not yet supported by SciNet.

Debugging:

Methodical process of finding and fixing flaws in software

4/61 – Parallel Debugging with DDT – SciNet

Debugging basics

Help, my program doesn’t work!
$ icc -O3 answer.c
$./a.out
Segmentation fault

↓
a miracle occurs

↓
My program works brilliantly!

$ icc -O3 answer.c
$./a.out
42

I Unfortunately, “miracles” are not yet supported by SciNet.

Debugging:

Methodical process of finding and fixing flaws in software

4/61 – Parallel Debugging with DDT – SciNet

Debugging basics

Help, my program doesn’t work!
$ icc -O3 answer.c
$./a.out
Segmentation fault↓

a miracle occurs
↓

My program works brilliantly!
$ icc -O3 answer.c
$./a.out
42

I Unfortunately, “miracles” are not yet supported by SciNet.

Debugging:

Methodical process of finding and fixing flaws in software

4/61 – Parallel Debugging with DDT – SciNet

Debugging basics

Help, my program doesn’t work!
$ icc -O3 answer.c
$./a.out
Segmentation fault↓

a miracle occurs
↓

My program works brilliantly!

$ icc -O3 answer.c
$./a.out
42

I Unfortunately, “miracles” are not yet supported by SciNet.

Debugging:

Methodical process of finding and fixing flaws in software

4/61 – Parallel Debugging with DDT – SciNet

Debugging basics

Help, my program doesn’t work!
$ icc -O3 answer.c
$./a.out
Segmentation fault↓

a miracle occurs
↓

My program works brilliantly!
$ icc -O3 answer.c
$./a.out
42

I Unfortunately, “miracles” are not yet supported by SciNet.

Debugging:

Methodical process of finding and fixing flaws in software

4/61 – Parallel Debugging with DDT – SciNet

Debugging basics

Help, my program doesn’t work!
$ icc -O3 answer.c
$./a.out
Segmentation fault↓

a miracle occurs
↓

My program works brilliantly!
$ icc -O3 answer.c
$./a.out
42

I Unfortunately, “miracles” are not yet supported by SciNet.

Debugging:

Methodical process of finding and fixing flaws in software

4/61 – Parallel Debugging with DDT – SciNet

Debugging basics

Help, my program doesn’t work!
$ icc -O3 answer.c
$./a.out
Segmentation fault↓

a miracle occurs
↓

My program works brilliantly!
$ icc -O3 answer.c
$./a.out
42

I Unfortunately, “miracles” are not yet supported by SciNet.

Debugging:

Methodical process of finding and fixing flaws in software

5/61 – Parallel Debugging with DDT – SciNet

Common symptoms

Errors at compile time

I Syntax errors: easy to fix

I Library issues

I Cross-compiling

I Compiler warnings
Always switch this on, and fix or understand them!

But just because it compiles does not mean it is correct!

Runtime errors

I Floating point exceptions

I Segmentation fault

I Aborted

I Incorrect output (nans)

5/61 – Parallel Debugging with DDT – SciNet

Common symptoms

Errors at compile time

I Syntax errors: easy to fix

I Library issues

I Cross-compiling

I Compiler warnings

Always switch this on, and fix or understand them!

But just because it compiles does not mean it is correct!

Runtime errors

I Floating point exceptions

I Segmentation fault

I Aborted

I Incorrect output (nans)

5/61 – Parallel Debugging with DDT – SciNet

Common symptoms

Errors at compile time

I Syntax errors: easy to fix

I Library issues

I Cross-compiling

I Compiler warnings
Always switch this on, and fix or understand them!

But just because it compiles does not mean it is correct!

Runtime errors

I Floating point exceptions

I Segmentation fault

I Aborted

I Incorrect output (nans)

5/61 – Parallel Debugging with DDT – SciNet

Common symptoms

Errors at compile time

I Syntax errors: easy to fix

I Library issues

I Cross-compiling

I Compiler warnings
Always switch this on, and fix or understand them!

But just because it compiles does not mean it is correct!

Runtime errors

I Floating point exceptions

I Segmentation fault

I Aborted

I Incorrect output (nans)

5/61 – Parallel Debugging with DDT – SciNet

Common symptoms

Errors at compile time

I Syntax errors: easy to fix

I Library issues

I Cross-compiling

I Compiler warnings
Always switch this on, and fix or understand them!

But just because it compiles does not mean it is correct!

Runtime errors

I Floating point exceptions

I Segmentation fault

I Aborted

I Incorrect output (nans)

5/61 – Parallel Debugging with DDT – SciNet

Common symptoms

Errors at compile time

I Syntax errors: easy to fix

I Library issues

I Cross-compiling

I Compiler warnings
Always switch this on, and fix or understand them!

But just because it compiles does not mean it is correct!

