
Welcome Back!
Intro to OpenMP #2

Questions on hands-on?



Brief Recap

• OpenMP works on shared memory machines to simple 
parallelize pieces of otherwise serial codes.

• OpenMP works mainly through sets of compiler 
directives, marked with #pragma omp ... in C.

• Always pay attention to how variables are used (private, 
shared, reduction...).  Beware of race conditions.

• Let’s look at a couple of key slides from yesterday to 
refresh our memories.



MFOMP Loop II

Code:

Output:

Behaves same as previous 
version, but we have now 
saved the repeated calls to 
omp_get_thread_num().



Parallel ndot - Atomic Reduction

Code:

Output:

Now we’re in business!  Correct 
answer, ~3x faster than serial.



Load Balancing

• Sometimes not all elements of a loop have the same work.  
If some threads finish early and have to wait for others, we 
will take a performance hit.

• Giving equal amounts of work to each thread (not equal 
number of loop bits) is called load balancing.

• OpenMP supports some load balancing.  The schedule 
clause added to omp for will change how work is shared.  

• We can decide either at compile-time (static schedule) or 
run-time (dynamic schedule) how work will be split.



Scheduling
• By default, each thread gets a big consecutive chunk of the 

loop.  Often, just giving each thread many smaller 
interleaved chunks of the problem works.  

• #pragma omp for schedule(static, m) gives m consecutive 
loop elements to each thread instead of a big chunk. 

• Sometimes we need to be more flexible.  If we use 
schedule(dynamic, m), each thread will work through m loop 
elements, then go to the OpenMP run-time system and ask 
for more.  

• Load balancing (possibly) better with dynamic, but larger 
overhead than with static.



Example - Mandlebrot Set

• Mandlebrot set simple example of non-balanced problem.

• Defined as complex points a where |b∞| finite, b0=0, 
bn+1=bn2+a.  If |bn| ever gets bigger than 2, point diverges.

• To calculate, pick some nmax, iterate at each point a, and 
see which ones cross 2.  Outside of set, points can diverge 
very quickly (2-3 iterations).  Inside, we have to do lots of 
work (maybe 1000 per point).

• If a thread gets a chunk mostly outside of set, will be very 
fast.  Mostly inside, very slow.



Mandlebrot Set Code

Code to 
run loops:

Code to 
evaluate a 

point : Note that there is some support 
for complex variables in C!  Not 
fully standard, but usually OK.



Mandlebrot Performance

Going from 1 core to 8 only 
bought a factor of 2.28, or a 
28.5% efficiency.  Not great.



Try Static Scheduling

Code:

Output:

Static scheduling with chunk size of 4 
bought us a factor of 2 in 
performance.  At 55% of peak now.



Try Dynamic Scheduling

Code:

Output:

Dynamic got us to 96% of peak.  



Summary So Far:
Directives We Have Met

Start a parallel region:
#pragma omp parallel shared() private() default() 

Parallelize a loop:
#pragma omp for schedule(static/dynamic, chunk)

Mark off a region only one thread can be in at a time:
#pragma omp critical

Safely update a single memory location:
#pragma omp atomic

In a parallel region, have only one process do something:
#pragma omp single



A Few More Directives

• #pragma omp ordered - execute the loop in the order it 
would have run serially.  Useful if you want ordered output in 
a parallel region.  Never useful for performance.

• #pragma omp master - a block that only the master thread 
(thread 0) executes.  Usually, #pragma omp single is better.

• #pragma omp sections - execute a list of things in parallel.  In 
OpenMP 3, task directive (later in lecture) is more powerful.

(Less commonly used)



Summary So Far II:
Style Points

If a variable is a private temporary variable inside a parallel region, try 
declaring it inside the region.  Makes the parallel region much easier 
to specify, and can prevent bugs.  

OpenMP supports reduction and initialization clauses.   These are 
never necessary to use, but are very convenient and can streamline 
code. 

You have seen how to find out how many threads exist, etc.  
However, in none of our examples did we use that info.  I suggest that 
if you think you need to know how many threads you have, you are 
doing something wrong.  Using locally declared variables, and critical 
regions most likely will do everything you need. 



Memory Access
• Processors work on local bits of memory in their cache.

• Cache is small and fast.  Main memory is big, but slow.

• There is a large latency in getting things from main memory - 
often hundreds of clock cycles.  The fewer times we access 
main memory, the faster we will go.

• Computers bring in chunks of memory at a time.  If you 
access data in contiguous memory chunks, much of it may 
already be in cache.  Always try to do this - serial or parallel.

• C - last index is rapidly varying.  Fortran first index.



Memory Access II

• Memory access is important for serial programs, but can 
become particularly important in OpenMP

• There is typically a limited bandwidth to main memory.  If it 
has to be shared 2, 4, or 8 ways, it becomes especially critical 
to access it sensibly.

• Note on shared variables in OpenMP:  If you aren’t changing 
them, the compiler can copy the shared variable to local 
cache and no performance hit.  Modifying shared variables is 
expensive - we have already seen this with the dot product.



Example - Matrix Multiplication

• Linear algebra a classic example.  

• Matrix multiplication:  C=A*B, or c[i][j]=∑a[i][k]*b[k][j]

• Different implementations can take 10-100x longer than 
optimal.  Slowness entirely due to memory access.

