Random Number
Generation

Introducing uncertainty on purpose

Based on:“Random Numbers in Scientific Computing: An Introduction”,
Katzgrabber, arXiv:1005.41 |7 |
Schet

(’ compute «calcul
CANADA

Need Random
Numbers

® For randomly sampling a domain
® Monte Carlo / MCMC simulations

® Stochastic algorithms

ScChet

(, compute «calcul
CANADA

int get RandomNumber ()

return Y. // chosen by fair dice roll.
// quaranteed to be random.

http://xkcd.com/221/

Sciet

(’ compute «calcul
CANADA

http://xkcd.com/221/
http://xkcd.com/221/

Required Properties

What is a random sequence of numbers?
Follow some desired distribribution
Unpredictable

Fast (we may need billions of them)

Long period (we may need billions of them)

Uncorrelated

(SQFN et

compute «calcul
CANADA

Real Random Numbers

® Can be generated by a physical process, and stored as a list
or used in real-time by computer

® Physical process - lava lamp (lavarnd.org), quantum stuff
® Network process - /dev/urandom

® Generally slow, expensive, hard/impossible to reproduce for
debugging

® Often hard to characterize underlying distribution

(ng et

" compute «calcul
CANADA

Pseudo Random
Number Generators

PRNG

Software-based; deterministic sequences of numbers based
on some starting seed

“Seem” random, but reproducible (with same seed), often
very fast.

Will assume uniform distribution on [0, 1); given this, can

create other distributions
SCHlet
(’ compu_teocalcul

Randomness lests

TOUR OF ACCOUNTING

OVER HERE
WE HAVE OUR

RANDOM NUMBER
GENERATOR.

www.dilbert.com scottadams®aol com

NINE NINE
NINE NINE
NINE NINE

‘0las[a® 2001 United Feature Syndicate. Inc

THATS THE
PROBLEM
WITH RAN-
DOMNESS
YOU CAN
NEVER BE

Schet

o

pute «calcul

CANADA

Common Tests:
Correlations

N
1
e(N,n) = ~ Z TiTivn — B (1)
i=1

Simple pairwise
correlations:

N
1
Want to avoid E(x) — N Z ZT;
correlations between i=1
pairs of numbers

E(N,n)=0O(N~Y2) vn

Sciet

(’ compute «calcul
CANADA

Correlations

® What correlations look
like in 2d domain

® Left:bad LCG; right:
Mersenne Twister

mpute « calcul

From Katzgraber ™"

Common Tests:
Moments

1 N)
N.k) = |— X _
II’L(7k) NZCBZ k——].

® Ensure moments of

random numbers also M(N) k) — O(N_l/z) VEk

have desired properties

Sciet

(’ compute «calcul
CANADA

Other Tests

Overlapping permutations: Analyze orders of five
consequitive random numbers. The 5! possible
permutations should occur with equal probability

Parking lot test: pairs of random numbers placed in 2-d
domain, exclude others within certain distance. After N
attempts, points should follow well known distribution

Spacings: spacings between random points should follow
poisson integral if uniformly distributed

Binary rank test - test ranks of 32x32 binary matrix

ScChet
" compute « calcul
CANADA

Test suites

® NIST test suite:
http://csrc.nist.gov/groups/ST/toolkit/rng/index.html

Very well documented, explain tests.

® Pierre LEcuyer, U de Montreal:
http://www.iro.umontreal.ca/~simardr/testu0|/tuQ|.html

Test suite in C, includes several PRNGs

® Best test: one that is related to the properties you need

for your problem.
<SGH\Iet

(, compute «calcul
CANADA

http://csrc.nist.gov/groups/ST/toolkit/rng/index.html
http://csrc.nist.gov/groups/ST/toolkit/rng/index.html
http://www.iro.umontreal.ca/~simardr/testu01/tu01.html
http://www.iro.umontreal.ca/~simardr/testu01/tu01.html

Linear Congruential
Generators

Xo is a seed

m - large integer;
determines period of
sequence

r;11 = (ax; +¢) mod m

For U(0, 1), divide x; by m.

For good results: ¢ relatively
prime to m, a-| a multiple of
p for every prime divisor p
of m,a-| is multiple of 4 if m
is multiple of 4.

Sciet

(’ compute «calcul
CANADA

Linear Congruential
Generators

Common, but not very good

Period limited by size of Tit1 = (aa:'i + C) mod m
integers; not enough for
some applications.

Hard to do well in parallel

Easy to mess up, with long
history of bad LCGs in
standard implementations,
literature.

Sciet

(’ compute «calcul
CANADA

Linear Feedback Shift
Register Generators

Generalization of LCG

r, = (a1Ti—1 + -+ apx;— mod
Good period iff characteristic i = (@171 ni—n) p

polynomial defined by a; is primitive
modulo p

Requires big seed (n xis); typically use
small seed + good small PRNG to
seed

Still not great - better period (p").

Mersene Twister is a (good)

generalization of this. <SQH\I
et

, compute calcul

Lagged Fibonacci

Some binary operator
between previous items

. T, — (213‘7;_]' ® Zlfi_k) mod m
in sequence

Requires some memory

Requires large seed
block again

m typically large power
of 2

Sciet

compute «calcul
CANADA

Lagged Fibonacci

T, — (jS_j ® Clii_k) mod m

r1279:k=1279. Period
is 10374 ; passess tests,
and can be fast

Standard in (eg) GSL

Sciet

(’ compute «calcul
CANADA

Lagged Fibonacci

r250: k = 250, using xor.