Runtime errors

I Floating point exceptions

I Segmentation fault

I Aborted

I Incorrect output (nans)

6/61 – Parallel Debugging with DDT – SciNet

Common issues

Arithmetic corner cases (sqrt(-0.0)), infinities

Memory access Index out of range, uninitialized pointers.

Logic Infinite loop

Misuse wrong input, ignored error, no initialization

Syntax wrong operators/arguments

Resource starvation memory leak, quota overflow

Parallel race conditions, deadlock

7/61 – Parallel Debugging with DDT – SciNet

What is going on?

I Almost always, a condition you are sure is satisfied, is not.

I But your programs likely relies on many such assumptions.

I First order of business is finding out what goes wrong, and
what assumption is not warranted.

I A debugger is a program to help detect errors in other
programs.

I You are the real debugger.

8/61 – Parallel Debugging with DDT – SciNet

Ways to debug

I Preemptive:
I Turn on compiler warnings: fix or understand them!
I Check your assumptions (e.g. use assert).

I Inspect the exit code and read the error messages!

I Add print statements←No way to debug!

8/61 – Parallel Debugging with DDT – SciNet

Ways to debug

I Preemptive:
I Turn on compiler warnings: fix or understand them!
I Check your assumptions (e.g. use assert).

I Inspect the exit code and read the error messages!

I Add print statements←No way to debug!

8/61 – Parallel Debugging with DDT – SciNet

Ways to debug

I Preemptive:
I Turn on compiler warnings: fix or understand them!
I Check your assumptions (e.g. use assert).

I Inspect the exit code and read the error messages!

I Add print statements←No way to debug!

8/61 – Parallel Debugging with DDT – SciNet

Ways to debug

I Preemptive:
I Turn on compiler warnings: fix or understand them!
I Check your assumptions (e.g. use assert).

I Inspect the exit code and read the error messages!

I Add print statements

←No way to debug!

8/61 – Parallel Debugging with DDT – SciNet

Ways to debug

I Preemptive:
I Turn on compiler warnings: fix or understand them!
I Check your assumptions (e.g. use assert).

I Inspect the exit code and read the error messages!

I Add print statements←No way to debug!

9/61 – Parallel Debugging with DDT – SciNet

Ways to debug

I Command-line based, symbolic debuggers

I GNU debugger: gdb
I Intel debugger command-line: idbc

I Symbolic debuggers with Graphical User Interface

I GNU data display debugger: ddd
I Intel debugger: idb
I IDEs: Eclipse, NetBeans (neither on SciNet), emacs/gdb
I Allinea DDT: ddt
I Rogue Wave TotalView (not available at SciNet)

9/61 – Parallel Debugging with DDT – SciNet

Ways to debug

I Command-line based, symbolic debuggers

I GNU debugger: gdb
I Intel debugger command-line: idbc

I Symbolic debuggers with Graphical User Interface

I GNU data display debugger: ddd
I Intel debugger: idb
I IDEs: Eclipse, NetBeans (neither on SciNet), emacs/gdb
I Allinea DDT: ddt
I Rogue Wave TotalView (not available at SciNet)

9/61 – Parallel Debugging with DDT – SciNet

Ways to debug

I Command-line based, symbolic debuggers

I GNU debugger: gdb
I Intel debugger command-line: idbc

I Symbolic debuggers with Graphical User Interface

I GNU data display debugger: ddd
I Intel debugger: idb
I IDEs: Eclipse, NetBeans (neither on SciNet), emacs/gdb
I Allinea DDT: ddt
I Rogue Wave TotalView (not available at SciNet)

10/61 – Parallel Debugging with DDT – SciNet

What’s wrong with using print statements?

Strategy

I Constant cycle:

1. strategically add print statements
2. compile
3. run
4. analyze output bug not found?

�

I Removing the extra code after the bug is fixed

I Repeat for each bug

Problems with this approach

I Time consuming

I Error prone

I Changes memory, timing. . . There’s a better way!

10/61 – Parallel Debugging with DDT – SciNet

What’s wrong with using print statements?

Strategy

I Constant cycle:

1. strategically add print statements
2. compile
3. run
4. analyze output bug not found?

�

I Removing the extra code after the bug is fixed

I Repeat for each bug

Problems with this approach

I Time consuming

I Error prone

I Changes memory, timing. . . There’s a better way!

10/61 – Parallel Debugging with DDT – SciNet

What’s wrong with using print statements?

Strategy

I Constant cycle:

1. strategically add print statements

2. compile
3. run
4. analyze output bug not found?

�

I Removing the extra code after the bug is fixed

I Repeat for each bug

Problems with this approach

I Time consuming

I Error prone

I Changes memory, timing. . . There’s a better way!

10/61 – Parallel Debugging with DDT – SciNet

What’s wrong with using print statements?

