
Debugging and Profiling
Scientific Computing Course, Feb 2013

Homework

• Questions about homework?

• Diffusion Class

• Tracer Class

Debugging
Scientific Computing Course, Feb 2013

Debugging

• All programs execute correctly.

• We just told it to do the wrong thing.

• Debugging is the art of reconciling your mental model of
what the code “is” doing with what it is actually doing;
then adjusting the code back to what you intended.

• This is a genuinely difficult task; you’re effectively debugging
your own thought process.

Debugging

http://imgs.xkcd.com/comics/debugger.png

http://imgs.xkcd.com/comics/debugger.png
http://imgs.xkcd.com/comics/debugger.png

Tips to avoid debugging,
or at least make it less of a

soul-sucking time-sink

• Write better code

• Every time you write a line and think “I’m pretty sure no
one would pass a negative n into here, anyway”, stop
and insert a test - at least, assert(n >= 0);

• Practice modularity - no global variables, break things up
into meaningful chunks that are self contained. Don’t
have to go hunting through multiple files to debug one
routine.

Tips to avoid debugging,
or at least make it less of a

soul-sucking time-sink

• Write straightforward code

• Simple, clear; commented.

• Straightforward logic; no “cute tricks”.

• “Debugging is harder than coding. So if you were being
as witty as you could possibly be while writing the
code, you are by definition not smart enough to debug
it.”

Tips to avoid debugging,
or at least make it less of a

soul-sucking time-sink

• Don’t write code

• Every line of code you don’t write is a line that will
never turn out to be wrong.

• Use (well-tested, well-maintained) other peoples’
libraries when possible.

• Re-use previous code where possible.

• Don’t re-invent the wheel. (DRY)

Tips to avoid debugging,
or at least make it less of a

soul-sucking time-sink

• Write more tests

• Exploit modularity in your code by writing tests for
each module - can help find if something’s gone awry

• Find the bug as early as possible

• If your tests aren’t picking up the bug, can you write a
simple additional test that does show the bad
behaviour?

• Keep that test in the test suite

Tips to avoid debugging,
or at least make it less of a

soul-sucking time-sink

• Get outside help

• Your blind spots are different from their blind spots.

• Code review is shown time and time again to be the
most effective way of finding bugs (bugs per person-
hour) and to keep bugs out of code.

• If you’re working on a joint project, make code review
before merge standard practice

• Works particularly well for ~100 line-sized chunks

Basic Debugging Workflow:
(1) Reproducable Example

• As soon as you are convinced there is a real problem, job
#1 is to create the simplest situation in which it repeatedly
occurs.

• This is science: model, hypothesis, experiment, conclusion.

• Do not charge in, saying “I’m pretty sure it’s in here! I’ll
just change this...” Now you’ve got two bugs.

• Try a smaller problem size, turning off different physical
effects with options, etc, until you have a simple, fast,
repeatable example.

Basic Debugging Workflow:
(2) Narrow down the problem
• Again, this is science: model, hypothesis, experiment,

conclusion.

• Try to narrow down in what module the bug is introduced.

• Unit tests: Maybe my diffusion operator doesn’t work on
non-monotone data. If that’s the case, then this test should
find it... No, that seems to be working fine.

• Absent clear evidence like the above, avoid the trap of
“Oh, I’m sure it’s not in there...”

• Integrated calculation: Write out intermediate results to a
file, inspect them.

Tools to help you debug

• Symbolic “debuggers”

• Allow you to step through
the code, print variables -
eg, see what code is really
doing.

• To use this, more
information needs to be
stored in the executable
than computer would
generally need

• compile with -g flag

Tools to help you debug

• Graphical and text-based

• Same basic functionality.

• Graphical is easier to use
(can see more at once)

• Text often has advantage
over network connection.

• Note “Optimized out”;
sometimes advantageous
to reduce optimization
level of compilation while
debugging. (-O0)

Best possible case: core dump

• In general, more spectacular
the failure, easier to debug

• Bugs that cause slightly
wrong answers are most
challenging, dangerous.

• Segmentation fault: trying to
access illegal memory.

• Scientific code: often out-of-
bounds array indices, or bad
arguments to a function

Best possible case: core dump

• POSIX type systems will try to
“dump core” (write contents
of memory) on sufficiently
spectacular failure.

• This is often turned off by
user limits (copies of all of
processes memory can be
quite large).

• ulimit -c unlimited
will allow these dump files.

Best possible case: core dump

• With core file, and executable
compiled with symbols,
debugger will take you
immediately to the point of
seg fault.

• (Not necessarily point of the
bug)

• gdb:
gdb executable corefile

Best possible case: core dump

• Important commands in
this context:

• where shows you
where in the stack
frame you are. main
called doConstTest at
line 69.

• list shows you lines
of code above and
below current cursor

• print - prints
variables.

Best possible case: core dump

• ddd - graphical debugger

• Same arguments (pretty
common)

• ddd executable corefile

• Can click on or hover over
variable to see value, etc

• Can even plot array values

Aside - Valgrind

• Memory errors do not always give segfaults

• Had to go way out of bounds to get segfault above.

