
Python for Scientific Computing

Erik Spence

SciNet HPC Consortium

13 July 2016

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 1 / 72

Material for this class

All the material for the HPC Summer School can be found here:

https:

//wiki.scinet.utoronto.ca/wiki/index.php/2015_Ontario_

Summer_School_for_High_Performance_Computing_Central

The slides for this class can be found here:

http://tinyurl.com/ss2016-P1

and at the SciNet education website:

http://support.scinet.utoronto.ca/education

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 2 / 72

https://wiki.scinet.utoronto.ca/wiki/index.php/2015_Ontario_Summer_School_for_High_Performance_Computing_Central
https://wiki.scinet.utoronto.ca/wiki/index.php/2015_Ontario_Summer_School_for_High_Performance_Computing_Central
https://wiki.scinet.utoronto.ca/wiki/index.php/2015_Ontario_Summer_School_for_High_Performance_Computing_Central
http://tinyurl.com/ss2016-P1
http://support.scinet.utoronto.ca/education

Today’s class
Today we will discuss the following topics:

Getting Python started.

Primitive types.

Lists.

Arrays.

Plotting.

Statistics.

Data frames.

Functions.

In this class we will assume some basic understanding of Python, but not
much. It will focus on those aspects of Python which are relevant to
Scientific programming. Feel free to ask if you don’t understand
something.

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 3 / 72

Notes about Python
Things to know about Python:

First released in February 1991.

Python combines functional and syntactic aspects of the languages
ABC, C, Modula-3, SETL, Lisp, Haskell, Icon, Perl.

Python is a high-level, interpreted language.

Python supports many programming paradigms (procedural,
object-oriented, functional, imperative).

Python variables are dynamic, meaning they merely labels for a typed
value in memory. They are easily re-assigned to refer to some other
memory location.

Python has automatic memory management, and garbage collection.

Python is case sensitive.

Python 3.X is not back-compatible with Python 2.X.

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 4 / 72

Notes about Python, continued

Some important things to know about Python:

Python is a scripting language, meaning an interpreter executes
commands one line at a time (not a compiled language).

Python can be used interactively, with or without IDE (IDLE).

Python has a large repository of community packages.

Python is a general purpose language; it was not designed with data
analysis in mind.

I Several important features, such as numerics, are add-ons.
I Visualization can be annoyingly tricky.
I But can also be useful outside of number crunching.

Because Python is a general-purpose language it tends to be more
versatile and flexible than R.

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 5 / 72

Starting Python

How you start Python interpreter depends upon your system:

Windows: several graphical Python interfaces exist (IDLE,
Anaconda). Launch whichever one you have installed.

Mac: similar to Windows, but running from the command line is also
an option.

Linux: open a terminal. Type ”python” (or ”ipython”). Use ”exit” to
quit.

Open up your Python interface now. Raise your hand if you don’t think
it’s working. Please follow along by entering the commands on the slides,
and playing with the output.

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 6 / 72

Starting Python on SciNet

Alternatively, you can log into SciNet and run Python there.

ejspence@mycomp ~>
ejspence@mycomp ~> ssh ejspence@login.scinet.utoronto.ca -X

ejspence@scinet01-ib0 ~>
ejspence@scinet01-ib0 ~> ssh -X gpc03

ejspence@gpc-f103n084-ib0 ~>
ejspence@gpc-f103n084-ib0 ~> module load intel/15.0.2 python/2.7.8

ejspence@gpc-f103n084-ib0 ~>
ejspence@gpc-f103n084-ib0 ~> ipython --pylab

In [1]:

We won’t be using parallel Python capabilities until this afternoon, so you
should be able to just work either on your own laptop, or on a SciNet
devel node for this morning.

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 7 / 72

~
~
~
~
~
~
~
~

Python versus ipython

There are two main ways to run Python interactively: regular Python and
IPython (”Interactive Python”). They both have advantages and
disadvantages:

Regular Python is what you get when you type ”python” at the
command prompt.

There aren’t as many nice features built into regular Python.

But regular Python is what you get when you run Python scripts, so
you’re sure to get the right answer the first time, since there aren’t
nice features included which are available in regular Python.

IPython has tab line completion built in, interactive plotting (when
”–pylab” is invoked at the command line) and other features.

But IPython is not what you have when you run scripts.

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 8 / 72

Python data types

Python has several standard data types:

Numbers

Strings

Booleans

Container types
I Lists
I Sets
I Tuples
I Dictionaries

We aren’t going to cover all of the data and container types, since we’re
focusing on Scientific data analysis.