Strategy

I Constant cycle:

1. strategically add print statements
2. compile

3. run
4. analyze output bug not found?

�

I Removing the extra code after the bug is fixed

I Repeat for each bug

Problems with this approach

I Time consuming

I Error prone

I Changes memory, timing. . . There’s a better way!

10/61 – Parallel Debugging with DDT – SciNet

What’s wrong with using print statements?

Strategy

I Constant cycle:

1. strategically add print statements
2. compile
3. run

4. analyze output bug not found?

�

I Removing the extra code after the bug is fixed

I Repeat for each bug

Problems with this approach

I Time consuming

I Error prone

I Changes memory, timing. . . There’s a better way!

10/61 – Parallel Debugging with DDT – SciNet

What’s wrong with using print statements?

Strategy

I Constant cycle:

1. strategically add print statements
2. compile
3. run
4. analyze output

bug not found?

�

I Removing the extra code after the bug is fixed

I Repeat for each bug

Problems with this approach

I Time consuming

I Error prone

I Changes memory, timing. . . There’s a better way!

10/61 – Parallel Debugging with DDT – SciNet

What’s wrong with using print statements?

Strategy

I Constant cycle:

1. strategically add print statements
2. compile
3. run
4. analyze output bug not found?

�

I Removing the extra code after the bug is fixed

I Repeat for each bug

Problems with this approach

I Time consuming

I Error prone

I Changes memory, timing. . . There’s a better way!

10/61 – Parallel Debugging with DDT – SciNet

What’s wrong with using print statements?

Strategy

I Constant cycle:

1. strategically add print statements
2. compile
3. run
4. analyze output bug not found?

�

I Removing the extra code after the bug is fixed

I Repeat for each bug

Problems with this approach

I Time consuming

I Error prone

I Changes memory, timing. . . There’s a better way!

10/61 – Parallel Debugging with DDT – SciNet

What’s wrong with using print statements?

Strategy

I Constant cycle:

1. strategically add print statements
2. compile
3. run
4. analyze output bug not found?

�

I Removing the extra code after the bug is fixed

I Repeat for each bug

Problems with this approach

I Time consuming

I Error prone

I Changes memory, timing. . . There’s a better way!

10/61 – Parallel Debugging with DDT – SciNet

What’s wrong with using print statements?

Strategy

I Constant cycle:

1. strategically add print statements
2. compile
3. run
4. analyze output bug not found?

�

I Removing the extra code after the bug is fixed

I Repeat for each bug

Problems with this approach

I Time consuming

I Error prone

I Changes memory, timing. . . There’s a better way!

10/61 – Parallel Debugging with DDT – SciNet

What’s wrong with using print statements?

Strategy

I Constant cycle:

1. strategically add print statements
2. compile
3. run
4. analyze output bug not found?

�

I Removing the extra code after the bug is fixed

I Repeat for each bug

Problems with this approach

I Time consuming

I Error prone

I Changes memory, timing. . . There’s a better way!

10/61 – Parallel Debugging with DDT – SciNet

What’s wrong with using print statements?

Strategy

I Constant cycle:

1. strategically add print statements
2. compile
3. run
4. analyze output bug not found?

�

I Removing the extra code after the bug is fixed

I Repeat for each bug

Problems with this approach

I Time consuming

I Error prone

I Changes memory, timing. . .

There’s a better way!

10/61 – Parallel Debugging with DDT – SciNet

What’s wrong with using print statements?

Strategy

I Constant cycle:

1. strategically add print statements
2. compile
3. run
4. analyze output bug not found?

�

I Removing the extra code after the bug is fixed

I Repeat for each bug

Problems with this approach

I Time consuming

I Error prone

I Changes memory, timing. . . There’s a better way!

11/61 – Parallel Debugging with DDT – SciNet

Symbolic debuggers

12/61 – Parallel Debugging with DDT – SciNet

Symbolic debuggers

Features

1. Crash inspection

2. Function call stack

3. Step through code

4. Automated interruption

5. Variable checking and setting

Use a graphical debugger or not?

I Local work station: graphical is convenient
I Remotely (SciNet):

I Some graphical debuggers slow (connection)
I Command-line based debuggers fast (esp. gdb).
I Ddt: gui-based, with graphics light enough to work remotely.

I Graphical and text-based debuggers use the same concepts.

12/61 – Parallel Debugging with DDT – SciNet

Symbolic debuggers

Features

1. Crash inspection

2. Function call stack

3. Step through code

4. Automated interruption

5. Variable checking and setting

Use a graphical debugger or not?

I Local work station: graphical is convenient
I Remotely (SciNet):

I Some graphical debuggers slow (connection)
I Command-line based debuggers fast (esp. gdb).
I Ddt: gui-based, with graphics light enough to work remotely.

I Graphical and text-based debuggers use the same concepts.

