
Programming GPUs with CUDA

Day 2

Sergey Mashchenko
SHARCNET

Summer School on High Performance Computing
University of Toronto, June 9-13, 2014

2

Outline

● When to use CUDA?
● C language extensions
● CUDA code optimization
● [Serial->CUDA code conversion]

3

When to use CUDA?

4

When to use CUDA?

● Writing a CUDA code from scratch

● Is it really necessary to write an explicitly parallel code?
– Going parallel means more researcher's time spent on code development,

debugging, profiling, maintenance, and less – on research

– Less HPC resources are available for parallel codes (almost not an issues
for MPI codes, still a big obstacle for GPU codes)

– If your project can be carried out using a serial farm (a bunch of independent
serial processes), you can have an almost 100% scalability (speedup will be
simply proportional to the number of CPU cores), whereas parallel codes
have <100% scalability, and scalability drops for larger N

cpu
, placing a limit of

how many CPU cores one can efficiently use.

– Some algorithms are inherently non-parallizable (because of severe data
dependencies). Example: classical formula for Fibonacci series:

 F
n
 = F

n-2
 + F

n-1
; F

0
=0, F

1
=1

5

When to use CUDA?

● Writing a CUDA code from scratch
● When to use CUDA, as opposed to MPI, OpenMP,

pthreads, ... ?
– When the bulk of computations can be done in a data

parallel fashion, with the number of parallel independent
threads >~1000 (the more, the better)

– When the code will be very fine-grained (very short
alternating computation and communication episodes)

– When you can program in C/C++ (Fortran CUDA is not
provided by NVIDIA – but now provided by PGI)

– When the expected speedup more than compensates for
the scarcity and/or higher cost of GPU resources (should
probably be >20 to make a sense)

6

When to use CUDA?

● Converting an existing code to CUDA
● Pretty much the same requirements as for writing

CUDA code form scratch
● Serial and OpenMP codes should be easier to

convert to CUDA then MPI and pthreads codes
● C++/C codes are the easiest; Fortran codes would

have to be re-written in C++. (Unless you want to
take a chance with non-standard Fortran CUDA
extensions, like the PGI implementation)

7

When to use CUDA?

● Should you commit your code to CUDA?
● CUDA is still very new, is evolving fast, and it is not

an open standard (like OpenCL).
● The underlying hardware (GPUs) is also quickly

evolving.
● As a result, CUDA codes can become obsolete very

quickly, unless they are very actively maintained.
● More importantly, it is not clear if GPUs will remain

mainstream HPC a few years down the road – new
HPC technologies (like Intel Phi) might completely
replace GPU computing at some point.

8

When to use CUDA?

● Should you commit your code to CUDA?
● It is advisable to maintain both CUDA and non-

CUDA version of the code:
– One could use macros to have e.g. both serial and CUDA

versions in one code (you compile with different switches
to get the version you need)

– One could rely on CUDA emulators, and maintain a pure
CUDA code, but (a) NVIDIA no longer provides an
emulator, (b) third party emulators (like PGI's CUDA-x86)
can have efficiency and portability issues, and most
importantly (c) when/if CUDA/GPU HPC will disappear,
CUDA/GPU emulators will follow.

– Or one can simply co-develop two separate versions of
the code, CUDA and non-CUDA

9

When to use CUDA?

● Positive aspects of going CUDA
● Get your science done much sooner, or go after

much larger problems
● By doing non-CUDA -> CUDA code conversion, you

 are forced to re-arrange the code in the way which
makes it much easier to adapt it to any future data-
parallel friendly HPC technology (like Phi's, CPUs
with dozens of cores etc.).

10

When to use CUDA?

● What speedup with CUDA to aim at?
● In terms of availability of resources:

– SHARCNET's GPU cluster, monk, has 54 nodes with two
GPUs (M2070) in each – so 108 GPUs in total.

– SHARCNET's resources for MPI/serial farming codes are
~20,000 CPU cores

– So formally, you'd want to aim at >200x speedups, which is
unrealistic for most codes.

● GPU availability will likely to improve, so probably a
better comparison is in terms of costs:
– One orca node costs ~5000$. One monk node, with 2 GPUs,

costs ~10,000$. Then your CUDA code should aim at running
faster on one monk's GPU than on one orca node (24 CPU
cores), meaning a speedup ≥24x.

11

C language extensions

12

C language extensions

● Kernels (one block)

// Kernel definition
__global__ void VecAdd (float* d_A, float* d_B, float* d_C)
{
int i = threadIdx.x;
d_C[i] = d_A[i] + d_B[i];
}

int main()
{
...

// Kernel invocation with N threads
VecAdd <<<1, N>>> (d_A, d_B, d_C);

...
}

Pointers to
device
addresses!

13

C language extensions

● Kernels (multi-block)
// Kernel definition
__global__ void VecAdd (float* d_A, float* d_B, float* d_C)
{
int i = threadIdx.x + blockDim.x * blockIdx.x;
d_C[i] = d_A[i] + d_B[i];
}

int main()
{
...

// M blocks with N threads each:
VecAdd <<<M, N>>> (d_A, d_B, d_C);
...
}

14

C language extensions

● Static global device arrays

// Device code:
__device__ float d_A[10][50];

// Host code:
float h_A[10][50];

// Host to device copying:
cudaMemcpyToSymbol (d_A, &h_A, sizeof(h_A), 0, cudaMemcpyHostToDevice);

// Device to host copying:
cudaMemcpyFromSymbol (&h_A, d_A, sizeof(h_A), 0, cudaMemcpyDeviceToHost);

15

C language extensions

● Dynamic global device arrays

// Host code:

// Host array allocation:
size_t size = N * sizeof(float);
float* h_A = (float*) malloc (size);

// Device array allocation:
float* d_A;
cudaMalloc(&d_A, size);

// Host to device copying:
cudaMemcpy (d_A, h_A, size, cudaMemcpyHostToDevice);

// Device to host copying:
cudaMemcpy (h_A, d_A, size, cudaMemcpyDeviceToHost);

