
1/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Shared Memory Programming with OpenMP

Ramses van Zon
SciNet HPC Consortium

University of Toronto

May 8, 2013

2/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Outline

1. The OpenMP model: threads, memory, and performance

Hands On 1: Parallelizing daxpy

2. Reductions and load balancing

Hands-On 2: Mandelbrot set

3. Advanced OpenMP features

Assumed knowledge: C and/or Fortran scientific programming;
experience editing and compiling code in a Linux environment.

3/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Shared Memory

One large bank of memory,
different computing cores
acting on it. All ‘see’ same
data.

Any coordination done
through memory

Could use message passing,
but no need.

Each code is assigned a
thread of execution of a
single program that acts on
the data.

~ ~

~

~

n n

n

n

-� � -

?

6

6

?

Core 1 Core 2

Core 3

Core 4

Memory

4/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

OpenMP

I For shared memory systems.

I Add parallelism to
functioning serial code.

I http://openmp.org

I Compiler, run-time env
does most of the work

I But we have to tell it how
to use variables, where to
run in parallel, . . .

I Mark parallel regions.

I Works by adding compiler
directives to code.

Invisible to non-openmp
compilers.

Incremental parallelism

4/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

OpenMP

I For shared memory systems.

I Add parallelism to
functioning serial code.

I http://openmp.org

I Compiler, run-time env
does most of the work

I But we have to tell it how
to use variables, where to
run in parallel, . . .

I Mark parallel regions.

I Works by adding compiler
directives to code.

Invisible to non-openmp
compilers.

Incremental parallelism

4/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

OpenMP

I For shared memory systems.

I Add parallelism to
functioning serial code.

I http://openmp.org

I Compiler, run-time env
does most of the work

I But we have to tell it how
to use variables, where to
run in parallel, . . .

I Mark parallel regions.

I Works by adding compiler
directives to code.
Invisible to non-openmp
compilers.

Incremental parallelism

4/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

OpenMP

I For shared memory systems.

I Add parallelism to
functioning serial code.

I http://openmp.org

I Compiler, run-time env
does most of the work

I But we have to tell it how
to use variables, where to
run in parallel, . . .

I Mark parallel regions.

I Works by adding compiler
directives to code.
Invisible to non-openmp
compilers.

Incremental parallelism

5/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Compiler directives-based parallization

I OpenMP

I OpenACC
I Does for GPU programming what OpenMP does for threading
I Alternative to CUDA (but no free implementation yet).
I Similar incremental parallelism as for OpenMP
I Differs from OpenMP in that memory needs to be copied over

I Intel MIC Compilers
I MIC, or more proper, the Xeon Phi, is an Intel multicore

co-processor with its own memory.
I Host/Device setup is similar to the CPU, but internal

architecture is shared-memory x86.
I With the Intel compilers (v13+) you can use compiler

directives for offloading to the MIC as well.

I Compiler-specific vectorization hints

Much of this will be folded into OpenMP 4.

6/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

OpenMP basic operations

In code:

I In C, you add lines starting with #pragma omp.
This parallelizes the subsequent code block.

I In Fortran, you add lines starting with !$omp.
An !$omp end ... is needed to close the parallel region.

I These lines are skipped (for C, sometimes with a warning) by
compilers that do not support OpenMP.

When compiling:

I To turn on OpenMP support in gcc and gfortran, add the
-fopenmp flag to the compilation (and link!) commands.

When running:

I The environment variable OMP NUM THREADS determines how
many threads will be started in an OpenMP parallel block.

6/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

OpenMP basic operations

In code:

I In C, you add lines starting with #pragma omp.
This parallelizes the subsequent code block.

I In Fortran, you add lines starting with !$omp.
An !$omp end ... is needed to close the parallel region.

I These lines are skipped (for C, sometimes with a warning) by
compilers that do not support OpenMP.

When compiling:

I To turn on OpenMP support in gcc and gfortran, add the
-fopenmp flag to the compilation (and link!) commands.

When running:

I The environment variable OMP NUM THREADS determines how
many threads will be started in an OpenMP parallel block.

6/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

OpenMP basic operations

In code:

I In C, you add lines starting with #pragma omp.
This parallelizes the subsequent code block.

I In Fortran, you add lines starting with !$omp.
An !$omp end ... is needed to close the parallel region.

I These lines are skipped (for C, sometimes with a warning) by
compilers that do not support OpenMP.

When compiling:

I To turn on OpenMP support in gcc and gfortran, add the
-fopenmp flag to the compilation (and link!) commands.

When running:

I The environment variable OMP NUM THREADS determines how
many threads will be started in an OpenMP parallel block.

7/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

OpenMP example

C: 1 helloworld/omp-hello-world.c

#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n", omp get thread num());

}

}

Fortran: 1 helloworld/omp-hello-world-f.f90

program omp hello world

use omp lib

implicit none

print *, ’At start of program’

!$omp parallel

print *, ’Hello world from thread ’, omp get thread num(), ’!’

!$omp end parallel

end program omp hello world

8/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Getting started with this code

All sample code is on the usb drive, but to do this on the gpc:

$ ssh USER@login.scinet.utoronto.ca -X #get into SciNet
$ ssh gpc01 -X #get on the GPC
$ qsub -l nodes=1:ppn=8,walltime=4:00:00 -I -X
... #get your own compute node
$ cd $SCRATCH
$ cp -r /scinet/course/ss2013 .
$ cd ss2013/HPC107 openmp/code
$ source setup
$ cd 1 helloworld

9/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

OpenMP example

$ gcc -fopenmp -o omp-hello-world omp-hello-world.c
or
$ gfortran -fopenmp -o omp-hello-world-f \
. omp-hello-world-f.f90
or
$ make omp-hello-world omp-hello-world-f

$ export OMP NUM THREADS=8
$./omp-hello-world
...
$ export OMP NUM THREADS=1
$./omp-hello-world
...
$ export OMP NUM THREADS=32
$./omp-hello-world
...

Let’s see what happens. . .

10/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

OpenMP example
$ gcc -o omp-hello-world omp-hello-world.c -fopenmp
$ export OMP NUM THREADS=8
$./omp-hello-world
At start of program
Hello, world, from thread 0!
Hello, world, from thread 6!
Hello, world, from thread 5!
Hello, world, from thread 4!
Hello, world, from thread 2!
Hello, world, from thread 1!
Hello, world, from thread 7!
Hello, world, from thread 3!
$ export OMP NUM THREADS=1
$./omp-hello-world
At start of program
Hello, world, from thread 0!
$ export OMP NUM THREADS=32
$./omp-hello-world
At start of program
Hello, world, from thread 11!
Hello, world, from thread 1!
Hello, world, from thread 16!
...