12/61 – Parallel Debugging with DDT – SciNet

Symbolic debuggers

Features

1. Crash inspection

2. Function call stack

3. Step through code

4. Automated interruption

5. Variable checking and setting

Use a graphical debugger or not?

I Local work station: graphical is convenient
I Remotely (SciNet):

I Some graphical debuggers slow (connection)
I Command-line based debuggers fast (esp. gdb).
I Ddt: gui-based, with graphics light enough to work remotely.

I Graphical and text-based debuggers use the same concepts.

12/61 – Parallel Debugging with DDT – SciNet

Symbolic debuggers

Features

1. Crash inspection

2. Function call stack

3. Step through code

4. Automated interruption

5. Variable checking and setting

Use a graphical debugger or not?

I Local work station: graphical is convenient
I Remotely (SciNet):

I Some graphical debuggers slow (connection)
I Command-line based debuggers fast (esp. gdb).
I Ddt: gui-based, with graphics light enough to work remotely.

I Graphical and text-based debuggers use the same concepts.

13/61 – Parallel Debugging with DDT – SciNet

Symbolic debuggers

Preparing the executable

I Required: compile with -g.

I Optional: switch off optimization -O0

I Same for gcc, g++, gfortran, icc, ifort, xlf, mpif90, mpicc, . . .

I For nvcc (i.e. cuda), also add -G

Command-line based symbolic debuggers

I gdb← Focus on this one

I idbc← Has gdb mode

$ module load intel

$ icc -g -O0 example.c -o example

$ module load gdb

$ gdb example

...

(gdb)

13/61 – Parallel Debugging with DDT – SciNet

Symbolic debuggers

Preparing the executable

I Required: compile with -g.

I Optional: switch off optimization -O0

I Same for gcc, g++, gfortran, icc, ifort, xlf, mpif90, mpicc, . . .

I For nvcc (i.e. cuda), also add -G

Command-line based symbolic debuggers

I gdb

← Focus on this one

I idbc← Has gdb mode

$ module load intel

$ icc -g -O0 example.c -o example

$ module load gdb

$ gdb example

...

(gdb)

13/61 – Parallel Debugging with DDT – SciNet

Symbolic debuggers

Preparing the executable

I Required: compile with -g.

I Optional: switch off optimization -O0

I Same for gcc, g++, gfortran, icc, ifort, xlf, mpif90, mpicc, . . .

I For nvcc (i.e. cuda), also add -G

Command-line based symbolic debuggers

I gdb← Focus on this one

I idbc

← Has gdb mode

$ module load intel

$ icc -g -O0 example.c -o example

$ module load gdb

$ gdb example

...

(gdb)

13/61 – Parallel Debugging with DDT – SciNet

Symbolic debuggers

Preparing the executable

I Required: compile with -g.

I Optional: switch off optimization -O0

I Same for gcc, g++, gfortran, icc, ifort, xlf, mpif90, mpicc, . . .

I For nvcc (i.e. cuda), also add -G

Command-line based symbolic debuggers

I gdb← Focus on this one

I idbc← Has gdb mode

$ module load intel

$ icc -g -O0 example.c -o example

$ module load gdb

$ gdb example

...

(gdb)

13/61 – Parallel Debugging with DDT – SciNet

Symbolic debuggers

Preparing the executable

I Required: compile with -g.

I Optional: switch off optimization -O0

I Same for gcc, g++, gfortran, icc, ifort, xlf, mpif90, mpicc, . . .

I For nvcc (i.e. cuda), also add -G

Command-line based symbolic debuggers

I gdb← Focus on this one

I idbc← Has gdb mode

$ module load intel

$ icc -g -O0 example.c -o example

$ module load gdb

$ gdb example

...

(gdb)

14/61 – Parallel Debugging with DDT – SciNet

GDB

15/61 – Parallel Debugging with DDT – SciNet

What is GDB?

I Free, GNU license, symbolic debugger.

I Available on many systems.

I Been around for a while, but still developed and up-to-date

I Text based, but has a ’-tui’ option.

16/61 – Parallel Debugging with DDT – SciNet

GDB command summary
help h print description of command
run r run from the start (+args)
backtrace/where ba function call stack
break b set breakpoint
delete d delete breakpoint
continue c continue
step s step into function
next n continue until next line
print p print variable
quit q quit

finish fin continue until function end
set variable set var change variable
down do go to called function
tbreak tb set temporary breakpoint
until unt continue until line/function
up up go to caller
watch wa stop if variable changes
watch wa stop if variable changes
quit q quit gdb

17/61 – Parallel Debugging with DDT – SciNet

GDB basic building blocks

18/61 – Parallel Debugging with DDT – SciNet

GDB building blocks #1: Inspect crashes

Inspecting core files

Core = file containing state of program after a crash

I needs max core size set (ulimit -c <number>)

I gdb reads with gdb <executable> <corefile>

I it will show you where the program crashed

No core file?