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 9 / 72

Integers in Python

Python offers two default types of integers:

”plain integers”:
I All integers are plain by default unless they are too big.
I These are implemented using long integers in C. This gives them,

depending on the system, at least 32 bits of range.
I The maximum value can be found by checking the sys.maxint value.

In [1]: import sys

In [2]: print sys.maxint

2147483647

In [3]: a = 10

In [4]: type(a)

Out[4]: int

In [5]: int(10.0)

Out[5]: 10

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 10 / 72

Importing modules

Python offers several ways to
import packages:

”import numpy”

”import numpy as np”

”from numpy import linalg”

”from numpy import linalg,
fft, random”

”from numpy import linalg
as la”

In [6]:

In [6]: import os

In [7]: print os.name

posix

In [8]: import time as t

In [9]: t.time()

Out[9]: 1436274243.333076

In [10]: from calendar import isleap

In [11]: isleap(2114)

Out[11]: False

In [12]:

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 11 / 72

Installing packages
Installing packages is not quite a easy as in R. The package manager
usually used is ”pip”. To install, say, the numpy package, in Linux and on
a Mac, open a terminal, and use the command

ejspence@mycomp ~> pip install numpy

or if you don’t have administrator permission

ejspence@mycomp ~> pip install --user numpy

On Windows, search for the ”cmd” prompt in the Start menu. Then type
these commands:

C:\Users\ejspence>

C:\Users\ejspence> cd C:\Python27\Scripts

C:\Python27\Scripts>

C:\Python27\Scripts> pip.exe install numpy

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 12 / 72

~
~

Getting help

Like R, once a module or package
has been imported, you can get
information about how to run
that package:

the ”help” command gives
information about the
package or function.

the ”?” command gives
installation information and
the package docstring.

Type ’q’ to get out of either of
these, at least on Linux machines.

In [12]:

In [12]: import os

In [13]: help(os)

.

.

.

In [14]:

In [14]: ? time

.

.

.

In [15]:

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 13 / 72

Integers in Python, continued

The second type of Python integer:

”long integers”:
I Have infinite range.
I Are invoked using the long(something) function, or by placing an ”L”

after the number.

In [15]: a = 10

In [16]: b = 10L

In [17]: b

Out[17]: 10L

In [18]: type(b)

Out[18]: long

In [19]: c = long(a)

In [20]: type(c)

Out[20]: long

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 14 / 72

Floats in Python

Python offers two types of floating point numbers:

”floating point numbers”:
I Based on the C double type.
I You can specify the exponent by putting ”e” in your number.
I Information about floats on your system can be found in sys.float info.

In [21]: import sys

In [22]: print sys.float info

sys.float info(max=1.7976931348623157e+308, max exp=1024, max 10 exp=308,

min=2.2250738585072014e-308, min exp=-1021, min 10 exp=-307, dig=15,

mant dig=53, epsilon=2.220446049250313e-16, radix=2, rounds=1)

In [23]:

In [23]: a = 4.5e245

In [24]: a

Out[24]: 4.5e+245

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 15 / 72

Floats in Python, continued

The second type of Python floating point number:

”complex numbers”:
I Have a real and imaginary part, both of which are floats.
I Use z.real and z.imag to access individual parts.

In [25]: a = complex(1.,3.0)

In [26]: print a

(1+3j)

In [27]:

In [27]: b = 1.0 + 2.j

In [28]: print b.imag

2.0

In [29]: complex(10.0)

Out[29]: (10+0j)

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 16 / 72

Booleans
Python supports standard boolean variables and operations.

In [30]: bool(1)

Out[30]: True

In [31]: bool(0)

Out[31]: False

In [32]: bool(3)

Out[32]: True

In [33]: True + 1

Out[33]: 2

In [34]: False + 1

Out[34]: 1

In [35]:

In [35]: a = True

In [36]: a and False

Out[36]: False

In [37]: not a

Out[37]: False

In [38]: a or False

Out[38]: True

In [39]: a & True

Out[39]: True

In [40]: a | True

Out[40]: True

Strictly speaking, booleans are a sub-type of plain integers. Note that the
values are ”True”, rather than ”TRUE” as in R. Note also that you must
type the full word ”True”; ”T” is insufficient.

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 17 / 72

Boolean bitwise operations
Python contains the usual bitwise operations.

Operation Equivalent Result

x | y x or y bitwise OR of x and y
x ˆ y bitwise XOR of x and y
x & y x and y bitwise AND of x and y
x << n x shifted left by n bits
x >> n x shifted right by n bits
˜x x bitwise inverted

And the usual testing operators.