11/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

So what happened precisely?

I OMP NUM THREADS
threads were launched.

I Each prints “Hello, world
. . . ”;

I In seemingly random order.

I Only one “At start of
program”.

$ gcc -o omp-hello-world omp-hello-world.c -fopenmp
$ export OMP NUM THREADS=8
$./omp-hello-world
At start of program
Hello, world, from thread 0!
Hello, world, from thread 6!
Hello, world, from thread 5!
Hello, world, from thread 4!
Hello, world, from thread 2!
Hello, world, from thread 1!
Hello, world, from thread 7!
Hello, world, from thread 3!
$ export OMP NUM THREADS=1
$./omp-hello-world
At start of program
Hello, world, from thread 0!
$ export OMP NUM THREADS=32
$./omp-hello-world
At start of program
Hello, world, from thread 11!
Hello, world, from thread 1!
Hello, world, from thread 16!
...

12/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

So what happened precisely?

#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n", omp get thread num());

}

}

program omp hello world

use omp lib

implicit none

print *, ’At start of program’

!$omp parallel

print *, ’Hello world from thread ’, omp get thread num(), ’!’

!$omp end parallel

end program omp hello world

12/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

So what happened precisely?

#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n", omp get thread num());

}

}

program omp hello world

use omp lib

implicit none

print *, ’At start of program’

!$omp parallel

print *, ’Hello world from thread ’, omp get thread num(), ’!’

!$omp end parallel

end program omp hello world

Program starts normally (single thread)
@

@
@

@
@I

�
�
�

�
�	

12/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

So what happened precisely?

#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n", omp get thread num());

}

}

program omp hello world

use omp lib

implicit none

print *, ’At start of program’

!$omp parallel

print *, ’Hello world from thread ’, omp get thread num(), ’!’

!$omp end parallel

end program omp hello world

At start of parallel section, launching
OMP NUM THREADS threads,
Each executes the same code!

@
@I}

�
�

�
�

�	}

12/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

So what happened precisely?

#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n", omp get thread num());

}

}

program omp hello world

use omp lib

implicit none

print *, ’At start of program’

!$omp parallel

print *, ’Hello world from thread ’, omp get thread num(), ’!’

!$omp end parallel

end program omp hello world

At end of parallel section,
threads join back up,
Execution continues serially.

@
@I}

�
�

�
�

�	}

12/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

So what happened precisely?

#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n", omp get thread num());

}

}

program omp hello world

use omp lib

implicit none

print *, ’At start of program’

!$omp parallel

print *, ’Hello world from thread ’, omp get thread num(), ’!’

!$omp end parallel

end program omp hello world

Special function to find number
of current thread (first=0).

6

?

13/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

OpenMP functions (from omp.h/omp lib)

By including omp.h, you get a smal number of omp functions:

I omp get thread num()

I omp get num threads()

I . . .

. 1 helloworld/omp-hello-world2.c

#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d of %d!\n",

omp get thread num(),

omp get num threads());

}

}

omp get num threads() called by all threads.
Let’s see if we can fix that. . .

14/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

OpenMP functions (from omp.h/omp lib)

. 1 helloworld/omp-hello-world3.c

#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n",

omp get thread num());

}

printf("There were %d threads.\n", omp get num threads());

}

What do you think, will this work?

No:
Says 1 thread only!
Why?
Because that is true outside the parallel region!
Need to get the value from the parallel region somehow.

14/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

OpenMP functions (from omp.h/omp lib)

. 1 helloworld/omp-hello-world3.c

#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n",

omp get thread num());

}

printf("There were %d threads.\n", omp get num threads());

}

What do you think, will this work?
No:
Says 1 thread only!

Why?
Because that is true outside the parallel region!
Need to get the value from the parallel region somehow.

14/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

OpenMP functions (from omp.h/omp lib)

. 1 helloworld/omp-hello-world3.c

#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n",

omp get thread num());

}

printf("There were %d threads.\n", omp get num threads());

}

What do you think, will this work?
No:
Says 1 thread only!
Why?
Because that is true outside the parallel region!
Need to get the value from the parallel region somehow.

15/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Variables in OpenMP
Variables in parallel regions are a bit tricky.

#include <stdio.h>

#include <omp.h>

int main() {

int mythread, nthreads;

#pragma omp parallel default(none) shared(nthreads) private(mythread)

{

mythread = omp get thread num();

if (mythread == 0)

nthreads = omp get num threads();

}

printf("There were %d threads.\n", nthreads);

}

I Program runs, launches threads.

I Each thread gets copy of mythread.

I Only thread 0 writes to nthreads.

I Good idea to declare mythread locally! (avoids many bugs)

I 1 helloworld/omp-hello-world4.c

15/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Variables in OpenMP
Variables in parallel regions are a bit tricky.

#include <stdio.h>

#include <omp.h>

int main() {

int mythread, nthreads;

#pragma omp parallel default(none) shared(nthreads) private(mythread)

{

mythread = omp get thread num();

if (mythread == 0)

nthreads = omp get num threads();

}

printf("There were %d threads.\n", nthreads);

}

Variable declarations
�����

How used in parallel region

?

I Program runs, launches threads.

I Each thread gets copy of mythread.

I Only thread 0 writes to nthreads.

I Good idea to declare mythread locally! (avoids many bugs)

I 1 helloworld/omp-hello-world4.c

15/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Variables in OpenMP
Variables in parallel regions are a bit tricky.

#include <stdio.h>

#include <omp.h>

int main() {

int mythread, nthreads;

#pragma omp parallel default(none) shared(nthreads) private(mythread)

{

mythread = omp get thread num();

if (mythread == 0)

nthreads = omp get num threads();

}

printf("There were %d threads.\n", nthreads);

}

Variable declarations
�����

How used in parallel region

?

I default(none) can save you hours of debugging!
I shared: each thread sees it and can modify (be careful!).

Preserves value.
I private: each thread gets it own copy, invisible for others

Initial and final value undefined!
(Advanced: firstprivate, lastprivate – copy in/out.)

I Program runs, launches threads.
I Each thread gets copy of mythread.
I Only thread 0 writes to nthreads.
I Good idea to declare mythread locally! (avoids many bugs)

I 1 helloworld/omp-hello-world4.c

15/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Variables in OpenMP
Variables in parallel regions are a bit tricky.