I can start gdb as gdb <executable>

I type run to start program

I gdb will show you where the program crashed if it does.

18/61 – Parallel Debugging with DDT – SciNet

GDB building blocks #1: Inspect crashes

Inspecting core files

Core = file containing state of program after a crash

I needs max core size set (ulimit -c <number>)

I gdb reads with gdb <executable> <corefile>

I it will show you where the program crashed

No core file?

I can start gdb as gdb <executable>

I type run to start program

I gdb will show you where the program crashed if it does.

18/61 – Parallel Debugging with DDT – SciNet

GDB building blocks #1: Inspect crashes

Inspecting core files

Core = file containing state of program after a crash

I needs max core size set (ulimit -c <number>)

I gdb reads with gdb <executable> <corefile>

I it will show you where the program crashed

No core file?

I can start gdb as gdb <executable>

I type run to start program

I gdb will show you where the program crashed if it does.

18/61 – Parallel Debugging with DDT – SciNet

GDB building blocks #1: Inspect crashes

Inspecting core files

Core = file containing state of program after a crash

I needs max core size set (ulimit -c <number>)

I gdb reads with gdb <executable> <corefile>

I it will show you where the program crashed

No core file?

I can start gdb as gdb <executable>

I type run to start program

I gdb will show you where the program crashed if it does.

18/61 – Parallel Debugging with DDT – SciNet

GDB building blocks #1: Inspect crashes

Inspecting core files

Core = file containing state of program after a crash

I needs max core size set (ulimit -c <number>)

I gdb reads with gdb <executable> <corefile>

I it will show you where the program crashed

No core file?

I can start gdb as gdb <executable>

I type run to start program

I gdb will show you where the program crashed if it does.

19/61 – Parallel Debugging with DDT – SciNet

GDB building blocks #2: Function call stack

Interrupting program

I Press Crtl-C while program is running in gdb

I gdb will show you where the program was.

Stack trace

I From what functions was this line reached?

I What were the arguments of those function calls?

gdb commands

backtrace function call stack
continue continue
down go to called function
up go to caller

19/61 – Parallel Debugging with DDT – SciNet

GDB building blocks #2: Function call stack

Interrupting program

I Press Crtl-C while program is running in gdb

I gdb will show you where the program was.

Stack trace

I From what functions was this line reached?

I What were the arguments of those function calls?

gdb commands

backtrace function call stack
continue continue
down go to called function
up go to caller

19/61 – Parallel Debugging with DDT – SciNet

GDB building blocks #2: Function call stack

Interrupting program

I Press Crtl-C while program is running in gdb

I gdb will show you where the program was.

Stack trace

I From what functions was this line reached?

I What were the arguments of those function calls?

gdb commands

backtrace function call stack
continue continue
down go to called function
up go to caller

20/61 – Parallel Debugging with DDT – SciNet

GDB building blocks #3: Step through code

Stepping through code

I Line-by-line

I Choose to step into or over functions

I Can show surrounding lines or use -tui

gdb commands

list list part of code
next continue until next line
step step into function
finish continue until function end
until continue until line/function

20/61 – Parallel Debugging with DDT – SciNet

GDB building blocks #3: Step through code

Stepping through code

I Line-by-line

I Choose to step into or over functions

I Can show surrounding lines or use -tui

gdb commands

list list part of code
next continue until next line
step step into function
finish continue until function end
until continue until line/function

21/61 – Parallel Debugging with DDT – SciNet

GDB building blocks #4: Automatic interruption

Breakpoints

I break [file:]<line>|<function>

I each breakpoint gets a number

I when run, automatically stops there

I can add conditions, temporarily remote breaks, etc.

Related gdb commands

delete unset breakpoint
condition break if condition met
disable disable breakpoint
enable enable breakpoint
info breakpoints list breakpoints
tbreak temporary breakpoint

21/61 – Parallel Debugging with DDT – SciNet

GDB building blocks #4: Automatic interruption

Breakpoints

I break [file:]<line>|<function>

I each breakpoint gets a number

I when run, automatically stops there

I can add conditions, temporarily remote breaks, etc.