16

C language extensions

● Device functions
// Device code

// Function:
__device__ double my_function (double x)
{
double f;
...
return f;
}

// Kernel:
__global__ void my_kernel ();
{
double f1, x1;
f1 = my_function (x1);
}

17

C language extensions

● Shared memory
– Can be much faster than global (device) memory
– Shared across the threads in a single block
– The amount is very limited, so it is often a limiting factor

for CUDA optimization
– Typically statically defined

// Device code

__shared__ double A_loc[BLOCK_SIZE];

18

C language extensions

● Execution synchronization on device
● Can only be done within a single block.
● As a result, only up to 1024 (usually between 64

and 256) threads can be synchronized.
● Typical usage: for binary reductions, or to compute

parts of the kernel serially

// Device code

__syncthreads();

19

C language extensions

● Execution synchronization on device
● To compute parts of the kernel serially

// Parallel part of the kernel:
...

 __syncthreads();

if (threadIdx.x == 0)
// Serial part of the kernel:
{
...
}

20

C language extensions

● Synchronization between host and device
● Kernel calls and some CUDA memory operations

are executed asynchronously on host
● But in many cases you need host-device

synchronization, e.g.:
– Before using on the host a result computed in a kernel
– Before using a host timer, for profiling

// Host code

CudaDeviceSynchronize ();

21

C language extensions

● Synchronization between host and device
● Example: when copying data from device to host

// Device code
__device__ int d_y;

// Host code
int h_y;

// Kernel computes the result and stores it in global device variable d_y;
my_kernel <<<M, N>>> ();
// Copying the result to host:
cudaMemcpyFromSymbol (&h_y, d_y, sizeof(h_y), 0, cudaMemcpyDeviceToHost);

// Forcing host to pause until the copying is done:
CudaDeviceSynchronize ();

// Using the result on host:
printf (“Result: %d\n”, h_y);

22

C language extensions

● Synchronization between host and device
● Example: when profiling the code

// Host code
struct timeval tdr0, tdr1;

gettimeofday (&tdr0, NULL);

my_kernel <<<M, N>>> ();

// Without synchronization, tdr1-tdr0 will not measure time spent inside the kernel
// (it will be much smaller):
CudaDeviceSynchronize ();
gettimeofday (&tdr1, NULL);

23

C language extensions

● Reductions in CUDA
● Reductions: min/max, average, sum, ...
● Can be a significant bottleneck for the performance,

because it breaks pure data parallelism.
● There is no perfect way to do reductions in CUDA.

The two commonly used approaches (each with its
own set of constraints) are
– Binary reductions
– Atomic reductions

24

C language extensions

● Binary reductions
● The most universal type of reductions (e.g., the only

way to do double precision reductions)
● Even when using single precision (which is faster

than double precision), binary summation will be
more accurate than atomic summation, because it
employs more accurate pairwise summation.

● Usually the more efficient way to do reductions

25

C language extensions

● Binary reductions

● But: typically relies on (very limited) shared memory – placing
constraints on how many reductions per kernel one can do

● Relies on thread synchronization, which can only be done within a
single block – places constraints on how many threads can
participate in a binary reduction (usually 64 ... 256; maximum
1024)

● For a large number of data elements (>1024), this leads to the
need to do multi-level (multi-kernel) binary reductions, with storing
the intermediate data in device memory; this can reduce the
performance

● Can be less efficient for small number of data elements (<64)

● Significantly complicates the code

26

C language extensions

● Atomic reductions
● Very simple and elegant code

– Almost no change compared to the serial code
– A single line code: much better for code development and

maintenance
– No need for multiple intermediate kernels (saves on

overheads related to multiple kernel launches)
– Requires no code changes when dealing with any

number of data elements – from 2 to millions
● Usually more efficient when the number of data

elements is small (<64)

27

C language extensions

● Atomic reductions

● But: atomic operations are serialized, which usually means
worse performance

● Only single precision accuracy - can become really bad for
summation and averaging when the number of elements is
large (many thousands) – because it uses sequential
summation.

● A commonly employed good compromise is to use binary
reduction at the lower level, and then use atomic reduction
at the higher level. (Only for single precision).

● All the above means that to find the right way to carry out a
reduction in CUDA, with the right balance between code
readability, efficiency, and accuracy, one often has to try
different approaches, and choose the most efficient.

28

C language extensions

Binary reduction

29

C language extensions

● Examples: binary summation with the number of elements
being a power of two. The result is in sum[0].

__shared__ double sum[BLOCK_SIZE];
...
__syncthreads(); // To make sure all sum[] elements were initialized
int nTotalThreads = blockDim.x; // Total number of active threads;
// only the first half of the threads will be active.

while(nTotalThreads > 1)
{
 int halfPoint = (nTotalThreads >> 1); // divide by two

 if (threadIdx.x < halfPoint)
 {
 int thread2 = threadIdx.x + halfPoint; // the second element index
 sum[threadIdx.x] += sum[thread2]; // Pairwise summation
 }
 __syncthreads();
 nTotalThreads = halfPoint; // Reducing the binary tree size by two
}

30

C language extensions

● Examples: binary min/max with the number of
elements being a power of two.

__shared__ double min[BLOCK_SIZE];
...
__syncthreads(); // To make sure all min[] elements were initialized
int nTotalThreads = blockDim.x;

while(nTotalThreads > 1)
{
 int halfPoint = (nTotalThreads >> 1); // divide by two
 if (threadIdx.x < halfPoint)
 {
 int thread2 = threadIdx.x + halfPoint; // the second element index
 double temp = min[thread2];
 if (temp < min[threadIdx.x])
 min[threadIdx.x] = temp;
 }
 __syncthreads();
 nTotalThreads = halfPoint; // Reducing the binary tree size by two
}

31

C language extensions
● Examples: multiple binary reductions.