#include <stdio.h>

#include <omp.h>

int main() {

int mythread, nthreads;

#pragma omp parallel default(none) shared(nthreads) private(mythread)

{

mythread = omp get thread num();

if (mythread == 0)

nthreads = omp get num threads();

}

printf("There were %d threads.\n", nthreads);

}

I Program runs, launches threads.

I Each thread gets copy of mythread.

I Only thread 0 writes to nthreads.

I Good idea to declare mythread locally! (avoids many bugs)

I 1 helloworld/omp-hello-world4.c

15/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Variables in OpenMP
Variables in parallel regions are a bit tricky.

#include <stdio.h>

#include <omp.h>

int main() {

int mythread, nthreads;

#pragma omp parallel default(none) shared(nthreads) private(mythread)

{

mythread = omp get thread num();

if (mythread == 0)

nthreads = omp get num threads();

}

printf("There were %d threads.\n", nthreads);

}

I Program runs, launches threads.

I Each thread gets copy of mythread.

I Only thread 0 writes to nthreads.

I Good idea to declare mythread locally! (avoids many bugs)

I 1 helloworld/omp-hello-world4.c

15/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Variables in OpenMP
Variables in parallel regions are a bit tricky.

#include <stdio.h>

#include <omp.h>

int main() {

int nthreads;

#pragma omp parallel default(none) shared(nthreads)

{

int mythread = omp get thread num();

if (mythread == 0)

nthreads = omp get num threads();

}

printf("There were %d threads.\n", nthreads);

}

I Program runs, launches threads.

I Each thread gets copy of mythread.

I Only thread 0 writes to nthreads.

I Good idea to declare mythread locally! (avoids many bugs)

I 1 helloworld/omp-hello-world4.c

16/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Variables in OpenMP - Fortran version

. 1 helloworld/omp-hello-world4-f.f90
program omp vars

use omp lib

implicit none

integer :: mythread, nthreads

!$omp parallel default(none) private(mythread) shared(nthreads)

mythread = omp get thread num()

if (mythread == 0) then

nthreads = omp get num threads()

endif

!$omp end parallel

print *,’Number of threads was ’, nthreads, ’.’

end program omp vars

17/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Single Execution in OpenMP

. 1 helloworld/omp-hello-world4.c

#include <stdio.h>

#include <omp.h>

int main() {

int nthreads;

#pragma omp parallel default(none) shared(nthreads)

{

int mythread = omp get thread num();

if (mythread == 0)

nthreads = omp get num threads();

}

printf("There were %d threads.\n", nthreads);

}

I Do we care that it’s thread 0 in particular that updates
nthreads?

I Often, we just want the first thread to go through, do not
care which one.

18/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Single Execution in OpenMP
#include <stdio.h> // 1 helloworld/omp-hello-world5.c

#include <omp.h>

int main() {

int nthreads;

#pragma omp parallel default(none) shared(nthreads)

#pragma omp single

nthreads = omp get num threads();

printf("There were %d threads.\n", nthreads);

}

program omp vars

use omp lib

implicit none

integer :: nthreads

!$omp parallel default(none) shared(nthreads)

!$omp single

nthreads = omp get num threads()

!$omp end single

!$omp end parallel

print *,’Number of threads was ’, nthreads, ’.’

end program omp vars

19/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Loops in OpenMP

Consider following openmp programs with a loop.

#include <stdio.h>

#include <omp.h>

int main() {

int i, mythread;

#pragma omp parallel default(none)\

XXXXX(i) private(mythread)

{

mythread = omp get thread num();

for (i=0; i<16; i++)

printf("Thread %d gets i=%d\n",

XXXXXXXmythread, i);

}

}

program omp loop

use omp lib

implicit none

integer :: i, mythread

!$omp parallel default(none) &

!$omp XXXX(i) private(mythread)

mythread = omp get thread num()

do i=1,16

print *, ’thread ’, mythread, &

XXXXXXXX ’ gets i=’, i

enddo

!$omp end parallel

end program omp loop

2 loop/omp-loop.c 2 loop/omp-loop-f.f90

How should we declare i, as private or as shared?
What would you imagine this does when run with e.g.
OMP NUM THREADS=8?

19/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Loops in OpenMP

Consider following openmp programs with a loop.

#include <stdio.h>

#include <omp.h>

int main() {

int i, mythread;

#pragma omp parallel default(none)\

XXXXX(i) private(mythread)

{

mythread = omp get thread num();

for (i=0; i<16; i++)

printf("Thread %d gets i=%d\n",

XXXXXXXmythread, i);

}

}

program omp loop

use omp lib

implicit none

integer :: i, mythread

!$omp parallel default(none) &

!$omp XXXX(i) private(mythread)

mythread = omp get thread num()

do i=1,16

print *, ’thread ’, mythread, &

XXXXXXXX ’ gets i=’, i

enddo

!$omp end parallel

end program omp loop

2 loop/omp-loop.c 2 loop/omp-loop-f.f90

How should we declare i, as private or as shared?
What would you imagine this does when run with e.g.
OMP NUM THREADS=8?

19/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Loops in OpenMP

Consider following openmp programs with a loop.

#include <stdio.h>

#include <omp.h>

int main() {

int i, mythread;

#pragma omp parallel default(none)\

XXXXX(i) private(mythread)

{

mythread = omp get thread num();

for (i=0; i<16; i++)

printf("Thread %d gets i=%d\n",

XXXXXXXmythread, i);

}

}

program omp loop

use omp lib

implicit none

integer :: i, mythread

!$omp parallel default(none) &

!$omp XXXX(i) private(mythread)

mythread = omp get thread num()

do i=1,16

print *, ’thread ’, mythread, &

XXXXXXXX ’ gets i=’, i

enddo

!$omp end parallel

end program omp loop

2 loop/omp-loop.c 2 loop/omp-loop-f.f90

How should we declare i, as private or as shared?

What would you imagine this does when run with e.g.
OMP NUM THREADS=8?

19/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Loops in OpenMP

Consider following openmp programs with a loop.

#include <stdio.h>

#include <omp.h>

int main() {

int i, mythread;

#pragma omp parallel default(none)\

XXXXX(i) private(mythread)

{

mythread = omp get thread num();

for (i=0; i<16; i++)

printf("Thread %d gets i=%d\n",

XXXXXXXmythread, i);

}

}

program omp loop

use omp lib

implicit none

integer :: i, mythread

!$omp parallel default(none) &

!$omp XXXX(i) private(mythread)

mythread = omp get thread num()

do i=1,16

print *, ’thread ’, mythread, &

XXXXXXXX ’ gets i=’, i

enddo

!$omp end parallel

end program omp loop

2 loop/omp-loop.c 2 loop/omp-loop-f.f90

How should we declare i, as private or as shared?
What would you imagine this does when run with e.g.
OMP NUM THREADS=8?