Related gdb commands

delete unset breakpoint
condition break if condition met
disable disable breakpoint
enable enable breakpoint
info breakpoints list breakpoints
tbreak temporary breakpoint

22/61 – Parallel Debugging with DDT – SciNet

GDB building blocks #5: Variables

Checking a variable

I Can print the value of a variable

I Can keep track of variable (print at prompt)

I Can stop the program when variable changes

I Can change a variable (“what if . . . ”)

gdb commands

print print variable
display print at every prompt
set variable change variable
watch stop if variable changes

22/61 – Parallel Debugging with DDT – SciNet

GDB building blocks #5: Variables

Checking a variable

I Can print the value of a variable

I Can keep track of variable (print at prompt)

I Can stop the program when variable changes

I Can change a variable (“what if . . . ”)

gdb commands

print print variable
display print at every prompt
set variable change variable
watch stop if variable changes

23/61 – Parallel Debugging with DDT – SciNet

Demonstration GDB

24/61 – Parallel Debugging with DDT – SciNet

Graphical symbolic debuggers

25/61 – Parallel Debugging with DDT – SciNet

Graphical symbolic debuggers

Features

I Nice, more intuitive graphical user interface

I Front to command-line based tools: Same concepts

I Need graphics support (qsub -X -I ...)

Available on SciNet

I ddd
$ module load gcc ddd

$ ddd <executable compiled with -g flag>

I idb
$ module load intel java Java slow remotely
$ idb <executable compiled with -g flag>

I ddt
$ module load ddt

(more later)

25/61 – Parallel Debugging with DDT – SciNet

Graphical symbolic debuggers

Features

I Nice, more intuitive graphical user interface

I Front to command-line based tools: Same concepts

I Need graphics support (qsub -X -I ...)

Available on SciNet

I ddd
$ module load gcc ddd

$ ddd <executable compiled with -g flag>

I idb
$ module load intel java Java slow remotely
$ idb <executable compiled with -g flag>

I ddt
$ module load ddt

(more later)

26/61 – Parallel Debugging with DDT – SciNet

Graphical symbolic debuggers - ddd

27/61 – Parallel Debugging with DDT – SciNet

Graphical symbolic debuggers - idb

28/61 – Parallel Debugging with DDT – SciNet

Graphical symbolic debuggers - ddt

29/61 – Parallel Debugging with DDT – SciNet

Parallel debugging

30/61 – Parallel Debugging with DDT – SciNet

Parallel debugging

I Challenge: Simultaneous execution

I Shared memory:
OpenMP (Open Multi-Processing)
pthreads (POSIX threads)

I Private/shared variables

Intel compiler extra flag: -debug parallel
Later GNU compilers: -gstabs

I Race conditions

I Distributed memory:
MPI (Message Passing Interface)

I Communication
I Deadlock

I Hard to solve: some commercial debuggers do a good job.
But let’s see how the command-line ones handle it.

31/61 – Parallel Debugging with DDT – SciNet

Parallel debugging - 1 Shared memory

Use gdb for

I Track each thread’s execution and variables

I OpenMP serialization: p omp set num threads(1)

I Step into OpenMP block: break at first line!

I Thread-specific breakpoint: b <line> thread <n>

Use helgrind for

I Finding race conditions:

$ module load valgrind

$ valgrind --tool=helgrind <exe> &> out

$ grep <source> out

where <source> is the name of the source file where you suspect
race conditions (valgrind reports a lot more)

31/61 – Parallel Debugging with DDT – SciNet

Parallel debugging - 1 Shared memory

Use gdb for

I Track each thread’s execution and variables

I OpenMP serialization: p omp set num threads(1)

I Step into OpenMP block: break at first line!

I Thread-specific breakpoint: b <line> thread <n>

Use helgrind for

I Finding race conditions:

$ module load valgrind

$ valgrind --tool=helgrind <exe> &> out

$ grep <source> out

where <source> is the name of the source file where you suspect
race conditions (valgrind reports a lot more)

32/61 – Parallel Debugging with DDT – SciNet

Parallel debugging - 2 Distributed memory

Multiple MPI processes

I Your code is running on different cores!

I Where to run debugger?

I Where to send debugger output?

I Much going on at same time.

I No universal free solution.

Good approach

1. Write your code so it can run in serial: perfect that first.

2. Deal with communication, synchronization and deadlock on
smaller number of MPI processes/threads.

3. Only then try full size.

32/61 – Parallel Debugging with DDT – SciNet

Parallel debugging - 2 Distributed memory

Multiple MPI processes

I Your code is running on different cores!

I Where to run debugger?

I Where to send debugger output?

I Much going on at same time.

I No universal free solution.

Good approach

1. Write your code so it can run in serial: perfect that first.

2. Deal with communication, synchronization and deadlock on
smaller number of MPI processes/threads.

3. Only then try full size.

33/61 – Parallel Debugging with DDT – SciNet

Parallel debugging - 2 Distributed memory

Advanced gdb (not recommended!)

I You want #proc terminals with gdb for each process?

I Possible, but brace yourself!

I Small number of procs:

1. Start terminals: by default X forwarding from compute nodes
2. Submit your job on scinet
3. Make sure its runs: checkjob -v
4. From each terminal, ssh into the appropriate nodes
5. Do top or ps -C <exe> to find process id (pid)
6. Attach debugger with gdb -pid <pid>.
7. This will interrupt the process.

