
Random Number
Generation

Introducing uncertainty on purpose

Based on: “Random Numbers in Scientific Computing: An Introduction”,
Katzgrabber, arXiv:1005.4117

Need Random
Numbers

• For randomly sampling a domain

• Monte Carlo / MCMC simulations

• Stochastic algorithms

http://xkcd.com/221/

http://xkcd.com/221/
http://xkcd.com/221/

Required Properties

• What is a random sequence of numbers?

• Follow some desired distribribution

• Unpredictable

• Fast (we may need billions of them)

• Long period (we may need billions of them)

• Uncorrelated

Real Random Numbers

• Can be generated by a physical process, and stored as a list
or used in real-time by computer

• Physical process - lava lamp (lavarnd.org), quantum stuff

• Network process - /dev/urandom

• Generally slow, expensive, hard/impossible to reproduce for
debugging

• Often hard to characterize underlying distribution

Pseudo Random
Number Generators

• PRNG

• Software-based; deterministic sequences of numbers based
on some starting seed

• “Seem” random, but reproducible (with same seed), often
very fast.

• Will assume uniform distribution on [0,1); given this, can
create other distributions

Randomness Tests

Common Tests:
Correlations

• Simple pairwise
correlations:

• Want to avoid
correlations between
pairs of numbers

E(x) =
1
N

NX

i=1

xi

E(N, n) = O(N�1/2) 8n

"(N,n) =
1
N

NX

i=1

xixi+n � E(x)2

Correlations

• What correlations look
like in 2d domain

• Left: bad LCG; right:
Mersenne Twister

From Katzgraber

Common Tests:
Moments

• Ensure moments of
random numbers also
have desired properties

µ(N, k) =

�����
1
N

NX

i=1

x

k
i �

1
k + 1

�����

µ(N, k) = O(N�1/2) 8k

Other Tests
• Overlapping permutations: Analyze orders of five

consequitive random numbers. The 5! possible
permutations should occur with equal probability

• Parking lot test: pairs of random numbers placed in 2-d
domain, exclude others within certain distance. After N
attempts, points should follow well known distribution

• Spacings: spacings between random points should follow
poisson integral if uniformly distributed

• Binary rank test - test ranks of 32x32 binary matrix

Test suites

• NIST test suite:
http://csrc.nist.gov/groups/ST/toolkit/rng/index.html
Very well documented, explain tests.

• Pierre L’Ecuyer, U de Montréal:
http://www.iro.umontreal.ca/~simardr/testu01/tu01.html
Test suite in C, includes several PRNGs

• Best test: one that is related to the properties you need
for your problem.

http://csrc.nist.gov/groups/ST/toolkit/rng/index.html
http://csrc.nist.gov/groups/ST/toolkit/rng/index.html
http://www.iro.umontreal.ca/~simardr/testu01/tu01.html
http://www.iro.umontreal.ca/~simardr/testu01/tu01.html

Linear Congruential
Generators

• x0 is a seed

• m - large integer;
determines period of
sequence

• For U(0,1), divide xi by m.

• For good results: c relatively
prime to m, a-1 a multiple of
p for every prime divisor p
of m, a-1 is multiple of 4 if m
is multiple of 4.

xi+1 = (axi + c) mod m

Linear Congruential
Generators

• Common, but not very good

• Period limited by size of
integers; not enough for
some applications.

• Hard to do well in parallel

• Easy to mess up, with long
history of bad LCGs in
standard implementations,
literature.

xi+1 = (axi + c) mod m

• Generalization of LCG

• Good period iff characteristic
polynomial defined by ai is primitive
modulo p

• Requires big seed (n xis); typically use
small seed + good small PRNG to
seed

• Still not great - better period (pn).

• Mersene Twister is a (good)
generalization of this.

xi = (a1xi�1 + · · · + anxi�n) mod p

Linear Feedback Shift
Register Generators

Lagged Fibonacci

• Some binary operator
between previous items
in sequence

• Requires some memory

• Requires large seed
block again

• m typically large power
of 2

xi = (xi�j � xi�k) mod m

Lagged Fibonacci

• r1279: k=1279. Period
is 10394 ; passess tests,
and can be fast

• Standard in (eg) GSL

xi = (xi�j � xi�k) mod m

Lagged Fibonacci
• r250: k = 250, using xor.