__shared__ double min[BLOCK_SIZE], sum[BLOCK_SIZE];
...
__syncthreads(); // To make sure all array elements were initialized
int nTotalThreads = blockDim.x;

while(nTotalThreads > 1)
{
 int halfPoint = (nTotalThreads >> 1); // divide by two
 if (threadIdx.x < halfPoint)
 {
 int thread2 = threadIdx.x + halfPoint;
 sum[threadIdx.x] += sum[thread2]; // First reduction

 double temp = min[thread2];
 if (temp < min[threadIdx.x])
 min[threadIdx.x] = temp; // Second reduction
 }
 __syncthreads();
 nTotalThreads = halfPoint; // Reducing the binary tree size by two
}

32

C language extensions

● Examples: two-level binary reduction

// Host code
#define BSIZE 1024 // Always use a power of two; can be 32...1024
// Total number of elements to process: 1024 < Ntotal < 1024^2

int Nblocks = (Ntotal+BSIZE-1) / BSIZE;

// Low level (the results should be stored in global device memory):
x_prereduce <<<Nblocks, BSIZE >>> ();

// High level (will read the input from global device memory):
x_reduce <<<1, Nblocks >>> ();

33

C language extensions
● Examples: binary reduction with an arbitrary

number of elements (BLOCK_SIZE).
__shared__ double sum[BLOCK_SIZE];
 ...
__syncthreads(); // To make sure all sum[] elements were initialized
int nTotalThreads = blockDim_2; // Total number of threads, rounded up to the next power of
two

while(nTotalThreads > 1)
{
 int halfPoint = (nTotalThreads >> 1); // divide by two

 if (threadIdx.x < halfPoint)
 {
 int thread2 = threadIdx.x + halfPoint;
 if (thread2 < blockDim.x) // Skipping the fictitious threads blockDim.x ... blockDim_2-1
 sum[threadIdx.x] += sum[thread2]; // Pairwise summation
 }
 __syncthreads();
 nTotalThreads = halfPoint; // Reducing the binary tree size by two
}

34

C language extensions

● Continued: binary reduction with an arbitrary
number of elements.

● You will have to compute blockDim_2 (blockDim.x rounded up to
the next power of two), either on device or on host (and then
copy it to device). One could use the following function to
compute blockDim_2, valid for 32-bit integers:

int NearestPowerOf2 (int n)
{
 if (!n) return n; // (0 == 2^0)

 int x = 1;
 while(x < n)
 {
 x <<= 1;
 }
 return x;
}

35

C language extensions

● Examples: atomic reductions.

● Some other atomic operations:
– atomicExch, atomicAnd, atomicOr

// In global device memory:
__device__ float xsum;
__device__ int isum, imax;

// In a kernel:
float x;
int i;
__shared__ imin;
...
atomicAdd (&xsum, x);
atomicAdd (&isum, i);
atomicMax (&imax, i);
atomicMin (&imin, i);

36

C language extensions
● Binary at the lower level, atomic at the higher level

__shared__ float sum[BLOCK_SIZE];
...
__syncthreads(); // To make sure all sum[] elements were initialized
int nTotalThreads = blockDim.x; // Total number of active threads;
// only the first half of the threads will be active.

while(nTotalThreads > 1)
{
 int halfPoint = (nTotalThreads >> 1); // divide by two

 if (threadIdx.x < halfPoint)
 {
 int thread2 = threadIdx.x + halfPoint; // the second element index
 sum[threadIdx.x] += sum[thread2]; // Pairwise summation
 }
 __syncthreads();
 nTotalThreads = halfPoint; // Reducing the binary tree size by two
}
if (threadIdx.x == 0)

atomicAdd (&xsum, sum[0]); // Atomic reduction

37

Hands on exercise #1

● Copy all the exercises to your home directory (ignore error
messages):
 cp -pr ~syam/CUDA_day2/ ~

● Use one of the nodes listed in ~/CUDA_day2/nodes.txt
 ssh monXX
 export CUDA_VISIBLE_DEVICES=Y

● Text editors: vim, emacs, nano (for syntax highlighting:
 cp ~syam/.nanorc ~)

● Help material (PDF files in ~/CUDA_day2).

● Exercises:

● CUDA_day2 / Reduction: trying different reduction strategies
● CUDA_day2 / Staged: using streams to stage copying and computing

● CUDA_day2 / Primes: converting a serial code for largest prime number search to CUDA

38

C language extensions

● Concurrent execution and streams

● Concurrency (parallel execution) between GPU and CPU is
either a default, or easily enabled behaviour

– Kernel launches are always asynchronous with regards to the host
code; one has to use explicit device-host synchronization any time a
kernel needs to be synchronized with the host:
CudaDeviceSynchronize ()

– The default behaviour of GPU<->CPU memory copy operations is
asynchronous for small transfers (<64kB), and synchronous
otherwise. But one can enforce any memory copying to be
asynchronous by adding Async suffix, e.g.:

● cudaMemcpyAsync ()
● cudaMemcpyToSymbolAsync ()

– For debugging purposes, one can enforce everything to be
synchronous by setting the CUDA_LAUNCH_BLOCKING
environment variable to 1.

39

C language extensions

● Concurrent execution and streams
● Concurrency between different device operations

(kernels and/or memory copying) is a completely
different story
– On a hardware level, modern GPUs are capable of

running multiple kernels and memory transfers both to
and from the device concurrently

– By default, everything on device is done serially (no
concurrency)

– To make use of the device concurrency features, one has
to start using multiple streams in the CUDA code

– But even with multiple streams, there are some
limitations to concurrency on GPU

40

C language extensions

● Concurrent execution and streams

● A stream is a sequence of commands (possibly issued by
different host threads) that execute in order

● If stream ID is omitted, it is assumed to be “0” (default)
stream. For non-default streams, the IDs have to be used
explicitly.