34/61 – Parallel Debugging with DDT – SciNet

Parallel debugging - 2 Distributed memory

Advanced tricks
Wait, so the program started already?

I Yes, and that’s probably not what you want.

I Instead, put infinite loop into your code:
int j=1;

while(j) sleep(5);

I Once attached, go “up” until at while loop.

I do “set var j=0”

I now you can step, continue, etc.

Now let’s take a look at DDT. . .

35/61 – Parallel Debugging with DDT – SciNet

DDT

36/61 – Parallel Debugging with DDT – SciNet

DDT

I “Distributed Debugging Tool”

I Powerful GUI-based commercial debugger by Allinea.

I Supports C, C++ and Fortran

I Supports MPI, OpenMP, threads, CUDA and more

I Available on all SciNet clusters (GPC, TCS, ARC, P7)

37/61 – Parallel Debugging with DDT – SciNet

Launching ddt
I Load your compiler and MPI modules.
I Load the ddt module: $ module load ddt
I Start ddt with one of these:

$ ddt

$ ddt <executable compiled with -g flag>

$ ddt <executable compiled with -g flag> <arguments>

I First time: create config file: OpenMPI (skip other steps)
I Then gui for setting up debug session.

37/61 – Parallel Debugging with DDT – SciNet

Launching ddt
I Load your compiler and MPI modules.
I Load the ddt module: $ module load ddt
I Start ddt with one of these:

$ ddt

$ ddt <executable compiled with -g flag>

$ ddt <executable compiled with -g flag> <arguments>

I First time: create config file: OpenMPI (skip other steps)
I Then gui for setting up debug session.

38/61 – Parallel Debugging with DDT – SciNet

Run and Debug a Program (session setup)

38/61 – Parallel Debugging with DDT – SciNet

Run and Debug a Program (session setup)

38/61 – Parallel Debugging with DDT – SciNet

Run and Debug a Program (session setup)

38/61 – Parallel Debugging with DDT – SciNet

Run and Debug a Program (session setup)

38/61 – Parallel Debugging with DDT – SciNet

Run and Debug a Program (session setup)

38/61 – Parallel Debugging with DDT – SciNet

Run and Debug a Program (session setup)

38/61 – Parallel Debugging with DDT – SciNet

Run and Debug a Program (session setup)

38/61 – Parallel Debugging with DDT – SciNet

Run and Debug a Program (session setup)

39/61 – Parallel Debugging with DDT – SciNet

User interface (1)

40/61 – Parallel Debugging with DDT – SciNet

User interface (2)

DDT uses a tabbed-document interface.

@
@
@
@
@R?

�
�
�

�
�
�

�
�
�

�
�
�	

41/61 – Parallel Debugging with DDT – SciNet

User interface (3)

When the session begins, DDT automatically
finds source code from information compiled in
the executable.

?

42/61 – Parallel Debugging with DDT – SciNet

User interface (4)

Process Control and Process Groups:

I Can group process together.

I Predefined groups All, Root, Workers.
(Session→options, automatically create)

I Can create, delete modify groups (drag
drop, right click stacks, . . .)

6

43/61 – Parallel Debugging with DDT – SciNet

User interface (5)

Different colour coding for each group’s current
source line.

?

44/61 – Parallel Debugging with DDT – SciNet

User interface (6)

Session Control Dialog:
Control program execution, e.g., play/continue,
pause, step into, step over, step out

�

45/61 – Parallel Debugging with DDT – SciNet

User interface (7)

Breakpoints Tab
Can suspend, jump to, delete, load, save

��
���

��

46/61 – Parallel Debugging with DDT – SciNet

User interface (8)

Focus:
Choose between Group, process or thread

6

47/61 – Parallel Debugging with DDT – SciNet

User interface (9)

Stacks: Current and Parallel

I Tree of functions (merged)

I Click on branch to see source

I Hover to see process ranks

I Use to gather processes in new groups

?

������������)

������������)

47/61 – Parallel Debugging with DDT – SciNet

User interface (9)

Stacks: Current and Parallel

I Tree of functions (merged)

I Click on branch to see source

I Hover to see process ranks

I Use to gather processes in new groups

?

������������)

������������)

48/61 – Parallel Debugging with DDT – SciNet

User interface (10)

Current line variables
HHH

HHH
HHH

HHHj

49/61 – Parallel Debugging with DDT – SciNet

User interface (11)

Local variables for process

HH
HHHH

HHH
Hj

50/61 – Parallel Debugging with DDT – SciNet

User interface (12)

Evaluate window

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
AU

51/61 – Parallel Debugging with DDT – SciNet

Other features of DDT (1)

I Some of the user-modified parameters and windows are saved
by right-clicking and selecting a save option in the
corresponding window (Groups; Evaluations)

I DDT can load and save sessions.