19/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Loops in OpenMP

Consider following openmp programs with a loop.

#include <stdio.h>

#include <omp.h>

int main() {

int i, mythread;

#pragma omp parallel default(none)\

XXXXX(i) private(mythread)

{

mythread = omp get thread num();

for (i=0; i<16; i++)

printf("Thread %d gets i=%d\n",

XXXXXXXmythread, i);

}

}

program omp loop

use omp lib

implicit none

integer :: i, mythread

!$omp parallel default(none) &

!$omp XXXX(i) private(mythread)

mythread = omp get thread num()

do i=1,16

print *, ’thread ’, mythread, &

XXXXXXXX ’ gets i=’, i

enddo

!$omp end parallel

end program omp loop

2 loop/omp-loop.c 2 loop/omp-loop-f.f90

How should we declare i, as private or as shared?
What would you imagine this does when run with e.g.
OMP NUM THREADS=8?

20/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Worksharing constructs in OpenMP

I We don’t generally want tasks to do exactly the same thing.

I Want to partition a problem into pieces, each thread works on
a piece.

I Most scientific programming full of work-heavy loops.

I OpenMP has a work-sharing construct: omp for (or omp do).

#include <stdio.h>

#include <omp.h>

int main() {

int i, mythread;

#pragma omp parallel default(none) XXXX(i) private(mythread)

{

mythread = omp get thread num();

#pragma omp for

for (i=0; i<16; i++)

printf("Thread %d gets i=%d\n",mythread,i);

}

}

2 loop/omp-loop2.c

20/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Worksharing constructs in OpenMP

I We don’t generally want tasks to do exactly the same thing.

I Want to partition a problem into pieces, each thread works on
a piece.

I Most scientific programming full of work-heavy loops.

I OpenMP has a work-sharing construct: omp for (or omp do).

#include <stdio.h>

#include <omp.h>

int main() {

int i, mythread;

#pragma omp parallel default(none) XXXX(i) private(mythread)

{

mythread = omp get thread num();

#pragma omp for

for (i=0; i<16; i++)

printf("Thread %d gets i=%d\n",mythread,i);

}

}

2 loop/omp-loop2.c

21/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Fortran version

program omp loop

use omp lib

implicit none

integer :: i, mythread

!$omp parallel default(none) XXXX(i) XXXX(mythread)

mythread = omp get thread num()

!$omp do

do i=1,16

print *, ’thread ’, mythread, ’ gets i=’, i

enddo

!$omp end do

!$omp end parallel

end program omp loop

2 loop/omp-loop2-f.f90

22/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Worksharing constructs in OpenMP

I omp for/omp do construct
breaks up the iterations by
thread.

I If doesn’t divide evenly, does
the best it can.

I Allows easy breaking up of
work!

I Advanced: can break up work
of arbitrary blocks of code
with omp task construct.

$./omp-loop2

thread 3 gets i=6

thread 3 gets i=7

thread 4 gets i=8

thread 4 gets i=9

thread 5 gets i=10

thread 5 gets i=11

thread 6 gets i=12

thread 6 gets i=13

thread 1 gets i=2

thread 1 gets i=3

thread 0 gets i=0

thread 0 gets i=1

thread 2 gets i=4

thread 2 gets i=5

thread 7 gets i=14

thread 7 gets i=15

$

23/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Less trivial example: DAXPY

I multiply a vector by a
scalar, add a vector.

I (a X plus Y, in double
precision)

I Given serial
implementation, will start
adding OpenMP

I daxpy.c or daxpy.f90

I cd 3 daxpy; make daxpy or
make daxpy-f

z = ax + y

Warning

This is a common linear algebra construct that you really shouldn’t
implement yourself. Various so-called BLAS implementations will
do a much better job than you. But good for illustration.

24/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

#include <stdio.h>

#include "pca utils.h"

void daxpy(int n, double a, double *x, double *y, double *z) {

for (int i=0; i<n; i++) {

x[i] = (double)i*(double)i;

y[i] = ((double)i+1.)*((double)i-1.);

}

for (int i=0; i<n; i++)

z[i] += a * x[i] + y[i];

}

int main() {

int n=1e7;

double *x = vector(n);

double *y = vector(n);

double *z = vector(n);

double a = 5./3.;

pca time tt;

tick(&tt);

daxpy(n,a,x,y,z);

tock(&tt);

free(z);

free(y);

free(x);

}

HANDS-ON: Try OpenMPing. . .

24/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

#include <stdio.h>

#include "pca utils.h"

void daxpy(int n, double a, double *x, double *y, double *z) {

for (int i=0; i<n; i++) {

x[i] = (double)i*(double)i;

y[i] = ((double)i+1.)*((double)i-1.);

}

for (int i=0; i<n; i++)

z[i] += a * x[i] + y[i];

}

int main() {

int n=1e7;

double *x = vector(n);

double *y = vector(n);

double *z = vector(n);

double a = 5./3.;

pca time tt;

tick(&tt);

daxpy(n,a,x,y,z);

tock(&tt);

free(z);

free(y);

free(x);

}

Utilities for memory and timingHH
H

HH
H

HH
H

HH
HY

HANDS-ON: Try OpenMPing. . .

24/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

#include <stdio.h>

#include "pca utils.h"

void daxpy(int n, double a, double *x, double *y, double *z) {

for (int i=0; i<n; i++) {

x[i] = (double)i*(double)i;

y[i] = ((double)i+1.)*((double)i-1.);

}

for (int i=0; i<n; i++)

z[i] += a * x[i] + y[i];

}

int main() {

int n=1e7;

double *x = vector(n);

double *y = vector(n);

double *z = vector(n);

double a = 5./3.;

pca time tt;

tick(&tt);

daxpy(n,a,x,y,z);

tock(&tt);

free(z);

free(y);

free(x);

}

Fill arrays with calculated values.�

HANDS-ON: Try OpenMPing. . .

24/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

#include <stdio.h>

#include "pca utils.h"

void daxpy(int n, double a, double *x, double *y, double *z) {

for (int i=0; i<n; i++) {

x[i] = (double)i*(double)i;

y[i] = ((double)i+1.)*((double)i-1.);

}

for (int i=0; i<n; i++)

z[i] += a * x[i] + y[i];

}

int main() {

int n=1e7;

double *x = vector(n);

double *y = vector(n);

double *z = vector(n);

double a = 5./3.;

pca time tt;

tick(&tt);

daxpy(n,a,x,y,z);

tock(&tt);

free(z);

free(y);

free(x);

}

Do calculation.������)

HANDS-ON: Try OpenMPing. . .