• Write into other variables - hard to find problem.

• Valgrind - slow, thorough. Finds illegal accesses.

• If you use external libraries, sometimes false positives

$ valgrind --tool=memcheck ./tests
==11069== Memcheck, a memory error detector
==11069== Copyright (C) 2002-2011, and GNU GPL'd, by Julian Seward et al.
==11069== Using Valgrind-3.7.0 and LibVEX; rerun with -h for copyright info
==11069== Command: ./tests
==11069==
Performing Constant Test...
==11069== Invalid write of size 8
==11069== at 0x400635: doConstTest(int) (tests.cxx:14)
==11069== by 0x4008AB: main (tests.cxx:69)
==11069== Address 0x595d360 is 0 bytes after a block of size 800 alloc'd
==11069== at 0x4C268CF: operator new[](unsigned long) (vg_replace_malloc.c:348)
==11069== by 0x4005DF: doConstTest(int) (tests.cxx:8)
==11069== by 0x4008AB: main (tests.cxx:69)

More typical case
• Generally, though, you aren’t given

such a clean starting point for
investigation.

• Once you’ve narrowed down the
problem, you launch the debugger to
step through sections of code.

• Can insert printf()’s/cout’s throughout
code and run - but this is usually a
sign that you haven’t done your
homework to narrow down the
problem sufficiently yet.

• gdb <executable>;
set args arg1 arg2;
run or
ddd <executable>

Workflow
• Start up debugger with your

simple, repeatable test case.

• Set a breakpoint for about
half-way through, and we can
see if bug has manifested itself.

• gdb: break doConstTest
or break tests.cxx:7

• ddd: Go to code in viewer
(may have to search for it) and
click on it and click “break”
icon, or right click.

• gdb: run; ddd: click on “run”

Workflow

• step - steps to following line
of code, stepping into
functions if necessary

• next - goes to next line of
code in the current function;
doesn’t go into subroutines

• print - as before

• finish/return - finish in this
routine, continue from where
it was called

Workflow

• If bug has manifested itself,
then bug was in first half; re-
run, set breakpoint for 1/4
way mark.

• Otherwise, set a new
breakpoint for 3/4-way mark.

• Repeat.

Pro Tip #1

• Most debuggers let you set
conditional breakpoints

• Break in this loop if i > 50.

• gdb: break tests.cxx:
14 if i > 50

• ddd: option in break pull-down
menu

Pro Tip #2
• Most debuggers let you set

watchpoints.

• Break at any line of code if the
given variable is changed. eg,
watch x

• Variable must be visible from
where you are when you set
the watchpoint.

• Useful when you know what
variable is being mis-set but
don’t know who’s mis-setting
it.

• Very useful if you’re debugging
legacy code with global
variables.

Profiling
Scientific Computing Course, Feb 2013

Profiling

• Like debuggers for
debugging, profilers
are evidence-based
methods to find
performance
problems.

• Can’t improve what
you don’t measure.

Profiling
• Where in your program

is time being spent?

• Find the expensive parts
• Don’t waste time
optimizing parts that
don’t matter

• Find bottlenecks.

•

Profiling

•

• Tracing vs. Sampling

• Instrumenting vs.
instrumentation-free

Timing whole program

•

• Very simple; can run
on any command.

• In serial, real = user +
sys

• In parallel, ideally user
= nprocs x real

• Can run on tests to
identify performance
regressions.

Watching program run
$ top

More system then user time -
not very efficient

Instrumenting regions
of code

• Instrumenting the
code

• Simple, but incrediby
useful.

• Runs every time
your code is run

• Can trivially see if
changes make things
better or worse

Instrumenting regions
of code

• Simple example -
matrix-vector multiply

• Initializes data, does
multiply, saves result

• Look to see where it
spends its time, speed it
up.

• Options for how to
access data, output data.

Matrix-vector multiply

• Simple example -
matrix-vector multiply

• Initializes data, does
multiply, saves result

• Look to see where it
spends its time, speed it
up.

• Options for how to
access data, output data.

Matrix-vector multiply

• Can get an overview of
the time spent easily,
because we
instrumented our code
(~12 lines!)

• I/O huge bottleneck.

$ mvm --matsize=2500
Timing summary:
 Init: 0.00952 sec
 Calc: 0.06638 sec
 I/O : 5.07121 sec

Matrix-vector multiply

• I/O being done in ASCII

• having to loop over
data, convert to string,
write to output.

• 6,252,500 write
operations!

• Let’s try a --binary
option:

Matrix-vector multiply

• Let’s try a --binary
option:

• Shorter...

Matrix-vector multiply

• And much (36x!) faster

• File 4x smaller

• Still slow, but file I/O is
always going to be
slower than a
multiplication.

• On to calculation...

$ mvm --matsize=2500
--binary
Timing summary:
 Init: 0.00976 sec
 Calc: 0.06695 sec
 I/O : 0.14218 sec
$./mvm --binary
$ du -h Mat-vec.dat
89M Mat-vec.dat
$./mvm --binary
$ du -h Mat-vec.dat
20M Mat-vec.dat

Sampling for Profiling

• How to get finer-grained information about
where time is being spent?