Operation Equivalent Result

!x not x the opposite of x
x == y is x equal to y?
x != y is x not equal to y?

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 18 / 72

Strings

Strings are delimited by single or double quotation marks (’ or ”):

In [41]: word = "Hello World"

In [41]: word

Out[42]: "word"

In [43]: print word

Hello World

In [44]: print word + " again!"

Hello World again!

In [45]:

Python has a tonne of string manipulation features built into it. If your
work involves string manipulation, Python isn’t a bad choice.

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 19 / 72

Lists

Lists are similar to lists in R.

In [45]: a = [3.123, "Hello World", 3]

In [46]: print a

[3.123, ’Hello World’, 3]

In [47]:

In [47]: L = [’yellow’, ’red’, ’blue’, ’green’, ’black’]

In [48]: print len(L)

5

In [49]: L.append(’orange’)

In [50]: print L

[’yellow’, ’red’, ’blue’, ’green’, ’black’, ’orange’]

In [51]:

Python has a tonne of list manipulation features built into it. If you need
to manipulate a list in some way, look up the options, there are many.

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 20 / 72

Looping over lists

A very common operation is to loop over lists:

In [51]:

In [51]: a

Out[51]: [1, 2, 3, 4]

In [52]:

In [52]: for item in a:

...: print item

...:

1

2

3

4

In [52]:

Note that weird whitespace before the ’print’ statement.

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 21 / 72

Whitespace
All code blocks in Python are delineated by white space. But the amount
of indentation does not need to be the same from one code block to
another. But it must be consistent within the same code block.

In [52]: for i in range(5):

...: if (i > 2):

...: print ’eek’

...: elif (i == 2):

...: print i

...: else:

...: print i - 7

...:

-7

-6

2

eek

eek

In [53]:

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 22 / 72

Loops
Like all languages, Python has the usual loops.

In [53]:

In [53]: for i in range(5,10,2):

...: print i

...:

5

7

9

In [54]:

In [54]: i = 0

In [55]: while (i < 2):

...: print i

...: i += 1

...:

0

1

In [56]:

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 23 / 72

List comprehensions
Python allows you to create lists with loops, in what is at first a somewhat
strange syntax:

In [56]:

In [56]: S = [x**2 for x in range(10)]

In [57]:

In [57]: S

Out[58]: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

In [59]:

In [59]: t = [x**2 for x in range(10) if x > 5]

In [60]: t

Out[61]: [36, 49, 64, 81]

In [62]:

These are called ”list comprehensions”. The basic syntax is

[expression(item) for item in list conditional(item)].

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 24 / 72

Dictionaries

Dictionaries are a Python data type which associates keys to values. These
definitions of the dictionary are all equivalent:

In [62]:

In [62]: a = dict(one = 1, two = 2, three = 3)

In [63]: b = ’one’: 1, ’two’: 2, ’three’: 3

In [63]: e =

In [64]: e[’one’] = 1

In [65]:

In [65]: a

’one’: 1, ’three’: 3, ’two’: 2

In [66]:

In [66]: a[’three’]

3

In [67]:

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 25 / 72

Lists aren’t the ideal data type

Lists can do funny things that you
don’t expect, if you’re not careful.

Lists are just a collection of
items, of any type.

If you do mathematical
operations on a list, you
won’t get what you expect.

These are not the ideal data
type for scientific computing.

Arrays are a much better
choice, but are not a native
Python data type.

In [67]:

In [67]: a = [1, 2, 3]

In [68]: a

Out[68]: [1, 2, 3]

In [69]: a.append(4)

In [70]: a

Out[70]: [1, 2, 3, 4]

In [71]:

In [71]: b = [3, 5, 5, 6]

In [72]: b

Out[72]: [3, 5, 5, 6]

In [73]: 2 * a

Out[73]: [1, 2, 3, 4, 1, 2, 3, 4]

In [74]: a + b

Out[74]: [1, 2, 3, 4, 3, 5, 5, 6]

In [75]:

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 26 / 72

Arrays are what we want to use

Almost everything that you want
to do starts with NumPy.

Contains arrays of various
types and forms: zeros, ones,
linspace, etc.

linspace takes 2 or 3
arguments, the default
number of entries is 50.

In [75]: from numpy import zeros,

ones, linspace, array

In [76]: zeros(4)

Out[76]: array([0., 0., 0., 0.])

In [77]: ones(5, dtype = int)

Out[77]: array([1, 1, 1, 1, 1])

In [78]: zeros([2,2])

Out[78]:
array([[0., 0.],

[0., 0.]])