I Find and Find in Files in the Search menu.

I Goto line in Search menu (or Ctrl-G)

I Synchronize processes in group: Right-click, “Run to here”.

I View multiple source codes simultaneously: Right-click,
“Split”

I Right-click power!

52/61 – Parallel Debugging with DDT – SciNet

Other features of DDT (2)

I Signal handling: SEGV, FPE, PIPE,ILL

I Support for Fortran modules

I Change data values in evaluate window

I Examine pointers (vector, reference, dereference)

I Multi-dimensional arrays

I Viewer

53/61 – Parallel Debugging with DDT – SciNet

Other features of DDT (3)

Message Queue

I View→ show message queue

I produces both a graphical view and table for active
communications

I Helps to find e.g. deadlocks

54/61 – Parallel Debugging with DDT – SciNet

Other features of DDT (4)

Memory debugging

I Select “memory debug” in Run window

I Stops on error (before crash or corruption)

I Check pointer (right click in evaluate)

I View, overall memory stats

55/61 – Parallel Debugging with DDT – SciNet

DDT Hands-on. . .

56/61 – Parallel Debugging with DDT – SciNet

Useful references

I G Wilson
Software Carpentry software-carpentry.org/3 0/debugging.html

I N Matloff and PJ Salzman

The Art of Debugging with GDB, DDD and Eclipse

I GDB: sources.redhat.com/gdb

I DDT: www.allinea.com/products/ddt-support

I SciNet Wiki: wiki.scinethpc.ca: Tutorials & Manuals

http://software-carpentry.org/3_0/debugging.html
http://sources.redhat.com/gdb
http://www.allinea.com/products/ddt-support
http://wiki.scinethpc.ca/wiki/index.php/Knowledge_Base:_Tutorials_and_Manuals

57/61 – Parallel Debugging with DDT – SciNet

Example code 1

#include <stdlib.h>

void print scrambled(char * msg);

int main() {

char * bad msg;

bad msg=NULL;

char * good msg="Hello world";

print scrambled(good msg);

print scrambled(bad msg);

return 0;

}

#include <stdio.h>

void print scrambled(char * msg) {

int i=3;

do {

printf("%c", msg[i]);

i++;

} while (*++msg);

printf("\n");
}

58/61 – Parallel Debugging with DDT – SciNet

Example code 2

#include <stdio.h>

int main(int argc, char ** argv)

{

unsigned int count = 999;

unsigned int step = 2;

do {

printf("countdown at %d\n", count);

count -= step;

} while (count >= 0);

printf("lift-off!\n");
return 0;

}

59/61 – Parallel Debugging with DDT – SciNet

Example code 3

#include <mpi.h>

int main(int argc, char ** argv)

{

MPI Init(&argc,&argv);

int procs, rank;

MPI Comm size(MPI COMM WORLD, &procs);

MPI Comm rank(MPI COMM WORLD, &rank);

int left = (rank+procs-1)%procs;

int right = (rank+1)%procs;

doubled = rank*1.1;

MPI Ssend(&d, 1, MPI DOUBLE, right, 17, MPI COMM WORLD);

MPI Recv(&d, 1, MPI DOUBLE, left, 17, MPI COMM WORLD, MPI STATUS IGNORE);

MPI Finalize();

}

60/61 – Parallel Debugging with DDT – SciNet

Example code 4
#include <stdlib.h>

#include <stdio.h>

double* add vector(double* a,double* b)

{

double* c = malloc(3*sizeof(double));

for (int i=0;i<3;i++)

c[i] = a[i]+b[i];

return c;

}

int main(int argc, char ** argv)

{

double to sum[10][3] = {

{1,0,0}, {1,1,1}, {1,2,0}, {1,3,1}, {1,4,0},

{2,0,1}, {2,1,0}, {2,2,1}, {2,3,0}, {2,4,1}

};

double answer[3] = {0,0,0};

for (int i=0;i<10;i++)

answer = add vector(answer,to sum[i]);

printf("answer = %lf %lf %lf\n", answer[0], answer[1], answer[2]);

return 0;

}

61/61 – Parallel Debugging with DDT – SciNet

Example code 5
#include <stdlib.h>

#include <stdio.h>

double ndot(int n, double*x, double*y){

double tot=0;

#pragma omp parallel for shared(x,y,n,tot)

for (int i=0; i<n; i++)

tot += x[i] * y[i];

return tot;

}

int main(int argc, char** argv){

int n = 10000000;

double*x = malloc(n*sizeof(double));

double*y = malloc(n*sizeof(double));

for (int i=0; i<n; i++) {

x[i] = i;

y[i] = i;

}

double nn=n-1;

double ans=nn*(nn+1)*(2*nn+1)/6.0;

double dot=ndot(n,x,y);

return 0;

}