• Can’t instrument every single line.

• Compilers have tools for sampling execution
paths.

Sampling for Profiling

• As program executes,
every so often
(~100ms) a timer goes
off, and the current
location of execution
is recored

• Shows where time is
being spent.

Line 7
Line 18
Line 223
Line 9

Sampling for Profiling
• Advantages:

• Very low overhead

• No extra
instrumentation

• Disadvantages:

• Don’t know why
code was there

• Statistics - have to
run long enough
job

Line 7
Line 18
Line 223
Line 9

gprof for sampling

gprof examines gmon.out
$ gprof mvm-profile gmon.out
Flat profile:
Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls Ts/call Ts/call name
100.24 0.41 0.41 3 0.00 main
 0.00 0.41 0.00 3 0.00 0.00 tick
 0.00 0.41 0.00 3 0.00 0.00 tock
 0.00 0.41 0.00 2 0.00 0.00 alloc1d
 0.00 0.41 0.00 2 0.00 0.00 free1d
 0.00 0.41 0.00 1 0.00 0.00 alloc2d
 0.00 0.41 0.00 1 0.00 0.00 free2d
 0.00 0.41 0.00 1 0.00 0.00 get_options
[...]

Gives data by function -- usually handy, not so useful in this
toy problem

gprof --line
gpc-f103n084-$ gprof --line mvm-profile gmon.out | more
Flat profile:
Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls Ts/call Ts/call name
 68.46 0.28 0.28 main (mat-vec-mult.c:82 @ 401
 14.67 0.34 0.06 main (mat-vec-mult.c:113 @ 40
 7.33 0.37 0.03 main (mat-vec-mult.c:63 @ 401
 4.89 0.39 0.02 main (mat-vec-mult.c:112 @ 40
 4.89 0.41 0.02 main (mat-vec-mult.c:113 @ 40
 0.00 0.41 0.00 3 0.00 0.00 tick (mat-vec-mult.c:159 @ 40
 0.00 0.41 0.00 3 0.00 0.00 tock (mat-vec-mult.c:164 @ 40
 0.00 0.41 0.00 2 0.00 0.00 alloc1d (mat-vec-mult.c:152 @
 0.00 0.41 0.00 2 0.00 0.00 free1d (mat-vec-mult.c:171 @
 0.00 0.41 0.00 1 0.00 0.00 alloc2d (mat-vec-mult.c:130 @
 0.00 0.41 0.00 1 0.00 0.00 free2d (mat-vec-mult.c:144 @
 0.00 0.41 0.00 1 0.00 0.00 get_options (mat-vec-mult.c:1

Then can compare to
source

• Code is spending most
time deep in loops

• #1 - multiplication

• #2 - I/O (old way)

gprof pros/cons

• Exists (almost) everywhere

• Easy to script, put in batch jobs

• Low overhead

• As with graphical debuggers, many nice graphical
profilers exist as well

Mac OS X note
• Sadly, as of 10.5, Mac OS X no longer supports gprof.

• Instruments app in Xcode

• Open Instruments.

• Select the "Time Profiler" template.

• Select your program as the "Target" dropdown menu.

• Hit the red circle ("record") button.

• Hit the record button again to stop recording.

• Use the tools in Instruments to analyze your results.

Then can compare to
source

• Code is spending most
time deep in loops

• #1 - multiplication

• #2 - I/O (old way)

Cache Thrashing

• Memory bandwidth is
key to getting good
performance on
modern systems

• Main Mem - big, slow

• Cache - small, fast

• Saves recent
accesses, a line of
data at a time.

Cache Thrashing

• When accessing
memory in order, only
one access to slow
main mem for many
data points

• Much faster

Cache Thrashing

• When accessing
memory out of order,
much worse

• Each access is new
cache line (cache
miss)- slow access to
main memory

• Can see ~10x
slowdown

Cache Thrashing

• In C, cache-friendly
order is to make last
index most quickly
varying

Good

Bad

Cache Thrashing

• In C, cache-friendly
order is to make last
index most quickly
varying

Good

Bad

Cache Thrashing

• Can see cache
problems with
valgrind + visualizer:

• valgrind --
tool=cachegrind

• KDE tool kcachegrind
available for window,s
linux, mac os x.

Good

Bad

Cache Thrashing

• Once cache thrashing
is fixed, and assuming
I/O can’t be
improved, Init is now
the bottleneck!

• So it goes...

$./mvm-omp --matsize=2500
 --transpose --binary
Timing summary:
 Init: 0.00947 sec
 Calc: 0.00811 sec
 I/O : 0.14881 sec

IDEs

• Many choices for IDEs -
integrated editor, build
manager, debugger, profiler.

• Visual Studio, Xcode, Eclipse,..

• Can be extremely
powerful, useful, especially
when learning new language,
code base

• Benfits/Costs of integration:
have to do everything through
IDE.