In [79]: arange(5)

Out[79]: array([0, 1, 2, 3, 4])

In [80]: linspace(1, 5)

Out[80]: array([1., 1.08163265,

1.16326531, 1.24489796,

.

.

4.67346939, 4.75510204,

4.83673469, 4.91836735, 5.])

In [81]: linspace(1, 5, 6)

Out[81]: array([1., 1.8, 2.6, 3.4,

4.2, 5.])

In [82]:

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 27 / 72

Accessing array elements

Elements of arrays are accessed
using square brackets.

Like most languages, the first
index is the row, the second
is the column.

Indexing starts at 0.

In [82]: zeros([2, 3])

Out[82]:
array([[0., 0., 0.],

[0., 0., 0.]])

In [83]: a = zeros([2, 3])

In [84]: a[1,2] = 1

In [85]: a[0,1] = 2

In [86]: a

Out[86]:
array([[0., 2., 0.],

[0., 0., 1.]])

In [87]: a[2,1] = 1

IndexError Traceback

<ipython-input-21-83f146d6c508> in

<module>()

----> 1 a[2,1] = 1

IndexError: index (2) out of range

(0<=index<2) in dimension 0

In [88]:

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 28 / 72

Indexing arrays

Notes about Python indexing:

Read ”2:4” as ”from the
beginning of the second
element, to the beginning of
the fourth element”.

Negative indexing is
supported, with very different
behaviour than R.

If a third index is specified, it
refers to the step size
(”1:10:2”, for example).

If no index is specifed, either
”beginning” or ”end” is
assumed.

In [88]: a = array([1,2,3,4,5,6,7])

In [89]: len(a)

Out[89]: 7

In [90]: print a[6]

7

In [91]: print a[6:7]

[7]

0 1 2 3 4 5 6

a b c d e f

2:4

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 29 / 72

Indexing arrays, continued

There are many ways to select and slice elements from an array:

In [92]: a = array([1,2,3,4,5,6,7])

In [93]: print a[:4]

[1 2 3 4]

In [94]: print a[4:]

[5 6 7]

In [95]: print a[-3:]

[5 6 7]

In [96]: print a[::2]

[1 3 5 7]

In [97]: a[-1]

Out[97]: 7

What is the output of a[-5:-4] and a[-4:-5]?

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 30 / 72

Indexing arrays, continued more
Elements in an array can be selected using a boolean array. Boolean arrays
can be created using a conditional expression.

In [98]:

In [98]: a = arange(5)

In [99]: a

Out[99]: array([0, 1, 2, 3, 4])

In [100]: a > 2

Out[100]: array([False, False, False, True, True], dtype=bool)

In [101]: a[a > 2]

Out[101]: array([3, 4])

In [102]: a[(a % 2) == 0]

Out[102]: array([0, 2, 4])

In [103]:

The ”%” symbol is the modulus operator.

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 31 / 72

Pop quiz!

Use the ”numpy.random.random integers” function to create vector of
random integers, of length 16, with elements in the range 0 to 30. If an
element is divisible by 3, set it to -1.

In [103]:

In [103]: import numpy as np

In [104]:

In [104]: a = np.random.random integers(0, 30, 16)

In [105]:

In [105]: a[a % 3 == 0] = -1

In [106]:

In [106]: a

Out[106]: array([19, 14, 1, 23, 2, 7, 8, -1, -1, -1, 11, 8, 1, 28, -1, 1])

In [107]:

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 32 / 72

Pop quiz!

Use the ”numpy.random.random integers” function to create vector of
random integers, of length 16, with elements in the range 0 to 30. If an
element is divisible by 3, set it to -1.

In [107]:

In [107]: import numpy as np

In [108]:

In [108]: a = np.random.random integers(0, 30, 16)

In [109]:

In [109]: a[a % 3 == 0] = -1

In [110]:

In [110]: a

Out[110]: array([19, 14, 1, 23, 2, 7, 8, -1, -1, -1, 11, 8, 1, 28, -1, 1])

In [111]:

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 32 / 72

vector-vector & vector-scalar multiplication

1D arrays are often called
’vectors’.

When vectors are multiplied
using ”*” you get
element-by-element
multiplication.

When vectors are multiplied
by a scalar (a 0-D array), you
also get element-by-element
multiplication.

In [111]: a = arange(4)

In [112]: a

Out[112]: array([0, 1, 2, 3])

In [113]: b = arange(4.) + 3

In [114]: b

Out[114]: array([3., 4., 5., 6.])

In [115]: c = 2

In [116]: c

Out[116]: 2

In [117]: a * b

Out[117]: array([0., 4., 10., 18.])