● For concurrent memory copying on GPU, one has to both
add the Async suffix and specify the stream ID.

mykernel <<<Nblocks, Nthreads, 0, ID>>> ();

cudaMemcpyAsync (d_A, h_A, size, cudaMemcpyHostToDevice, ID);

41

C language extensions

● Concurrent execution and streams
● Before using, streams have to be created. At the

end, they have to be destroyed

// Host code
cudaStream_t ID[2];

// Creating streams:
for (int i = 0; i < 2; ++i)
 cudaStreamCreate (&ID[i]);

// These two commands will run concurrently on GPU:
mykernel <<<Nblocks, Nthreads, 0, ID[0]>>> ();
cudaMemcpyAsync (d_A, h_A, size, cudaMemcpyHostToDevice, ID[1]);

// Destroying streams:
for (int i = 0; i < 2; ++i)
 cudaStreamDestroy (ID[i]);

42

C language extensions

● Concurrent execution and streams
● Limitations:

– For memory copying operations to run concurrently with
any other device operation (kernel or another memory
copying operation), the host memory has to be page-
locked (or pinned; allocated with cudaMallocHost instead
of malloc; static variables can be made pinned using
cudaHostRegister)

– Up to 16 kernels can run concurrently
– Concurrency on GPU is not guaranteed (e.g., if kernels

use too much local resources, they will not run
concurrently)

43

C language extensions

● Concurrent execution and streams
● Other stream-related commands

– cudaDeviceSynchronize() : global synchronization
(across all the streams and the host);

– cudaStreamSynchronize (ID) : synchronize stream ID
with the host;

– cudaStreamQuery (ID) : tests if the stream ID has
finished running.

44

CUDA code optimization

45

CUDA code optimization

● Converting a code to CUDA can be considered
an advanced exercise in code optimization
● You should start profiling CUDA code from the very

beginning, from the first kernel you write
● You should start the conversion from the most cpu-

intensive parts of the code
● You often have to play with different approaches

until you get the best performance in a given part of
the code

● We will consider a few common optimization
strategies

46

CUDA code optimization

● Kernels: how many?
● You have to start a new kernel every time there is a

global (across multiple blocks) data dependence
– Example: two-level binary reduction shown previously
– Another example: you need a separate kernel to initialize

variables used to store an atomic reduction result:
// In global device memory:
__device__ double d_sum;

// On host:
// Initializing d_sum to zero:
init_sum <<<1, 1>>> ();

// Here d_sum is used to store atomic summation result from multiple blocks
compute_sum <<<Nblocks, BSIZE>>> ();

47

CUDA code optimization

● Kernels: how many?
● You can try to split a kernel if it uses too many

registers (register pressure)
– It happens e.g. if the kernel has many complex algebraic

expressions using lots of parameters
– Register pressure can be identified when profiling the

code with NVIDIA CUDA profilers (e.g., it will manifest
itself via low occupancy number)

– It is very non-intuitive: sometimes the register pressure
can be decreased by making the kernel longer
(presumably, because sometimes adding more lines of
code gives CUDA compiler more flexibility to re-arrange
register usage across the kernel)

48

CUDA code optimization

● Kernels: how many?
● You should start a new kernel when there is a

device-host dependence
– E.g., you need to make a non-CUDA function/library call

between CUDA kernels.

// On host:

kernel1 <<<N, M>>> ();

CudaDeviceSynchronize ();

// Host code dependent on kernel1 results:
library_function1 ();

// Kernel dependent on library_function1:
kernel2 <<<N, M>>> ();

49

CUDA code optimization

● Kernels: how many?
● Otherwise, you should try to make kernels as large

as possible
– Because each kernel launch has an overhead, in part

because one has to store and then read the intermediate
results from a slow (device or host) memory

– You shouldn't worry that the kernel code won't fit on GPU:
modern GPUs have a limit of 512 million instructions per
kernel

– To improve readability, parts of the kernel can be
modularized into device functions

50

CUDA code optimization

● What should be computed on GPU?
● You start with the obvious targets: cpu-intensive

data-parallel parts of the code
● What should you do with the leftover code (not

data-parallel and/or not very cpu intensive)?
– If not a lot of data needs to be copied from device to host

and vice versa for the leftover code, it may be beneficial
to leave these parts of the code on host

– If on the other hand the leftover code needs access to a
lot of intermediate results from CUDA kernels, then it may
be more efficient to move (almost) everything to the GPU
– even purely serial (single-thread) computations. This
way, no intermediate (scratch) data will ever need to
leave GPU.

51

CUDA code optimization

● Moving leftover code to GPU

// On host:

// First chunk of data-parallel code goes here:
kernel1 <<<N, M>>> ();

// Copying kernel1 results to host:
cudaMemcpy (h_A, d_A, size,
 cudaMemcpyDeviceToHost);
CudaDeviceSynchronize ();

// Non-parallelizable part of the code:
serial_computation (h_A, h_B);

// Copying serial_computation results to device:
cudaMemcpy (d_B, h_B, size,
 cudaMemcpyHostToDevice);
// CudaDeviceSynchronize (); - Why?

// Second chunk of data parallel code which depends on
d_B:
kernel2 <<<N, M>>>

// On host:

// First chunk of data-parallel code goes here:
kernel1 <<<N, M>>> ();

// Now it is executed on GPU, serially:
serial_computation_kernel <<<1, 1>>> ();

// Second chunk of data parallel code which depends on
d_B:
kernel2 <<<N, M>>>

52

CUDA code optimization

● Optimizing memory copying between GPU and
CPU
● GPU - device memory bandwidth is much (~20x)

larger than GPU - host memory bandwidth
● As a result, minimizing amount of data copied

between GPU and CPU should be a high priority
● One possible solution is described on the previous

slide: move to GPU the “leftover” code (even if it
poorly performs on GPU) if it helps to cut
significantly on GPU-CPU memory copying

53

CUDA code optimization

● Optimizing memory copying between GPU and
CPU

– Sometimes one can reduce or eliminate the time spent
on GPU-CPU data copying if it is done in parallel
(asynchronously) with host computations:

// On host:

// This memory copying will be asynchronous only in regards to the host code:
cudaMemcpyAsync (d_a, h_a, size, cudaMemcpyHostToDevice, 0);

// This host code will be executed in parallel with memory copying
host_computation ();

54

CUDA code optimization

● Optimizing memory copying between GPU and
CPU

– One can also run memory transfer operation concurrently
with another (opposite direction) memory transfer
operation, or a kernel. For that, one has to create and
use streams.