Also fast, passed all common
tests at time

In 1992, Ferreberg et al did
MC simulation of Ising model

Estimate of energy/per spin
was 420 off!

PRNGs are hard; don’t
implement yourself.

T, — (213‘7;_]' ® Zlfi_k) mod m

Sciet

compute «calcul
CANADA

Some good PRNGs

o rl279
® Mersenne twister (mtl9937)

® WELL generators

ScChet

compute «calcul
CANADA

Not-good PRNGs

r250

Anything from Numerical Recipies - short periods, slow, ran0
& ran| spectacularly fail statistical tests.

Standard Unix generators (rand(), drand48()) - not a disaster,
but short period, correlations.

(SQFN et

compute «calcul
CANADA

Shifting distribution

® [f just need to shift distribution, easy
e U(a,b): (b-a)*(u + a) where u from U(0,)

® Can similarly shift gaussian distribution from unit, zero-
mean gaussian to others

Sciet

compute «calcul
CANADA

Non-Uniform
Distributions

® Transformation law of

probabilities q(y)dy| = |p(u)dul
du
= q(y) = p(u) |/

® Starting with a known
distribution (eg, uniform,
p(u) =1 in 0..1), can
transform to another
distribution (q(y)) if can
invert function

Sciet

compute «calcul
CANADA

Exponential Dist.

q(y)dy| = |p(u)du]

du
® Example: exponential = a(y) = p(u) dy
distribtion
e Easy to invert, q(y) = aexp(—ay)
differentiate du
dul T a exp(—ay)
® Can get exponential Yy
distribution by taking In u(y) = exp(—ay)
of uniform random
numbers. 1
y =——In(u)

a

(SQE‘N et

compute «calcul
CANADA

Box-Muller: Gaussian
Random Numbers

® Same process can be
applied to more
complex dists, with
some tricks.

r = +/—21In(us) cos(2muy)

y =/ —2In(us) sin(2mu;)
® For gaussian, can’t do it
in 1d, but can in 2

® Generate 2 gaussian
RNs (unit o,zero mean)
from 2 uniform

Sciet

(’ compute «calcul
CANADA

Acceptance/Rejection

® |If can’t invert your desired distribution g(x), can still generate RN
® Numerically invert (tabulate)
e Or:
® Generate distribution you can on same domain, g(x)
® Reject numbers with probability |-f(x)/g(x) (eg, generate
random number u[0, 1], x from g;

accept if u< f(x)/g(x)

® Faster if g tightly bounds f (less rejected guesses)

Sd?\let

LLLLLLL

GSL - Gnu Scientific
Library

® Gsl has several good implementations of good PRNGs

® Seperates the generator from the distribution you want

Sciet

(’ compute «calcul
CANADA

#include <stdio.h>
#include <gsl/gsl_rng.h>

int main(int argc, char **argv) {
gsl_rng *rng;
int 1;
double u;

g = osl_rmg_alloc(esl_rmg_mt10037); Create, seed PRNG

gsl_rng_set(rng, 1);
(1=0; 1<100; i1++) {

u= gsl_r'ng_unifor'mCr'ng); Generate RandOm #S

printf("%d ¥f\n", i, u);
}

gsl_rng_free(rng); Clean u p

Q;

$ gcc -0 gsl gsl.c -I/path/to/gsl/include
-L/path/to/gsl/1lib -1lgslcblas -1gsl -
cSﬁZﬁNet

compute «calcul
CANADA

Python

® Numpy.random - series
of random number
generators, distributions.

® Based on mersenne
twister

® Good, but would be nice
to have choice...

import numpy
import numpy.random

numpy . random.seed(1)

#uniform floats 0..1
nums = numpy.random.ranf(100)

print nums

#standard normal distribution
nums = numpy.random.randn(100)

print nums

SCiet

’ compgt

ee calcul

NAD

Notes on Seeding

® For random seeds, taking system time is common

® [f doing in parallel, need to make sure different processes/
threads have different seeds!

® Factor rank, thread num, pid, etc in there somehow

ScCiet

’ compute calcul

Homework

Consider the sequence of numbers: | followed by 102 values of 108
Should Sum to 2

Write code which sums up those values in order. What answer does
it get?

Add to program routine which sums up values in reverse order. Does
it get correct answer?!

How would you get correct answer!

Submit code, Makefile, text file with answers. |
(S,Gﬁ\l et
(’ corr1pgteogqlcul

Homeworlk: 2

Implement an LCG with a = 106,c = 1283, m = 6075
that generates random numbers from O.. |

Compare that and MT (using gsl: gsl rng mt19937 or
python): generate pairs (dx, dy) with dx, dy each in -.1..
+.1. Generate histograms of dx and dy (say 200 bins).
Look ok? What would you expect variation to be!

For 10,000 pts: take random walks from 0,0 of step
(dx,dy) until exceed radius of 2, then stop. Plot
histogram of final angles for the two PRNGs. What do
you see!

Submit makefile, code, plots,VC log (S,Gﬁ\let
" compgufs: gc:lcul