In [118]: a * c

Out[118]: array([0, 2, 4, 6])

In [119]: b * c

Out[119]: array([6., 8., 10., 12.])

In [120]:

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 33 / 72

vector-vector outer product

Outer products of two vectors are also possible.

In [120]: from numpy import outer

In [121]:

In [121]: a = array([1,2,4])

In [122]: b = array([1,3,2])

In [123]:

In [123]: outer(a,b)

Out[123]:
array([[1, 3, 2],

[2, 6, 4],

[4, 12, 8]])

In [124]:

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 34 / 72

matrix-vector multiplication
A 2D array is sometimes called
a ’matrix’.

Matrix-scalar
multiplication is
element-by-element.

Matrix-vector
multiplication DOES
NOT give the standard
result!

In [124]: a = array([[1,2,3], [2,3,4]])

In [125]: a

Out[125]:
array([[1, 2, 3],

[2, 3, 4]])

In [126]: b = arange(3) + 1

In [127]: b

Out[127]: array([1, 2, 3])

In [128]: a * b

Out[128]:
array([[1, 4, 9],

[2, 6, 12]])

Normal matrix-vector multiplication:a11 a12 a13

a21 a22 a23

a31 a32 a33

 ∗
b1b2
b3

 =

a11 ∗ b1 + a12 ∗ b2 + a13 ∗ b3
a21 ∗ b1 + a22 ∗ b2 + a23 ∗ b3
a31 ∗ b1 + a32 ∗ b2 + a33 ∗ b3


Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 35 / 72

matrix-matrix multiplication

Not surprisingly, matrix-matrix
multiplication doesn’t work as
expected either, instead doing
the same thing as
vector-vector multiplication.

In [129]: a = array([[1,2,3], [2,3,4]])

In [130]: b = array([[1,2,3], [2,3,4]])

In [131]: a

Out[131]:
array([[1, 2, 3],

[2, 3, 4]])

In [132]: a * b

Out[132]:
array([[1, 4, 9],

[4, 9, 16]])

Normal matrix-matrix multiplication:[
a11 a12

a21 a22

]
∗
[
b11 b12
b21 b22

]
=[

a11 ∗ b11 + a12 ∗ b21 a11 ∗ b12 + a12 ∗ b22
a21 ∗ b11 + a22 ∗ b21 a21 ∗ b12 + a22 ∗ b22

]

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 36 / 72

How to do matrix algebra?
There are two solutions to these
matrix multiplication problems.

The specially built-in array fixes
(using ’array’ types).

The matrix module (using
’matrix’ types).

The latter option is a bit clunkier, so
we recommend the ’fixes’.

In [133]: from scipy import dot

In [134]: a = array([[1,2,3],[2,3,4]])

In [135]: b = array([[1,2,3],[2,3,4]])

In [136]: a

Out[136]:
array([[1, 2, 3],

[2, 3, 4]])

In [137]: a.transpose()

Out[137]:
array([[1, 2],

[2, 3],

[3, 4]])

In [138]: dot(a.transpose(), b)

Out[138]:
array([[5, 8, 11],

[8, 13, 18],

[11, 18, 25]])

In [139]: dot(b, a.transpose())

Out[139]:
array([[14, 20],

[20, 29]])

In [140]: c = arange(3) + 1

In [141]: dot(a,c)

Out[141]: array([14, 20])

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 37 / 72

The linalg module

The linalg module contains useful functions for matrix algebra.

Typical matrix functions: inv, det, norm...

More advanced functions: eig, SVD, cholesky...

Both NumPy and SciPy have a linalg module. Use SciPy, because it
is always compiled with BLAS/LAPACK support.

In [142]: from scipy import dot, linalg

In [143]: a = array([[1,2,3], [3,4,5], [1,1,2]])

In [144]: linalg.det(a)

Out[144]: -2.0

In [145]: dot(a, linalg.inv(a))

Out[146]:
array([[1.00000000e+00, 0.00000000e+00, 0.00000000e+00],

[2.77555756e-16, 1.00000000e+00, 0.00000000e+00],

[0.00000000e+00, 5.55111512e-17, 1.00000000e+00]])

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 38 / 72

Solving systems of equations

The linalg module comes with an
important function: solve.

linalg.solve is used to solve
the system of equations
Ax = b.