24/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

#include <stdio.h>

#include "pca utils.h"

void daxpy(int n, double a, double *x, double *y, double *z) {

for (int i=0; i<n; i++) {

x[i] = (double)i*(double)i;

y[i] = ((double)i+1.)*((double)i-1.);

}

for (int i=0; i<n; i++)

z[i] += a * x[i] + y[i];

}

int main() {

int n=1e7;

double *x = vector(n);

double *y = vector(n);

double *z = vector(n);

double a = 5./3.;

pca time tt;

tick(&tt);

daxpy(n,a,x,y,z);

tock(&tt);

free(z);

free(y);

free(x);

}

Driver (setup, call, timing).�

HANDS-ON: Try OpenMPing. . .

24/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

#include <stdio.h>

#include "pca utils.h"

void daxpy(int n, double a, double *x, double *y, double *z) {

for (int i=0; i<n; i++) {

x[i] = (double)i*(double)i;

y[i] = ((double)i+1.)*((double)i-1.);

}

for (int i=0; i<n; i++)

z[i] += a * x[i] + y[i];

}

int main() {

int n=1e7;

double *x = vector(n);

double *y = vector(n);

double *z = vector(n);

double a = 5./3.;

pca time tt;

tick(&tt);

daxpy(n,a,x,y,z);

tock(&tt);

free(z);

free(y);

free(x);

}

HANDS-ON: Try OpenMPing. . .

25/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

HANDS-ON 1:
Parallelize daxpy with OpenMP:
Edit the files omp-daxpy.c or omp-daxpy.f90.
Compile with make
Also do the scaling analysis!

26/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

void daxpy(int n, double a, double *x, double *y, double *z) {

#pragma omp parallel default(none) shared(n,x,y,a,z) private(i)

{

#pragma omp for

for (int i=0; i<n; i++) {

x[i] = (double)i*(double)i;

y[i] = ((double)i+1.)*((double)i-1.);

}

#pragma omp for

for (int i=0; i<n; i++)

z[i] += a * x[i] + y[i];
}

}

!$omp parallel default(none) private(i) shared(a,x,b,y,z)

!$omp do

do i=1,n

x(i) = (i)*(i)

y(i) = (i+1.)*(i-1.)

enddo

!$omp do

do i=1,n

z(i) = a*x(i) + y(i)

enddo

!$omp end parallel

27/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

28/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

void daxpy(int n, double a, double *x, double *y, double *z) {

#pragma omp parallel default(none) shared(n,x,y,a,z) private(i)

{

#pragma omp for

for (int i=0; i<n; i++) {

x[i] = (double)i*(double)i;

y[i] = ((double)i+1.)*((double)i-1.);

}

#pragma omp for

for (int i=0; i<n; i++)

z[i] += a * x[i] + y[i];
}

}

!$omp parallel default(none) private(i) shared(n,a,x,y,z)

!$omp do

do i=1,n

x(i) = (i)*(i)

y(i) = (i+1.)*(i-1.)

enddo

!$omp do

do i=1,n

z(i) = a*x(i) + y(i)

enddo

!$omp end parallel

�
��

6

Why is this safe?
Everyone is modifying x,y,z!

29/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Dot Product

I Dot product of two vectors

I Implement this, first
serially, then with OpenMP

I ndot.c or ndot.f90

I make ndot or make fndot

I Tells time, answer, correct
answer.

n = ~x ·~y

=
∑
i

xi yi

$./ndot

Dot product is 3.3333e+20

(vs 3.3333e+20) for n=10000000.

Took 4.9254e-02 seconds.

30/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Dot Product - serial
#include <stdio.h>

#include "pca utils.h"

double ndot(int n, double *x, double *y){

double tot=0;

for (int i=0; i<n; i++)

tot += x[i] * y[i];

return tot;

}

int main() {

int n=1e7;

double *x = vector(n), *y = vector(n);

for (int i=0; i<n; i++)

x[i] = y[i] = i;

double nn=n-1;

double ans=nn*(nn+1)*(2*nn+1)/6.0;

pca time tt;

tick(&tt);

double dot=ndot(n,x,y);

printf("Dot product is %14.4e (vs %14.4e) for n=%d. Took %12.4e

secs.\n",

dot, ans, n, tocksilent(&tt));

}

$ make ndot

$./ndot

Dot product is 3.3333e+20

(vs 3.3333e+20) for n=10000000.

Took 4.9254e-02 secs.

30/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Dot Product - serial
#include <stdio.h>

#include "pca utils.h"

double ndot(int n, double *x, double *y){

double tot=0;

for (int i=0; i<n; i++)

tot += x[i] * y[i];

return tot;

}

int main() {

int n=1e7;

double *x = vector(n), *y = vector(n);

for (int i=0; i<n; i++)

x[i] = y[i] = i;

double nn=n-1;

double ans=nn*(nn+1)*(2*nn+1)/6.0;

pca time tt;

tick(&tt);

double dot=ndot(n,x,y);

printf("Dot product is %14.4e (vs %14.4e) for n=%d. Took %12.4e

secs.\n",

dot, ans, n, tocksilent(&tt));

}

$ make ndot

$./ndot

Dot product is 3.3333e+20

(vs 3.3333e+20) for n=10000000.

Took 4.9254e-02 secs.

31/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Towards A Parallel Dot Product

I We could clearly parallelize the loop.

I We need the sum from everybody.

I We could make tot shared, then all threads can add to it.

double ndot(int n, double *x, double *y){

double tot=0;

#pragma omp parallel for de-

fault(none) shared(tot,n,x,y)

for (int i=0; i<n; i++)

tot += x[i] * y[i];

return tot;

}

$ make omp ndot race

$ export OMP NUM THREADS=8

$./omp ndot race

Dot product is 1.1290e+20

(vs 3.3333e+20) for n=10000000.

Took 5.2628e-02 secs.

Wrong answer, and not much faster!

32/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Race Condition - why it’s wrong

I Classical parallel bug.

I Multiple writers to some
shared resource.

I Can be very subtle, and
only appear intermittently.

I Your program can have a
bug but not display any
symptoms for small runs!

I Primarily a problem with
shared memory.

tot = 0
Thread 0: Thread 1:
add 1 add 2

read tot(=0)
into register

reg = reg+1 read tot(=0)
into register

store reg(=1) reg=reg+2
into tot

store reg(=2)
into tot

tot = 2

32/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Race Condition - why it’s wrong

I Classical parallel bug.