– Only works with pinned host memory

// This memory copying will be asynchronous in regards to the host and stream ID[1]:
cudaMemcpyAsync (d_a, h_a, size, cudaMemcpyHostToDevice, ID[0]);

// The kernel doesn't need d_a, and will run concurrently with the previous line:
kernel1 <<<N, M, 0, ID[1]>>> ();

55

CUDA code optimization

● Optimizing memory copying between GPU and
CPU

– Staged concurrent copy and execute

You need two streams for this:

One stream scenario:

56

Hands on exercise #2

● Copy all the exercises to your home directory (ignore error
messages):
 cp -pr ~syam/CUDA_day2/ ~

● Use one of the nodes listed in ~/CUDA_day2/nodes.txt
 ssh monXX
 export CUDA_VISIBLE_DEVICES=Y

● Text editors: vim, emacs, nano (for syntax highlighting:
 cp ~syam/.nanorc ~)

● Help material (PDF files in ~/CUDA_day2).

● Exercises:
● CUDA_day2 / Reduction: trying different reduction strategies

● CUDA_day2 / Staged: using streams to stage copying and
computing

● CUDA_day2 / Primes: converting a serial code for largest prime number search to CUDA

57

CUDA code optimization

● Optimizing memory copying between GPU and
CPU
● To save on memory copying overheads, one should

try to bundle up multiple small transfers into one
large one

● This can be conveniently achieved by creating a
single structure, with the individual memory copying
arguments becoming elements of the structure

58

CUDA code optimization

● Optimizing memory copying between GPU and
CPU

// Host code:
cudaMemcpyToSymbol (d_A, &h_A, sizeof(h_A), 0, cudaMemcpyHostToDevice);
cudaMemcpyToSymbol (d_B, &h_B, sizeof(h_B), 0, cudaMemcpyHostToDevice);
cudaMemcpyToSymbol (d_C, &h_C, sizeof(h_C), 0, cudaMemcpyHostToDevice);

// Header file:
struct my_struc {
 double A[1000];
 double B[2000];
 int C[1000];
};
__device__ struct my_struc d_struc;
struct my_struc h_struc;

// Host code:
cudaMemcpyToSymbol (d_struc, &h_struc, sizeof(h_struc), 0, cudaMemcpyHostToDevice);

59

CUDA code optimization

● Optimizing memory copying between GPU and
CPU

– If you use dynamic memory allocation on host, you can
usually accelerate copying to/from the device by using
cudaMallocHost instead of malloc.

● This will force the compiler to use page-locked memory for host
allocations, which has much higher bandwidth to the device

● Use this sparingly, as the performance can actually degrade
when not enough of system memory is available for paging

// Host code:
float *h_A;

cudaMallocHost (&h_A, N*sizeof(float));

60

CUDA code optimization

● Optimizing memory access on GPU
● Memory spaces on GPU

61

CUDA code optimization

● Optimizing memory access on GPU
● Registers <-> “Local” memory are not under your

direct control, making it harder to optimize
● Global and shared memory, on the other hand, are

under direct programmer's control, so they are
easier to optimize.

● Main strategies for optimization:
– Global memory: coalescence of memory accesses
– Shared memory: minimizing bank conflicts

62

CUDA code optimization

● Optimizing memory access on GPU
● Global memory: coalescence of memory accesses

– Global memory loads and stores by threads of a warp are
coalesced by the device into as few as one transaction
when certain access requirements are met

– By default, all accesses are cached through L1 as 128-
byte lines

– Coalescence is the best when accessing flat arrays (unit
stride) consecutively.

– Misaligned access degrades the performance, but not
dramatically

63

CUDA code optimization

● Optimizing memory access on GPU
● Global memory: coalescence of memory accesses

– Non-unit stride access (e.g. multi-D arrays), on the other
hand, degrades the performance very rapidly, as the
stride increases from 2 to 32:

64

CUDA code optimization

● Optimizing memory access on GPU
● Global memory: coalescence of memory accesses

– The strategy with multi-D arrays is then to either
● flatten them yourself (the only way if >3 dimensions), or
● use special CUDA functions cudaMallocPitch() and

cudaMalloc3D() to allocate properly aligned 2D and 3D arrays,
respectively, or

● convert row-major arrays to column-major ones

65

CUDA code optimization

● Optimizing memory access on GPU

// Flattened using grids of blocks, good for 2-6D; N1 should be a multiple of 32

// On device:
__device__ float d_A[N1*N2*N3*N4];
__global__ void mykernel ()
{
// i1 i2 i3 i4
int i = threadIdx.x+blockDim.x*(blockIdx.x+gridDim.x*(blockIdx.y+gridDim.y*blockIdx.z));
d_A[i] = ...
}

// On host:
dim3 Nblocks (N4, N3, N2);
dim3 Nthreads (N1, 1, 1);
mykernel <<<Nblocks, Nthreads>>> ();

66

CUDA code optimization

● Optimizing memory access on GPU
// Flattened, good for any D; individual dimensions can be arbitrary
// On device:
#define N_TOTAL N1*N2*N3*N4
__device__ float d_A[N_TOTAL];
__global__ void mykernel ()
{
int i = threadIdx.x + blockDim.x * blockIdx.x;
if (i < N_TOTAL)
 {
 d_A[i] = ...
 // You compute individual indexes only if they are needed for the computations:
 int i1 = i % N1; int m = i / N1;
 int i2 = m % N2; m = m / N2;
 int i3 = m % N3;
 int i4 = m / N3;
 }
}
// On host:
int Nblocks = (N_TOTAL + BLOCK_SIZE - 1) / BLOCK_SIZE;
mykernel <<<Nblocks, BLOCK_SIZE>>> ();