In [147]: from scipy import linalg

In [148]: a = array([[1,2,3],

[3,4,5], [1,1,2]])

In [149]: a

Out[149]:
array([[1, 2, 3],

[3, 4, 5],

[1, 1, 2]])

In [150]:

In [150]: b = array([3, 4, 2])

In [151]: b

Out[151]: array([3, 4, 2])

In [152]:

In [152]: x = linalg.solve(a, b)

In [153]: x

Out[153]: array([-0.5, -0.5, 1.5])

In [154]:

1 2 3
3 4 5
1 1 2

 ∗
−0.5−0.5

1.5

 =

34
2



Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 39 / 72

Functions
Functions are created with the ”def” command.

In [154]: def squared(x):

...: return x**2

...:

In [155]:

In [155]: squared(3)

Out[156]: 9

In [157]:

In [157]: def hello(a, b = "pants"):

...: print a + b

...:

In [158]:

In [158]: hello(’I’)

Ipants

In [159]: hello(’I’, b = ’robot’)

Irobot

In [160]:

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 40 / 72

Functions

Awesome functions should be tested
and saved in a library of awesomeness.
This is how you access it.

In [160]: import awesomecode

In [161]:

In [161]: awesomecode.squared(4)

16

In [162]:

In [162]: from awesomecode import hello

In [163]:

In [163]: hello(’A’)

Apants

In [164]:

awesomecode.py

def squared(x):

return x**2

def hello(a, b = "pants"):

print a + b

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 41 / 72

Maplotlib’s pyplot
The most commonly-used Python visualization package is
matplotlib.pyplot:

matplotlib is an add-on package to Python.

Designed to have look which mimics MATLAB.

Has all the plotting types you’d expect: line, scatter, bar, pie,
contour, polar, box, etc.

More-advanced functionality includes subplots, inset plots, colourbars,
legends, etc.

Control over every aspect of your plot is available, though not
necessarily easily or obviously.

Also has 3D plotting, built-in widgets, animations.

To learn more about visualization, attend the Visualization Summer
School session on Friday.

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 42 / 72

Plotting in Python

By default, plotting in Python is a little wonky. Note that the following
may not work in some IDEs.

ejspence@mycomp ~>
ejspence@mycomp ~> python

>>>

>>> import matplotlib.pyplot as plt

>>> plt.figure()

<matplotlib.figure.Figure object at 0x7fdbfec5ff90>

>>>

>>> plt.show()

>>>

As you can see, the default behaviour of matplotlib is to delay drawing the
figure until it is told to do so. (Close the figure to get your prompt back.)

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 43 / 72

~
~

Plotting in Python, continued
Using ipython instead of python will get you around this, but only if you
use the --pylab flag.

ejspence@mycomp ~>
ejspence@mycomp ~> ipython

In [1]:

In [2]: import matplotlib.pyplot as plt

In [3]: plt.figure()

<matplotlib.figure.Figure object at 0x7fdbfec5ff90>

In [4]: exit

ejspence@mycomp ~>
ejspence@mycomp ~> ipython --pylab

In [1]: import matplotlib.pyplot as plt

In [2]: plt.figure()

Interactive mode will only work with pyplot commands, however, not
matplotlib objects.

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 44 / 72

~
~
~
~

Plotting

In [3]: import numpy as np

In [4]: import matplotlib.pyplot

as plt

In [5]:

x =

np.linspace(0, 2 * np.pi, 100)

In [6]: plt.plot(x, np.sin(x), ’*’)

In [7]: plt.xlim(0, 10)

Out[7]: (0, 10)

In [8]: plt.xlim(0, 2 * np.pi)

Out[8]: (0, 6.2831853071795862)

In [9]: plt.xlabel(’Angle [rad]’,

fontsize = 16)

In [10]: plt.ylabel(’Amplitude’)

In [11]: plt.ylabel(’Amplitude [m]’,

fontsize = 16)

In [12]: plt.title(’Sine Wave’,

fontsize = 16)

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 45 / 72

Plotting

In [3]: import numpy as np

In [4]: import matplotlib.pyplot

as plt

In [5]: x =

np.linspace(0, 2 * np.pi, 100)

In [6]:

plt.plot(x, np.sin(x), ’*’)

In [7]: plt.xlim(0, 10)

Out[7]: (0, 10)

In [8]: plt.xlim(0, 2 * np.pi)

Out[8]: (0, 6.2831853071795862)

In [9]: plt.xlabel(’Angle [rad]’,

fontsize = 16)

In [10]: plt.ylabel(’Amplitude’)

In [11]: plt.ylabel(’Amplitude [m]’,

fontsize = 16)

In [12]: plt.title(’Sine Wave’,

fontsize = 16)

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 45 / 72

Plotting

In [3]: import numpy as np

In [4]: import matplotlib.pyplot

as plt

In [5]: x =

np.linspace(0, 2 * np.pi, 100)