I Multiple writers to some
shared resource.

I Can be very subtle, and
only appear intermittently.

I Your program can have a
bug but not display any
symptoms for small runs!

I Primarily a problem with
shared memory.

tot = 0
Thread 0: Thread 1:
add 1 add 2

read tot(=0)
into register

reg = reg+1 read tot(=0)
into register

store reg(=1) reg=reg+2
into tot

store reg(=2)
into tot

tot = 2

32/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Race Condition - why it’s wrong

I Classical parallel bug.

I Multiple writers to some
shared resource.

I Can be very subtle, and
only appear intermittently.

I Your program can have a
bug but not display any
symptoms for small runs!

I Primarily a problem with
shared memory.

tot = 0
Thread 0: Thread 1:
add 1 add 2

read tot(=0)
into register

reg = reg+1 read tot(=0)

into register

store reg(=1) reg=reg+2
into tot

store reg(=2)
into tot

tot = 2

32/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Race Condition - why it’s wrong

I Classical parallel bug.

I Multiple writers to some
shared resource.

I Can be very subtle, and
only appear intermittently.

I Your program can have a
bug but not display any
symptoms for small runs!

I Primarily a problem with
shared memory.

tot = 0
Thread 0: Thread 1:
add 1 add 2

read tot(=0)
into register

reg = reg+1 read tot(=0)
into register

store reg(=1) reg=reg+2
into tot

store reg(=2)
into tot

tot = 2

32/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Race Condition - why it’s wrong

I Classical parallel bug.

I Multiple writers to some
shared resource.

I Can be very subtle, and
only appear intermittently.

I Your program can have a
bug but not display any
symptoms for small runs!

I Primarily a problem with
shared memory.

tot = 0
Thread 0: Thread 1:
add 1 add 2

read tot(=0)
into register

reg = reg+1 read tot(=0)
into register

store reg(=1) reg=reg+2
into tot

store reg(=2)
into tot

tot = 2

32/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Race Condition - why it’s wrong

I Classical parallel bug.

I Multiple writers to some
shared resource.

I Can be very subtle, and
only appear intermittently.

I Your program can have a
bug but not display any
symptoms for small runs!

I Primarily a problem with
shared memory.

tot = 0
Thread 0: Thread 1:
add 1 add 2

read tot(=0)
into register

reg = reg+1 read tot(=0)
into register

store reg(=1) reg=reg+2
into tot

store reg(=2)
into tot

tot = 2

33/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Race Condition - why it’s slow

I Multiple cores repeatedly
trying to read, access, store
same variable in memory.

I Not (such) a problem for
constants (read only); but a
big problem for writing.

I Sections of arrays – better.

~ ~

~

~

n n

n

n

tot- �
?

6

� -

6

?

34/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

OpenMP critical construct

I Defines a critical region.

I Only one thread can be
operating within this region
at a time.

I Keeps modifications to
shared resources safe.

I #pragma omp critical

I !$omp critical

!$omp end critical

double ndot(int n, double *x,

double *y){

double tot=0;

#pragma omp parallel for \

default(none) shared(tot,n,x,y)

for (int i=0; i<n; i++)

#pragma omp critical

tot += x[i] * y[i];

return tot;

}

$ make omp ndot critical

$ export OMP NUM THREADS=8

$./omp ndot critical

Dot product is 3.3333e+20

(vs 3.3333e+20) for n=10000000.

Took 5.1377e+00 secs.

Correct, but 100x slower than serial version!

35/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

OpenMP atomic construct

I Most hardware has support
for atomic instructions
(indivisible so cannot get
interrupted)

I Small subset, but
load/add/stor usually one.

I Not as general as critical

I Much lower overhead.

I #pragma omp atomic

I !$omp atomic

double ndot(int n, double *x,

double *y){

double tot=0;

#pragma omp parallel for \

default(none) shared(tot,n,x,y)

for (int i=0; i<n; i++)

#pragma omp atomic

tot += x[i] * y[i];

return tot;

}

$ make omp ndot atomic $ export

OMP NUM THREADS=8

$./omp ndot atomic

Dot product is 3.3333e+20

(vs 3.3333e+20) for n=10000000.

Took 8.5156e-01 secs.

Correct, and better – only 16x slower than serial.

36/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

How should we fix the slowdown?

I Local sums.

I Each processor sums its
local values (107/P
additions).

I And then sums to tot (only
P additions with critical or
atomic. . .

n = ~x ·~y

=
∑
i

xi yi

=
∑
p

(∑
i

xi yi

)

37/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Local variables
tot = 0;

#pragma omp parallel shared(x,y,n,tot)

{

int mytot = 0;

#pragma omp for

for (int i=0; i<n; i++)

mytot += x[i]*y[i];

#pragma omp atomic

tot += mytot;

}

ndot = 0.

!$omp parallel shared(x,y,n,ndot) &

!$omp private(i,mytot)

mytot = 0.

!$omp do

do i=1,n

mytot = mytot + x(i)*y(i)

enddo

!$omp atomic

ndot = ndot + mytot

!$omp end parallel

$ export OMP NUM THREADS=8

$./omp ndot local

Dot product is 3.3333e+20

(vs 3.3333e+20) for n=10000000.

Took 1.7902-02 seconds.

Now we’re talking! 2.77x faster.

38/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

OpenMP Reduction Operations

I This is such a common
operation, this is something
built into OpenMP to
handle it.

I “Reduction” variables - like
shared or private.

I Can support several types
of operations: - + * . . .

I omp ndot reduction.c,
fomp ndot reduction.f90

39/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

OpenMP Reduction Operations

tot = 0;

#pragma omp parallel \

shared(x,y,n) reduction(+:tot)

{

#pragma omp for

for (int i=0; i<n; i++)

tot += x[i]*y[i];

}

ndot = 0.

!$omp parallel shared(x,y,n) &

!$omp private(i) reduction(+:ndot)

!$omp do

do i=1,n

ndot = ndot + x(i)*y(i)

enddo

!$omp end parallel

$ export OMP NUM THREADS=8

$./omp ndot local

Dot product is 3.3333e+20

(vs 3.3333e+20) for n=10000000.

Took 1.8134-02 seconds.

Same speed, simpler code!

40/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

OpenMP Reduction Operations

tot = 0;

#pragma omp parallel for \

shared(x,y,n) reduction(+:tot)

for (int i=0; i<n; i++)

tot += x[i]*y[i];

ndot = 0.