67

CUDA code optimization

● Optimizing memory access on GPU
// Using cudaMallocPitch, 2D case
// Host code
int width = 64, height = 64;
float* devPtr;
size_t pitch;

cudaMallocPitch (&devPtr, &pitch, width * sizeof(float), height);
MyKernel <<<64, 64>>> (devPtr, pitch);

// Device code
__global__ void MyKernel (float* devPtr, size_t pitch)
{
 int ix = blockIdx.x;
 int iy = threadIdx.x;
 float* row = (float*)((char*)devPtr + ix * pitch);
 float element = row[iy]; // Coalesced access
}

68

CUDA code optimization

● Optimizing memory access on GPU
● Global memory: coalescence of memory accesses

– If you have to use non-flattened multi-D arrays, convert
them to static and transpose them to “column-major” if
they are “row-major”:

// Row-major (non coalesced)

float A[N][30];
...
A[threadIdx.x][0]=...;
A[threadIdx.x][1]=...;

// Column-major (coalesced)

float A[30][N];
...
A[0][threadIdx.x]=...;
A[1][threadIdx.x]=...;

69

CUDA code optimization

● Optimizing memory access on GPU
● Global memory: coalescence of memory accesses

– For the same reason, use structures of arrays instead of
arrays of structures (the latter results in a memory access
with a large stride)

// Array of structures behaves like row major accesses (non coalesced)
struct Point { double x; double y; double z; double w; } A[N];
...
A[threadIdx.x].x = ...

// Structure of arrays behaves like column major accesses (coalesced)
struct PointList { double *x; double *y; double *z; double *w; } A;
...
A.x[threadIdx.x] = ...

70

CUDA code optimization

● Optimizing memory access on GPU
● Using shared memory to optimize access to global

memory
– Shared memory is much faster than global memory; also,

access to shared memory doesn't need to be coalesced
– Shared memory can be viewed as a “user-managed

cache for global memory”
● One can store in shared memory frequently used global data
● One can use shared memory to make reading data from global

memory coalesced

71

CUDA code optimization

● Optimizing memory access on GPU

// Straightforward and inefficient way

__global__ void simpleMultiply(float *a, float* b, float *c, int
N)
 {
 int row = blockIdx.y * blockDim.y + threadIdx.y;
 int col = blockIdx.x * blockDim.x + threadIdx.x;
 float sum = 0.0f;
 for (int i = 0; i < TILE_DIM; i++) {
 sum += a[row*TILE_DIM+i] * b[i*N+col];
 }
 c[row*N+col] = sum;
 }

// Using shared memory to both store frequently used global
// data and to make the access coalesced – 2.3x faster on K20

__global__ void sharedABMultiply(float *a, float* b, float *c, int
N)
 {
 __shared__ float aTile[TILE_DIM][TILE_DIM],
 bTile[TILE_DIM][TILE_DIM];

 int row = blockIdx.y * blockDim.y + threadIdx.y;
 int col = blockIdx.x * blockDim.x + threadIdx.x;
 float sum = 0.0f;
 aTile[threadIdx.y][threadIdx.x] =
 a[row*TILE_DIM+threadIdx.x];
 bTile[threadIdx.y][threadIdx.x] = b[threadIdx.y*N+col];
 __syncthreads();
 for (int i = 0; i < TILE_DIM; i++) {
 sum += aTile[threadIdx.y][i]* bTile[i][threadIdx.x];
 }
 c[row*N+col] = sum;
 }

72

CUDA code optimization

● Optimizing memory access on GPU
● Shared memory: minimizing bank conflicts

– Shared memory has 32 banks that are organized such
that successive 32-bit words are assigned to successive
banks

– A bank conflict only occurs if two or more threads access
the same bank

// No bank conflicts for 32-bit data is when the stride is odd (s = 1, 3, ...)
__shared__ float shared[BLOCK_SIZE];
float data = shared[BaseIndex + s * threadIdx.x];

// No bank conflicts for 64-bit data:
__shared__ double shared[BLOCK_SIZE];
double data = shared[BaseIndex + threadIdx.x];

73

CUDA code optimization

● Minimizing warp divergence
● The smallest independent execution unit in CUDA is

a warp (a group of 32 consecutive threads in a
block)

● Within a warp, execution is synchronous (that is,
warp acts as a 32-way vector processor)

● Any flow control instruction (if, switch, do, for, while)
acting on individual threads within a warp will result
in warp divergence (with the different execution
paths serialized), resulting in poor performance

● Warp divergence minimization is hence an
important CUDA optimization step

74

CUDA code optimization

● Minimizing warp divergence
● Ideally, controlling conditions should be identical

within a warp:

// On device:
__global__ void MyKernel ()
{
int i = threadIdx.x + blockDim.x * blockIdx.x;
int warp_index = i / warpSize; // Remains constant within a warp

if (d_A[warp_index] == 0) // Identical execution path within a warp (no divergence)
 do_one_thing (i);
else
 do_another_thing (i);
}

75

CUDA code optimization

● Minimizing warp divergence
● As warps can't span thread blocks, conditions which

are only a function of block indexes result in non-
divergent warps

// On device:
__global__ void MyKernel ()
{
int i = threadIdx.x + blockDim.x * blockIdx.x;

if (d_A[blockIdx.x] == 0) // No divergence, since warps can't span thread blocks
 do_one_thing (i);
else
 do_another_thing (i);
}

76

CUDA code optimization

● Minimizing warp divergence
● More generally, making a condition to span at least

a few consecutive warps results in acceptably low
level of warp divergences (even when the condition
is not always aligned with warp boundaries)

// On device:
__global__ void MyKernel ()
{
int i = threadIdx.x + blockDim.x * blockIdx.x;
int cond_index = i / N_CONDITION; // Is okay if N_CONDITION >~ 5*warpSize

if (d_A[cond_index] == 0) // Only a fraction of warps will have divergences
 do_one_thing (i);
else
 do_another_thing (i);
}