In [6]: plt.plot(x, np.sin(x), ’*’)

In [7]:

plt.xlim(0, 10)

Out[7]: (0, 10)

In [8]: plt.xlim(0, 2 * np.pi)

Out[8]: (0, 6.2831853071795862)

In [9]: plt.xlabel(’Angle [rad]’,

fontsize = 16)

In [10]: plt.ylabel(’Amplitude’)

In [11]: plt.ylabel(’Amplitude [m]’,

fontsize = 16)

In [12]: plt.title(’Sine Wave’,

fontsize = 16)

0 1 2 3 4 5 6 71.0

0.5

0.0

0.5

1.0

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 45 / 72

Plotting

In [3]: import numpy as np

In [4]: import matplotlib.pyplot

as plt

In [5]: x =

np.linspace(0, 2 * np.pi, 100)

In [6]: plt.plot(x, np.sin(x), ’*’)

In [7]: plt.xlim(0, 10)

Out[7]: (0, 10)

In [8]:

plt.xlim(0, 2 * np.pi)

Out[8]: (0, 6.2831853071795862)

In [9]: plt.xlabel(’Angle [rad]’,

fontsize = 16)

In [10]: plt.ylabel(’Amplitude’)

In [11]: plt.ylabel(’Amplitude [m]’,

fontsize = 16)

In [12]: plt.title(’Sine Wave’,

fontsize = 16)

0 2 4 6 8 101.0

0.5

0.0

0.5

1.0

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 45 / 72

Plotting

In [3]: import numpy as np

In [4]: import matplotlib.pyplot

as plt

In [5]: x =

np.linspace(0, 2 * np.pi, 100)

In [6]: plt.plot(x, np.sin(x), ’*’)

In [7]: plt.xlim(0, 10)

Out[7]: (0, 10)

In [8]: plt.xlim(0, 2 * np.pi)

Out[8]: (0, 6.2831853071795862)

In [9]:

plt.xlabel(’Angle [rad]’,

fontsize = 16)

In [10]: plt.ylabel(’Amplitude’)

In [11]: plt.ylabel(’Amplitude [m]’,

fontsize = 16)

In [12]: plt.title(’Sine Wave’,

fontsize = 16)

0 1 2 3 4 5 61.0

0.5

0.0

0.5

1.0

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 45 / 72

Plotting

In [3]: import numpy as np

In [4]: import matplotlib.pyplot

as plt

In [5]: x =

np.linspace(0, 2 * np.pi, 100)

In [6]: plt.plot(x, np.sin(x), ’*’)

In [7]: plt.xlim(0, 10)

Out[7]: (0, 10)

In [8]: plt.xlim(0, 2 * np.pi)

Out[8]: (0, 6.2831853071795862)

In [9]: plt.xlabel(’Angle [rad]’,

fontsize = 16)

In [10]:

plt.ylabel(’Amplitude’)

In [11]: plt.ylabel(’Amplitude [m]’,

fontsize = 16)

In [12]: plt.title(’Sine Wave’,

fontsize = 16)

0 1 2 3 4 5 6
Angle [rad]

1.0

0.5

0.0

0.5

1.0

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 45 / 72

Plotting

In [3]: import numpy as np

In [4]: import matplotlib.pyplot

as plt

In [5]: x =

np.linspace(0, 2 * np.pi, 100)

In [6]: plt.plot(x, np.sin(x), ’*’)

In [7]: plt.xlim(0, 10)

Out[7]: (0, 10)

In [8]: plt.xlim(0, 2 * np.pi)

Out[8]: (0, 6.2831853071795862)

In [9]: plt.xlabel(’Angle [rad]’,

fontsize = 16)

In [10]: plt.ylabel(’Amplitude’)

In [11]:

plt.ylabel(’Amplitude [m]’,

fontsize = 16)

In [12]: plt.title(’Sine Wave’,

fontsize = 16)

0 1 2 3 4 5 6
Angle [rad]

1.0

0.5

0.0

0.5

1.0

Am
pl

itu
de

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 45 / 72

Plotting

In [3]: import numpy as np

In [4]: import matplotlib.pyplot

as plt

In [5]: x =

np.linspace(0, 2 * np.pi, 100)

In [6]: plt.plot(x, np.sin(x), ’*’)

In [7]: plt.xlim(0, 10)

Out[7]: (0, 10)

In [8]: plt.xlim(0, 2 * np.pi)

Out[8]: (0, 6.2831853071795862)

In [9]: plt.xlabel(’Angle [rad]’,

fontsize = 16)

In [10]: plt.ylabel(’Amplitude’)