!$omp parallel do shared(x,y,n) &

!$omp private(i) reduction(+:ndot)

do i=1,n

ndot = ndot + x(i)*y(i)

enddo

!$omp end parallel

$ export OMP NUM THREADS=8

$./omp ndot local

Dot product is 3.3333e+20

(vs 3.3333e+20) for n=10000000.

Took 1.8928e-02 seconds.

Same speed, simpler code!

41/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Performance

I We threw in 8 cores, got a factor of 3 speedup. Why?

I Often we are limited not by CPU power but by how quickly
we can feed CPUs.

I For this problem, we had 107 long vectors, with 2 numbers 8
bytes long flowing through in 0.036 seconds.

I Combined bandwidth from main memory was 4.3 GB/s. Not
far off of what we could hope for on this architecture.

I One of the keys to good OpenMP performance is using data
when we have it in cache. Complicated functions: easy. Low
work-per-element (dot product, FFT): hard.

42/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Memory Access

I Processors work on local bits of memory in their cache.

I Cache is small and fast. Main memory is big, but slow.

I There is a large latency in getting things from main memory
— often hundreds of clock cycles. The fewer times we access
main memory, the faster we will go.

I Computers bring in chunks of memory at a time. If you access
data in contiguous memory chunks, much of it may already be
in cache. Always try to do this - serial or parallel.

I C - last index is rapidly varying. Fortran first index.

43/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Memory Access

I Memory access is important for serial programs, but can
become particularly important in OpenMP

I There is typically a limited bandwidth to main memory. If it
has to be shared 2, 4, or 8 ways, it becomes especially critical
to access it sensibly.

I Note on shared variables in OpenMP: If you aren’t changing
them, the compiler can copy the shared variable to local cache
and no performance hit. Modifying shared variables is
expensive - we have already seen this with the dot product.

44/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Load Balancing in OpenMP

45/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Load Balancing in OpenMP

I So far every iteration of the loop had the same amount of
work.

I Not always the case

I Sometimes cannot predict beforehand how unbalanced the
problem is

OpenMP has work sharing construct that allow you do statically or
dynamically balance the load.

46/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Example - Mandelbrot Set

I Mandelbrot set simple example
of non-balanced problem.

I Defined as complex points a
where |b∞| finite, with b0 = 0
and bn+1 = b2n + a.
If |bn| > 2, point diverges.

I Calculation:
I pick some nmax
I iterate for each point a, see

if crosses 2.
I Plot n or nmax as colour.

Outside of set, points diverge
quickly (2-3 steps).
Inside, we have to do lots of
work (1000s steps).

I make mandel; ./mandel

Lots of work

Little work
�

�	

6

47/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

First OpenMP Mandelbrot Set

I Default work sharing breaks N
iterations into

∑
N/nthreads

contiguous chunks and assigns
them to threads.

I But now threads 7,6,5 will be
done and sitting idle while
threads 3 and 4 work alone. . .

I Inefficient use of resources.

Serial 0.63s

Nthreads=8 0.29s

Speedup 2.2x

Efficiency 27%

0 1 2 3 4 5 6 7

800x800 pix; N/nthreads ∼ 100x800

47/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

First OpenMP Mandelbrot Set

I Default work sharing breaks N
iterations into

∑
N/nthreads

contiguous chunks and assigns
them to threads.

I But now threads 7,6,5 will be
done and sitting idle while
threads 3 and 4 work alone. . .

I Inefficient use of resources.

Serial 0.63s

Nthreads=8 0.29s

Speedup 2.2x

Efficiency 27%

0 1 2 3 4 5 6 7

800x800 pix; N/nthreads ∼ 100x800

48/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Scheduling constructs in OpenMP

I Default: each thread gets a big consecutive chunk of the loop.
Often better to give each thread many smaller
interleaved chunks.

I Can add schedule clause to omp for to change work sharing.

I We can decide either at compile-time (static schedule) or
run-time (dynamic schedule) how work will be split.

I #pragma omp for schedule(static, m) gives m consecutive
loop elements to each thread instead of a big chunk.

I With schedule(dynamic, m), each thread will work through
m loop elements, then go to the OpenMP run-time system
and ask for more.

I Load balancing (possibly) better with dynamic, but larger
overhead than with static.

49/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

HANDS-ON 2:
Use the OpenMP scheduling constructs to try and make mandel

more efficient.

50/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Second Try OpenMP Mandelbrot Set

I Can change the chunk size
different from ∼ N/nthreads

I In this case, more columns –
work distributed a bit better.

I Now, for instance, chunk size
50, and thread 7 gets both a
big work chunk and a little one:

#pragma omp for schedule(static,50)

or
!$omp do schedule(static,50)

Serial 0.63s

Nthreads=8 0.15s

Speedup 4.2x

Efficiency 52%

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

800x800 pix; each threads: 50x800

50/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Second Try OpenMP Mandelbrot Set

I Can change the chunk size
different from ∼ N/nthreads

I In this case, more columns –
work distributed a bit better.

I Now, for instance, chunk size
50, and thread 7 gets both a
big work chunk and a little one:

#pragma omp for schedule(static,50)

or
!$omp do schedule(static,50)

Serial 0.63s

Nthreads=8 0.15s

Speedup 4.2x

Efficiency 52%

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

800x800 pix; each threads: 50x800

51/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Third Try: Schedule dynamic

I Break up into many pieces and
hand them to threads when
they are ready.

I Dynamic scheduling.

I Increases overhead, decreases
idling threads.

I Can also choose chunk size.

#pragma omp for schedule(dynamic)

or
!$omp do schedule(dynamic)

Serial 0.63s

Nthreads=8 0.10s

Speedup 6.3x

Efficiency 79%

51/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Third Try: Schedule dynamic

I Break up into many pieces and
hand them to threads when
they are ready.

I Dynamic scheduling.

I Increases overhead, decreases
idling threads.

I Can also choose chunk size.

#pragma omp for schedule(dynamic)

or
!$omp do schedule(dynamic)

Serial 0.63s

Nthreads=8 0.10s

Speedup 6.3x

Efficiency 79%

52/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Tuning

I schedule(static) (default) or schedule(dynamic) are good
starting points.

I To get best performance in badly imbalanced problems, may
have to play with chuck size; depends on your problem and on
hardware.

(static,4) (dynamic,16)

0.084s 0.099s

7/6x 6.4x

95% 79%

53/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Two level loops

In scientific code, we usually have
nested loops were all the work is.

Almost without exception, want
the pragma omp on the outside-most
loop.
Why?