• The more you do with stuff you’ve pulled from main memory,  
the faster you’ll run.



Slow Multiplication

Output:



Slow Matrix Multiplication
• What happened?  For every element in C, we had to pull a 

fast direction from A, but a slow direction from B.

• Could change the order of the loops, making B fast, but then 
A would be slow.

• We pulled a slow vector for each element in C, for a total of 
n2 slow column pulls.

• Could make the transpose of B, then we would always pull 
from the fast columns.  Only have to do n slow pulls this way.

• Drawback:  must make a copy of B.  If B is large, can take lots 
of memory.



Transpose Multiplication

Output:

Code:

Nearly 50% faster than slow version



Blocks

• Multiplication was still kind of slow.  Why?  

• For every column of C we calculate, we have to process all of 
B, for a total of n times.  That’s a lot of memory throughput.

• Recall cij=∑aik*bkj.  Nowhere have we said that cij, ajk, and bkj 

are scalars.  They could be blocks of the matrices.  If we treat 
them as blocks, then we’ll have to go to main memory less 
often.

• Say blocks are 20x20.  Then I have to pull all of B each time I 
process a column of blocks.   Or a total of n/20 times.  Much 
less stress on system memory.



Block Multiplication

Output:

Same time as transpose, but no matrix copy 
and less stress on system memory.



Blocks Debrief

• Well, managed to do better in memory, calculation time was still the same.

• You may gather that writing a fast, parallel matrix multiplier isn’t easy.  You 
are right.

• People have spent a long time optimizing matrix multiplication, and gotten 
to 80-90% of theoretical max, using block-based algorithms (look up Goto 
BLAS).

• Important corollary:  Think you need to code something?  Don’t!  See if 
someone else has done it.  For core routines, they have, and better than you 
will ever do it.

• For the same problem, Goto runs in 0.044 seconds - 40x faster.

Make sure serial performance is good 
before worrying about parallel!



Conditional OpenMP

• There is always overhead associated with starting threads, 
splitting work, etc.  Also, some jobs parallelize better than 
others.

• Sometimes, overhead takes longer than 1 thread would need 
to do a job - e.g. very small matrix multiplies.

• OpenMP supports conditional parallelization.  Add 
if(condition) to parallel region beginning.  So, for small tasks, 
overhead low, while large tasks remain parallel.



Conditional OpenMP in Action
First, pull an integer from the 
command line.  Check to see if it’s 
bigger than a number (in this case, 
10).  If so, start a parallel region.  
Otherwise, execute serially.



Controlling # of Threads

• Sometimes you might want more or fewer threads.  May 
even want to change while running.

• Example - IBM P6 cluster.  Matrix multiply runs fast with 
twice as many program threads as physical cores 
(hyperthreading).  However, matrix factorizations run 
slower with more threads.

• omp_set_num_threads(int) sets or changes the number 
of threads during runtime.



omp_set_num_threads() in action
We have changed the # of 
threads during the program.  
We could always change the 
number later on in the same 
code, if we so desired.   Note 
the use of 
omp_get_num_procs(), a 
library call to detect the 
physical number of available 
processors.  



Profiling:  gprof
• You should always know where your program spends its time 

working.

• One way - gprof.  gprof uses statistical sampling - every so often, it 
asks where it is in code.  

• Code must be compiled with appropriate flags:  -g (debug) -pg 
(profile).  

• When run, code writes to a file by default called gmon.out.

• Output analyzed later by calling “gprof a.out” (if a.out is 
executable).  That will analyze stuff in gmon.out.

• gprof will tell you which routines (or even which lines) used what 
fraction of the codes run time.



Code We’ll Profile - fast_slow_loops.c

Three different ways of element-wise matrix 
multiplication.  Different access patterns will 
affect run-time.  Note switch/case statements.



Profiling, cont’d

Note - wrong memory access again kills us by 
nearly factor of 15.

gprof:  -b=brief.   It reports how much time, 
what percent were spent in different routines.

Because statistical, should not expect identical 
values run-to-run.

Look - more time spent in setting up matrices, 
not in doing work.  Tells us what to fix.



Tasks

• OpenMP 3.0 supports the #pragma omp task directive.

• A task is a job assigned to a thread.  Powerful way of parallelizing 
non-loop problems.

• Tasks should help omp/mpi hybrid codes - one task can do 
communications, rest of threads keep working.

• Like all omp, tasks must be called from parallel region.  

• Raises complication of nested parallelism (what happens if a 
parallel loop called from parallel loop?).



Tasks:  test_task.c

Often want to start tasks from as if from serial 
region.  Must be in parallel for tasks to spawn, so 
#pragma omp parallel followed by #pragma omp 
single very useful.

What would happen w/out #pragma omp single?



Beauty of Tasks

• Some problems naturally fit into tasks that are otherwise 
hard to parallelize.

• Example (from standard):  parallel tree processing.

• Each node has left, right pointers, process each sub-
pointer with a task.

• Look how short the parallel tree is!

How would you do this 
problem without tasks?



Homework

• Homework will walk you through parallelizing the matrix 
multiplications, make you use gprof and optimization 
flags, and highlight importance of good memory access.

• Look in pca/src/openmp2 directory for Homework.txt

• Do what it says.  You can directly edit the codes there, 
and add your answers to the Homework.txt file.


