Random Number Generation

Introducing uncertainty on purpose

Based on:"Random Numbers in Scientific Computing:An Introduction", Katzgrabber, arXiv:I005.4II7

Need Random Numbers

- For randomly sampling a domain
- Monte Carlo / MCMC simulations
- Stochastic algorithms
(compute ccalcul

```
int getRandomNumber()
{
    return 4; // chosen by fair dice roll.
                // guaranteed to be random.
}
```

http://xkcd.com/22I/

Required Properties

- What is a random sequence of numbers?
- Follow some desired distribribution
- Unpredictable
- Fast (we may need billions of them)
- Long period (we may need billions of them)
- Uncorrelated
(1) compute \rightarrow calcul

Real Random Numbers

- Can be generated by a physical process, and stored as a list or used in real-time by computer
- Physical process - lava lamp (lavarnd.org), quantum stuff
- Network process - /dev/urandom
- Generally slow, expensive, hard/impossible to reproduce for debugging
- Often hard to characterize underlying distribution

Pseudo Random Number Generators

- PRNG
- Software-based; deterministic sequences of numbers based on some starting seed
- "Seem" random, but reproducible (with same seed), often very fast.
- Will assume uniform distribution on [0, I); given this, can create other distributions
(1) compute \rightarrow calcul

Randomness Tests

Common Tests: Correlations

- Simple pairwise

$$
\varepsilon(N, n)=\frac{1}{N} \sum_{i=1}^{N} x_{i} x_{i+n}-E(x)^{2}
$$ correlations:

- Want to avoid correlations between

$$
\begin{gathered}
E(x)=\frac{1}{N} \sum_{i=1}^{N} x_{i} \\
E(N, n)=O\left(N^{-1 / 2}\right) \quad \forall n
\end{gathered}
$$ pairs of numbers

Correlations

- What correlations look like in 2d domain

- Left: bad LCG; right: Mersenne Twister

From Katzgraber mune gad

Common Tests: Moments

$$
\mu(N, k)=\left|\frac{1}{N} \sum_{i=1}^{N} x_{i}^{k}-\frac{1}{k+1}\right|
$$

- Ensure moments of random numbers also have desired properties

$$
\mu(N, k)=O\left(N^{-1 / 2}\right) \quad \forall k
$$

Other Tests

- Overlapping permutations: Analyze orders of five consequitive random numbers. The 5! possible permutations should occur with equal probability
- Parking lot test: pairs of random numbers placed in 2-d domain, exclude others within certain distance. After N attempts, points should follow well known distribution
- Spacings: spacings between random points should follow poisson integral if uniformly distributed
- Binary rank test - test ranks of 32×32 binary matrix

Test suites

- NIST test suite:
http://csrc.nist.gov/groups/ST/toolkit/rng/index.html Very well documented, explain tests.
- Pierre L'Ecuyer, U de Montréal: http://www.iro.umontreal.ca/~simardr/testu01/tu01.html Test suite in C, includes several PRNGs
- Best test: one that is related to the properties you need for your problem.
\int compute • calcu

Linear Congruential Generators

- x_{0} is a seed
- m-large integer;
determines period of sequence
- For $U(0, I)$, divide x_{i} by m.
- For good results: c relatively prime to m , a-I a multiple of p for every prime divisor p of $m, a-I$ is multiple of 4 if m is multiple of 4 .

$$
x_{i+1}=\left(a x_{i}+c\right) \quad \bmod m
$$

Linear Congruential Generators

- Common, but not very good
- Period limited by size of

$$
x_{i+1}=\left(a x_{i}+c\right) \quad \bmod m
$$ integers; not enough for some applications.

- Hard to do well in parallel
- Easy to mess up, with long history of bad LCGs in standard implementations, literature.

Linear Feedback Shift Register Generators

- Generalization of LCG
- Good period iff characteristic

$$
x_{i}=\left(a_{1} x_{i-1}+\cdots+a_{n} x_{i-n}\right) \quad \bmod p
$$ polynomial defined by a_{i} is primitive modulo p

- Requires big seed ($\mathrm{n} \mathrm{x}_{\mathrm{i}}$); typically use small seed + good small PRNG to seed
- Still not great - better period (p^{n}).
- Mersene Twister is a (good) generalization of this.

Lagged Fibonacci

- Some binary operator between previous items in sequence

$$
x_{i}=\left(x_{i-j} \odot x_{i-k}\right) \quad \bmod m
$$

- Requires some memory
- Requires large seed block again
- m typically large power of 2

Lagged Fibonacci

$$
x_{i}=\left(x_{i-j} \odot x_{i-k}\right) \quad \bmod m
$$

- rl279:k=1279. Period is 10^{394}; passess tests, and can be fast
- Standard in (eg) GSL
(1) compute calculad

Lagged Fibonacci

- \quad 250: $k=250$, using xor.
- Also fast, passed all common

$$
x_{i}=\left(x_{i-j} \odot x_{i-k}\right) \quad \bmod m
$$ tests at time

- In 1992, Ferreberg et al did MC simulation of Ising model
- Estimate of energy/per spin was 42σ off!
- PRNGs are hard; don't implement yourself.
- compute • calcu

Some good PRNGs

- rl279
- Mersenne twister (mt l9937)
- WELL generators

Sense

Not-good PRNGs

- r250
- Anything from Numerical Recipies - short periods, slow, ran0 \& ranl spectacularly fail statistical tests.
- Standard Unix generators (rand(), drand48()) - not a disaster, but short period, correlations.