#pragma omp for schedule(static,4)

for (int i=0;i<npix;i++)

for (int j=0;j<npix;j++){

double

x=((double)i)/((double)npix);

double

y=((double)j)/((double)npix);

double complex a=x+I*y;

mymap[i][j]=how many iter real(a,maxiter);

}

54/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Summary

I Start a parallel region:
#pragma omp parallel shared() private() default()

I Parallelize a loop:
#pragma omp for schedule(static/dynamic, chunk)

I Mark off a region only one thread can be in at a time:
#pragma omp critical

I Safely update a single memory location:
#pragma omp atomic

I In a parallel region, have only one process do something:
#pragma omp single

55/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Style Points

I If a variable is a private temporary variable inside a parallel
region, try declaring it inside the region.
Makes parallel region easier to specify, and can prevent bugs.

I OpenMP supports reduction and initialization clauses. These
are never necessary to use, but are convenient and can
streamline code.

I You have seen how to find out how many threads exist, etc.
However, in none of our examples did we use that info.
If you think you need to know how many threads you have,
you may well be doing something wrong (with some notable
exceptions such as complex reduction). Using locally declared
variables, and critical regions most likely will do everything
you need.

56/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Further OpenMP Features

57/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

A Few More Directives

I #pragma omp ordered - execute the loop in the order it would
have run serially. Useful if you want ordered output in a
parallel region. Never useful for performance.

I #pragma omp master - a block that only the master thread
(thread 0) executes. Usually, #pragma omp single is better.

I #pragma omp sections - execute a list of things in parallel. In
OpenMP 3, task directive (later in lecture) is more powerful

I #pragma omp for collapse(n): nested loops scheduled as one
big loop.

58/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

A bit more on variables

I We had :
I #pragma omp . . . shared(), private(), and reduction.

I Want private variable to get value from the serial part?
Use firstprivate():

#include <stdio.h>

int main() {

int n = 0;

#pragma omp parallel firstprivate(n)

{

#pragma omp for

for (int i=0;i<100;i++)

n++;

printf("My n=%\n",n);

}

}

59/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

A bit more on variables

I Private variables are destroyed after parallel region. What if
you want the result of a private variable to be preserved?
lastprivate():

#include <stdio.h>

int main() {

int n;

#pragma omp parallel for lastprivate(n)

for (int i=0;i<100;i++)

if (i>70) n=i;

printf("Last n was %\",n);

}

60/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Conditional OpenMP

I There is always overhead associated with starting threads,
splitting work, etc. Also, some jobs parallelize better than
others.

I Sometimes, overhead takes longer than 1 thread would need
to do a job - e.g. very small matrix multiplies.

I OpenMP supports conditional parallelization. Add
if(condition) to parallel region beginning. So, for small
tasks, overhead low, while large tasks remain parallel.

61/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Conditional OpenMP in Action

#include <stdio.h>

#include <omp.h>

int main(int argc, char *argv[]) {

int n = atoi(argv[1]);

#pragma omp parallel if (n>10)

#pragma omp single

printf("have %d

threads with n=%d\n",

omp get num threads(),n);

}

$./conditional if 12

have 8 threads with n=12

$./conditional if 9

have 1 threads with n=9

$

First, pull an integer from the
command line. Check to see if
it’s bigger than a number (in
this case, 10). If so, start a
parallel region. Otherwise, ex-
ecute serially.

62/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Controlling # of Threads

I Sometimes you might want more or fewer threads. May even
want to change while running.

I Example - IBM P6 cluster. Matrix multiply runs fast with
twice as many program threads as physical cores
(hyperthreading). However, matrix factorizations run slower
with more threads.

I omp set num threads(int) sets or changes the number of
threads during runtime.

63/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

omp set num threads() in action

#include "stdio.h"

#include "omp.h"

int main(int argc,char *argv[]){

//find # of physical cores

//this is an openmp library routine.

int max threads=omp get num procs();

int n=atoi(argv[1]);

//set # threads equal to input

//assuming it’s less than

max threads if (n<max threads)

omp set num threads(n);

else

omp set num threads(max threads);

#pragma omp parallel

#pragma omp single

printf("Running with %d threads for

n=%d.\n", omp get num threads(),n)

}

We have changed the # of threads
during the program. We could
always change the number later on
in the same code, if we so desired.
Note the use of
omp get num procs(), a library call
to detect the physical number of
available processors.

64/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Non-loop construct

OpenMP supports non-loop parallelism as well:

I Sections:
#pragma omp parallel

{

#pragma omp sections

{

#pragma omp section

{

something to do

}

#pragma omp section

{

something to do at the

same time

}

}

}

I More flexible: tasks

65/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Tasks

I OpenMP 3.0 supports the #pragma omp task directive.

I A task is a job assigned to a thread. Powerful way of
parallelizing non-loop problems.

I Tasks should help omp/mpi hybrid codes - one task can do
communications, rest of threads keep working.

I Like all omp, tasks must be called from parallel region.

I Raises complication of nested parallelism (what happens if a
parallel loop called from parallel loop?).

66/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Tasks: test task.c

#include <stdio.h>

#include <omp.h>

int main(){

#pragma omp parallel

#pragma omp single

{

printf("hello");

#pragma omp task

{

printf("hello 1 from

%d.",omp get thread num());

}

#pragma omp task

printf("hello 2 from

%d.",omp get thread num());

}

}

Often want to start tasks from
as if from serial region. Must be
in parallel for tasks to spawn, so
#pragma omp parallel followed
by #pragma omp single very
useful. What would happen
w/out #pragma omp single?

67/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Beauty of Tasks
I Some problems naturally fit into tasks that are otherwise hard

to parallelize.
I Example (from standard): parallel tree processing.
I Each node has left, right pointers, process each sub- pointer

with a task.
I Look how short the parallel tree is!
I Works for a variety of non-array structure (linked lists, etc.)

How would you do this problem
without tasks?

struct node {

struct node *left;

struct node *right;

};

extern void process(struct node*);

void traverse(struct node* p) {

if (p->left)

#pragma omp task firstprivate(p)

traverse(p->left);

if (p->right)

#pragma omp task firstprivate(p)

traverse(p->right);

process(p);

}

68/41 – Ontario HPC Summerschool 2013 – Central Edition: Toronto

Useful references

I Chapman, Jost, Van der Pas: Using OpenMP
(2008, MIT Press)

I openmp.org/wp/openmp-specifications
(Strongly recommended – many good sample programs)

I SciNet Wiki: wiki.scinethpc.ca: Tutorials & Manuals

http://openmp.org/wp/openmp-specifications
http://wiki.scinethpc.ca/wiki/index.php/Knowledge_Base:_Tutorials_and_Manuals