• Also fast, passed all common
tests at time

• In 1992, Ferreberg et al did
MC simulation of Ising model

• Estimate of energy/per spin
was 42σ off!

• PRNGs are hard; don’t
implement yourself.

xi = (xi�j � xi�k) mod m

Some good PRNGs

• r1279

• Mersenne twister (mt19937)

• WELL generators

Not-good PRNGs

• r250

• Anything from Numerical Recipies - short periods, slow, ran0
& ran1 spectacularly fail statistical tests.

• Standard Unix generators (rand(), drand48()) - not a disaster,
but short period, correlations.

Shifting distribution

• If just need to shift distribution, easy

• U(a,b): (b-a)*(u + a) where u from U(0,1)

• Can similarly shift gaussian distribution from unit, zero-
mean gaussian to others

Non-Uniform
Distributions

• Transformation law of
probabilities

• Starting with a known
distribution (eg, uniform,
p(u) = 1 in 0..1), can
transform to another
distribution (q(y)) if can
invert function

|q(y)dy| = |p(u)du|

) q(y) = p(u)
����
du

dy

����

Exponential Dist.

• Example: exponential
distribtion

• Easy to invert,
differentiate

• Can get exponential
distribution by taking ln
of uniform random
numbers.

|q(y)dy| = |p(u)du|

) q(y) = p(u)
����
du

dy

����

q(y) = a exp(�ay)

����
du

dy

���� = a exp(�ay)

u(y) = exp(�ay)

y = �1
a

ln(u)

Box-Muller: Gaussian
Random Numbers

• Same process can be
applied to more
complex dists, with
some tricks.

• For gaussian, can’t do it
in 1d, but can in 2

• Generate 2 gaussian
RNs (unit σ, zero mean)
from 2 uniform

x =

p
�2 ln(u2) cos(2⇡u1)

y =
p
�2 ln(u2) sin(2⇡u1)

Acceptance/Rejection
• If can’t invert your desired distribution g(x), can still generate RN

• Numerically invert (tabulate)

• Or:

• Generate distribution you can on same domain, g(x)

• Reject numbers with probability 1-f(x)/g(x) (eg, generate
random number u[0,1], x from g;
accept if u< f(x)/g(x)

• Faster if g tightly bounds f (less rejected guesses)

GSL - Gnu Scientific
Library

• Gsl has several good implementations of good PRNGs

• Seperates the generator from the distribution you want

$ gcc -o gsl gsl.c -I/path/to/gsl/include
 -L/path/to/gsl/lib -lgslcblas -lgsl

Create, seed PRNG

Generate Random #s

Clean up

Python

• Numpy.random - series
of random number
generators, distributions.

• Based on mersenne
twister

• Good, but would be nice
to have choice...

Notes on Seeding

• For random seeds, taking system time is common

• If doing in parallel, need to make sure different processes/
threads have different seeds!

• Factor rank, thread num, pid, etc in there somehow

Homework
• Consider the sequence of numbers: 1 followed by 108 values of 10-8

• Should Sum to 2

• Write code which sums up those values in order. What answer does
it get?

• Add to program routine which sums up values in reverse order. Does
it get correct answer?

• How would you get correct answer?

• Submit code, Makefile, text file with answers.

Homework: 2
• Implement an LCG with a = 106, c = 1283, m = 6075

that generates random numbers from 0..1

• Compare that and MT (using gsl: gsl_rng_mt19937 or
python): generate pairs (dx, dy) with dx, dy each in -.1..
+.1. Generate histograms of dx and dy (say 200 bins).
Look ok? What would you expect variation to be?

• For 10,000 pts: take random walks from 0,0 of step
(dx,dy) until exceed radius of 2, then stop. Plot
histogram of final angles for the two PRNGs. What do
you see?

• Submit makefile, code, plots, VC log