Shifting distribution

- If just need to shift distribution, easy
- $U(a, b):(b-a)^{*}(u+a)$ where u from $U(0, I)$
- Can similarly shift gaussian distribution from unit, zeromean gaussian to others
- compute \bullet calcu

Non-Uniform Distributions

- Transformation law of probabilities

$$
\begin{aligned}
& |q(y) d y|=|p(u) d u| \\
& \quad \Rightarrow q(y)=p(u)\left|\frac{d u}{d y}\right|
\end{aligned}
$$ distribution (eg, uniform, $\mathrm{p}(\mathrm{u})=\mathrm{I}$ in $0 . . I$), can transform to another distribution ($q(y)$) if can invert function

(1)compute •calcul

Exponential Dist.

$$
\begin{aligned}
& |q(y) d y|=|p(u) d u| \\
& \Rightarrow q(y)=p(u)\left|\frac{d u}{d y}\right|
\end{aligned}
$$

- Example: exponential distribtion
- Easy to invert, differentiate
- Can get exponential distribution by taking In of uniform random numbers.

$$
\begin{aligned}
q(y) & =a \exp (-a y) \\
\left|\frac{d u}{d y}\right| & =a \exp (-a y) \\
u(y) & =\exp (-a y) \\
y & =-\frac{1}{a} \ln (u)
\end{aligned}
$$

Box-Muller: Gaussian Random Numbers

- Same process can be applied to more complex dists, with some tricks.

$$
\begin{aligned}
& x=\sqrt{-2 \ln \left(u_{2}\right)} \cos \left(2 \pi u_{1}\right) \\
& y=\sqrt{-2 \ln \left(u_{2}\right)} \sin \left(2 \pi u_{1}\right)
\end{aligned}
$$

- For gaussian, can't do it in Id, but can in 2
- Generate 2 gaussian RNs (unit σ, zero mean) from 2 uniform

Acceptance/Rejection

- If can't invert your desired distribution $g(x)$, can still generate RN
- Numerically invert (tabulate)
- Or:
- Generate distribution you can on same domain, $g(x)$
- Reject numbers with probability I-f(x)/g(x) (eg, generate random number $\mathrm{u}[0, \mathrm{I}], \mathrm{x}$ from g ; accept if $u<f(x) / g(x)$
- Faster if g tightly bounds f (less rejected guesses)
- compute \bullet calcu

CANADA

GSL - Gnu Scientific Library

- Gsl has several good implementations of good PRNGs
- Seperates the generator from the distribution you want
(compute + calcul

```
#include <stdio.h>
#include <gsl/gsl_rng.h>
int main(int argc, char **argv) {
    gsl_rng *rng;
    int i;
    double u;
    rng = gsl_rng_alloc(gsl_rng_mt19937);
    gsl_rng_set(rng, 1);
    for (i=0; i<100; i++) {
        u = gsl_rng_uni form(rng);
        printf("%d %f\n", i, u);
    }
    gsl_rng_free(rng);
    return 0;
}
```


Create, seed PRNG

Generate Random \#s

Clean up

```
\}
\$ gcc -o gsl gsl.c -I/path/to/gsl/include -L/path/to/gsl/lib -lgslcblas -lgsl
```


Python

- Numpy.random-series of random number generators, distributions.
- Based on mersenne twister
- Good, but would be nice to have choice...

```
import numpy
import numpy.random
numpy.random.seed(1)
#uniform floats 0..1
nums = numpy.random.ranf(100)
print nums
#standard normal distribution
nums = numpy.random.randn(100)
```

print nums

Notes on Seeding

- For random seeds, taking system time is common
- If doing in parallel, need to make sure different processes/ threads have different seeds!
- Factor rank, thread num, pid, etc in there somehow
C)

Homework

- Consider the sequence of numbers: I followed by 10^{8} values of 10^{-8}
- Should Sum to 2
- Write code which sums up those values in order. What answer does it get?
- Add to program routine which sums up values in reverse order. Does it get correct answer?
- How would you get correct answer?
- Submit code, Makefile, text file with answers.
- compute \bullet calcu

Homework: 2

- Implement an LCG with $\mathrm{a}=106, \mathrm{c}=1283, \mathrm{~m}=6075$ that generates random numbers from $0 . . \mid$
- Compare that and MT (using gsl:gsl_rng_mtl9937 or python): generate pairs (dx, dy) with dx, dy each in -.I.. + .I. Generate histograms of dx and dy (say 200 bins). Look ok? What would you expect variation to be?
- For 10,000 pts: take random walks from 0,0 of step (dx, dy) until exceed radius of 2, then stop. Plot histogram of final angles for the two PRNGs. What do you see?
- Submit makefile, code, plots, VC log