77

CUDA code optimization

● Minimizing warp divergence
● The simplest and very frequently encountered warp

divergence is a conditional premature thread
termination, and is reasonably efficient

// On device:
__global__ void MyKernel (int N_total)
{
int i = threadIdx.x + blockDim.x * blockIdx.x;
if (i > N_total) // Needed for the last (incomplete) block
 return; // Premature thread termination
...
}

// On host:
int N_total;
int Nblocks = (N_total + BLOCK_SIZE - 1) / BLOCK_SIZE;
mykernel <<<Nblocks, BLOCK_SIZE>>> ();

78

CUDA code optimization

● Accuracy versus speed
● Situation with double precision speed in CUDA

improved dramatically in the recent years, but it is
still slower than single precision
– The ratio was 1:8 for capability 1.3 (old cluster angel)
– The newer cluster monk (capability 2.0) has the ratio 1:2
– But newest NVIDIA GPUs seem to be moving in the

“wrong” direction (1:3 for K20; 1:32 for Maxwell)
● Use double precision only where it is absolutely

necessary

79

CUDA code optimization

● Accuracy versus speed
● For single precision only, there is a choice between

faster and less accurate vs. slower and more
accurate built-in mathematical functions, e.g.:
– __sinf(x) vs. sinf(x)
– __cosf(x) vs. cosf(x)
– __expf(x) vs. expf(x)

● Use nvcc compiler switch --use_fast_math to
convert all single precision built-in math functions to
the faster and less accurate __* variety

80

CUDA code optimization

● Know your GPU
● ssh to monk, ssh to mon54, execute ~syam/bin/deviceQuery

Device 0: "Tesla M2070"
 CUDA Driver Version / Runtime Version 5.5 / 5.5
 CUDA Capability Major/Minor version number: 2.0
 Total amount of global memory: 5375 MBytes (5636554752 bytes)
 (14) Multiprocessors x (32) CUDA Cores/MP: 448 CUDA Cores
 GPU Clock Speed: 1.15 GHz
 Total amount of shared memory per block: 49152 bytes
 Total number of registers available per block: 32768
 Warp size: 32
 Maximum number of threads per block: 1024
 Maximum sizes of each dimension of a block: 1024 x 1024 x 64
 Maximum sizes of each dimension of a grid: 65535 x 65535 x 65535
 Concurrent copy and execution: Yes with 2 copy engine(s)
 Support host page-locked memory mapping: Yes
 Concurrent kernel execution: Yes

81

CUDA code optimization

● Optimal CUDA parameters
– Number of threads per block (BLOCK_SIZE): total range

1...1024; much better if multiples of 32; better still if
multiples of 64. Usually the best performance when it is
128, 192, or 256.

– Number of threads per multiprocessor: at least 768 for
capability 2.x to completely hide read-after-write register
latency. That means at least 10,752 threads per kernel
for the whole monk GPU.

– Number of blocks in a kernel: at least equal to the
number of multiprocessors (≥14 for monk), to keep all
multiprocessors busy.

82

New NVIDIA GPU - K20

● K20 represents both a significant evolutionary and revolutionary
changes.

● Evolutionary:
– thanks to many more cores (2688 vs. 448 for C2075), 3.8x more flops for SP,

2x more flops for DP

– 70% faster core-memory bandwidth (250 vs. 150 GB/s)

● Revolutionary:
– CUDA Dynamic Parallelism (CDP): new hard/software feature allowing for

dynamic workload generation on GPU (kernels launched from kernels).
Makes GPU much more general purpose computing device.

– Hyper-Q: in previous generations, multiple CPU threads could only access
the GPU sequentially (one queue); K20 expands that to 32 parallel queues.
This should significantly accelerate mixed MPI/CUDA and OpenMP/CUDA
codes, without any code modifications.

83

Newest NVIDIA GPU - K20

● These changes made K20 the first real HPC GPU

● #2 supercomputer in the world (Titan) has 90% of its 27 Petaflops
in K20s. (Consists of almost 19,000 nodes, 16 CPU cores + K20x
in each node.)

● Multiple Tier 1 software packages have shown a significant, ~4x,
speedup (“16 CPU cores + K20” versus “16 CPU cores”), thanks
to new K20 capabilities.

– Cosmology code Enzo: with Hyper-Q, speedup increased from 1.4x to 6x (on
Titan).

– N-body tree-code Bonsai: Dynamic Parallelism resulted in ~2x faster code.

● Unfortunately, K20s are not available in SHARCNET yet. (There
is one in SciNet; Calcul Quebec's Guillimin has 100 K20s.)

84

Hands on exercise #3

● Copy all the exercises to your home directory (ignore error
messages):
 cp -pr ~syam/CUDA_day2 ~

● Use one of the nodes listed in ~/CUDA_day2/nodes.txt
 ssh monXX
 export CUDA_VISIBLE_DEVICES=Y

● Text editors: vim, emacs, nano (for syntax highlighting:
 cp ~syam/.nanorc ~)

● Help material (PDF files in ~/CUDA_day2).

● Exercises:
● CUDA_day2 / Reduction: trying different reduction strategies

● CUDA_day2 / Staged: using streams to stage copying and computing

● CUDA_day2 / Primes: converting a serial code for largest prime
number search to CUDA

85

Serial->CUDA code conversion

86

Serial->CUDA code conversion

● “Random Lens Design” code: science
● Multi-element lens design can be formulated as a search for the

global minimum of an extremely complicated merit function of
many dimensions (from dozens to hundreds), which measures the
optical quality of the lens and enforces numerous constraints. The
number of dimensions is also not known.

87

Serial->CUDA code conversion

● “Random Lens Design” code: science

● The most direct way to compute the merit function is to trace thousands
of rays through the system.

● As derivatives are not known, the best method for searching for minima
is downhill simplex method (I use the Gnu Scientific Library
implementation)

● The additional complication is that the merit function is physical only in a
tiny fraction of the multi-D phase space, and has a complicated
filamentary structure.

● I have designed a “smart random draft lens design” algorithm, which can
very quickly assemble a draft lens with a random number of elements,
with the main optical parameters (focal length and aperture) close to the
target.

● I use it to place multiple random initial points, for the global minimum
search in a Monte Carlo fashion. The serial version is run as a serial
farm. With the serial code, it takes days to converge from the initial draft
point to a nearby local minimum.

88

Serial->CUDA code conversion
● Example of a path taken by the simplex minimizer in

39-dimensional space (projection on a random plane)

Initial search radius

89

Serial->CUDA code conversion

● “Random Lens Design” code: basic facts
● I wrote the serial version over 2 years.
● Contains ~10,000 lines of C code
● I converted the code to CUDA over ~6 months.
● ~2000 lines of code had to be rewritten for the

CUDA version
● I maintain both serial and CUDA versions in one

code (choose the flavor with a macro parameter)
● I achieved 30-50x speedup on one monk GPU

(depending on resolution; comparing to a single
orca core)

90

Serial->CUDA code conversion

● Why bother going parallel?
● I could just stick to serial farming – perfect

scalability, lots of available resources...
● But: an opportunity to learn something new (like

CUDA or pthreads)
● Also, the development cycle for the code can be

accelerated dramatically
– Serial code: takes weeks of testing to see if a small

modification improves the code
– Parallel code: should take a few hours at most

91

Serial->CUDA code conversion

● What parallel platform (MPI / pthreads / CUDA)?
● No good parallel simplex optimizer algorithms

– For the simplex method, merit function has to be computed
serially

– Meaning that the merit function itself needs to be parallelized

● Serial merit function takes ~30 ms to run. I wanted to
run it much faster – say, in 1 ms.
– This suggests that a parallelized merit function will be very

fine-grained (latency-bound)

● Ray tracing based computations should have a lot of
data parallelism opportunities, in the tens of thousands
(number of rays) parallel threads range.

92

Serial->CUDA code conversion

● What parallel platform (MPI / pthreads / CUDA)?
● Very fine-grained: MPI is not good
● Pthreads or CUDA?

– Massively data parallel (tens of thousands of threads): seems
to be better suited to GPGPU (CUDA) than to pthreads

– A significant amount of intermediate data (tens to hundreds of
megabytes) created and accessed multiple times over ~1 ms
suggests that CPU-memory bandwidth can be a limiting factor.
GPU-memory bandwidth is much larger than CPU-memory
bandwidth, which again favors CUDA over pthreads

– Finally, currently the best possible speedup with pthreads
would be ~24x (whole orca node). With CUDA, there is a
chance of getting to 50x or even larger.

● So CUDA it was!

93

Serial->CUDA code conversion

● Next step – serial code profiling

● The purpose is to identify “hot spots” - parts of the code
where most of computation is done

● Hopefully, these parts will be mostly parallelizable (do not
contain significant inhibitors to parallelization)

● One can use different methods of profiling.
– I did it on my Linux workstation, using programs gprof (part of GNU

compilers), dot (part of graphviz), and gprof2dot
– First, I compiled the code with -pg gcc switch.

– Then I ran one full simulation.

– Finally, I visualized the profiling result using these commands:

gprof path/to/your/executable | gprof2dot.py | dot -Tpng -o
output.png

94

Serial->CUDA code conversion

95

Serial->CUDA code conversion
● Incremental (or not quite) conversion to CUDA

● I started by writing two kernels, for the most CPU-intensive (~85% of the
whole code) and purely data-parallelizable parts of the code

● From the very start, I was constantly doing CUDA profiling (using host
timers), initially only for individual kernels, later for the whole merit
function

● What I discovered was:

– Merit function reads ~100 numbers, outputs only one number, but creates and uses
tens of MBs of scratch data. There were not many opportunities for interleaving
computations with data copying, and copying tens of MBs of data back and forth
between CPU and GPU completely killed the speedup (it was <1!).

– As a result, no incremental parallelization was possible: I had to convert pretty much
the whole merit function to CUDA to have a working code.

– Also, my main data structures had to be completely re-organized: I had a large 2D
array of “ray” structures – very convenient, but results in very non-coalesced memory
access in kernels (terrible speedups). I ended up breaking it into a number of flat
arrays.

– The two core kernels had severe register pressure (resulting in low occupancy
number). I discovered that by merging them together the register pressure went down
somewhat.

96

Serial->CUDA code conversion

● Incremental (or not quite) conversion to CUDA
● Reductions were the biggest problem

– Initially, I did everything as atomic (single precision)
reductions – it was almost as fast as binary reductions (I
made a couple of tests), and was much more flexible and
simple.

– Once I have converted the whole code, I discovered that
single precision accuracy is not good enough

– I spent a lot of time testing which reductions did need
double precision

– I ended up converting most atomic reductions to two-
level double precision binary reductions, finding the best
compromise between the speed, accuracy, and code
simplicity

97

Serial->CUDA code conversion

● CUDA code structure

● In the end, the CUDA code was fairly complex: 13 kernels and 4
device functions, with some kernels used multiple times (inside a
host while loop), resulting in ~20 kernels executed per merit
function computation

● It is impressive than that with ~20 kernels, and a fraction of the
merit function code still done on host, the execution time went
from ~30 ms down to ~1 ms

● As a final optimization, I found some opportunities for on-GPU
concurrency (2 parallel streams), which sped up the code by
additional 30%.

● There are still some opportunities for improving the efficiency
– Converting the leftover merit function code to CUDA

– Re-arranging the code in the two core kernels, to reduce the register
pressure even more

98

Serial->CUDA code conversion

● Hybrid serial/CUDA code
● I didn't want to fully commit my code to CUDA, and

ended up writing a hybrid version (using lots of
macro compiling parameters and switches) – it can
be compiled as CUDA with “make cuda”, and as
serial with “make serial”
– This means double work when I continue to develop the

code, but the code flexibility and the fact it is “future-
proof” makes it worth it for me

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98