In [11]: plt.ylabel(’Amplitude [m]’,

fontsize = 16)

In [12]:

plt.title(’Sine Wave’,

fontsize = 16)

0 1 2 3 4 5 6
Angle [rad]

1.0

0.5

0.0

0.5

1.0

Am
pl

itu
de

 [m
]

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 45 / 72

Plotting

In [3]: import numpy as np

In [4]: import matplotlib.pyplot

as plt

In [5]: x =

np.linspace(0, 2 * np.pi, 100)

In [6]: plt.plot(x, np.sin(x), ’*’)

In [7]: plt.xlim(0, 10)

Out[7]: (0, 10)

In [8]: plt.xlim(0, 2 * np.pi)

Out[8]: (0, 6.2831853071795862)

In [9]: plt.xlabel(’Angle [rad]’,

fontsize = 16)

In [10]: plt.ylabel(’Amplitude’)

In [11]: plt.ylabel(’Amplitude [m]’,

fontsize = 16)

In [12]: plt.title(’Sine Wave’,

fontsize = 16)

0 1 2 3 4 5 6
Angle [rad]

1.0

0.5

0.0

0.5

1.0

Am
pl

itu
de

 [m
]

Sine Wave

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 45 / 72

What are those buttons?

Return to where
you started.

Go back a step.

Go forward a step.

Grab the plot and
move it around.

Zoom in on a section.

Adjust spacing between plots.

Save the figure.

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 46 / 72

Pop quiz!

Using the numpy ”mgrid”
function, and the pylab
”contourf” function, reproduce
this plot of a Gaussian:
f(x, y) = exp(−(x2+y2)),
for −2 ≤ x ≤ 2 and
−2 ≤ y ≤ 2.

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

In [13]: x, y = np.mgrid[-2:2:0.1, -2:2:0.1]

In [14]: g = exp(-(x**2 + y**2))

In [15]: contourf(g)

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 47 / 72

Pop quiz!

Using the numpy ”mgrid”
function, and the pylab
”contourf” function, reproduce
this plot of a Gaussian:
f(x, y) = exp(−(x2+y2)),
for −2 ≤ x ≤ 2 and
−2 ≤ y ≤ 2.

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

In [16]: x, y = np.mgrid[-2:2:0.1, -2:2:0.1]

In [17]: g = exp(-(x**2 + y**2))

In [18]: contourf(g)

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 47 / 72

Statistics

SciPy contains all of the statistical functions that you’ll probably ever
need.

The scipy.stats module is based around the idea of a ’random
variable’ type.

A whole variety of standard distributions are available:
I Continuous distributions: Normal, Maxwell, Cauchy, Chi-squared,

Gumbel Left-scewed, Gilbrat, Nakagami, ...
I Discrete distributions: Poisson, Binomial, Geometric, Bernoulli, ...

The ’random variables’ have all of the statistical properties of the
distributions built into them already: cdf, pdf, mean, variance,
moments, ...

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 48 / 72

Statistics, continued

In [19]:

In [19]:

from scipy.stats

import norm

In [20]: x = linspace(-5, 5, 100)

In [21]: plot(x, norm.pdf(x))

In [22]: plot(x,

norm.pdf(x, loc = 1))

In [23]: plot(x,

norm.pdf(x, loc = -1, scale = 2))

In [24]:

All continuous distributions take ”loc” and ”scale” as keyword parameters
to adjust the location and scale of the distribution. In general the
distribution of a random variable X is obtained from (X − loc)/scale.
The default values are loc = 0 and scale = 1.

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 49 / 72

Statistics, continued

In [19]:

In [19]: from scipy.stats

import norm

In [20]:

x = linspace(-5, 5, 100)

In [21]: plot(x, norm.pdf(x))

In [22]: plot(x,

norm.pdf(x, loc = 1))

In [23]: plot(x,

norm.pdf(x, loc = -1, scale = 2))

In [24]:

All continuous distributions take ”loc” and ”scale” as keyword parameters
to adjust the location and scale of the distribution. In general the
distribution of a random variable X is obtained from (X − loc)/scale.
The default values are loc = 0 and scale = 1.

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 49 / 72

Statistics, continued

In [19]:

In [19]: from scipy.stats

import norm

In [20]: x = linspace(-5, 5, 100)

In [21]:

plot(x, norm.pdf(x))

In [22]: plot(x,

norm.pdf(x, loc = 1))

In [23]: plot(x,

norm.pdf(x, loc = -1, scale = 2))

In [24]:

All continuous distributions take ”loc” and ”scale” as keyword parameters
to adjust the location and scale of the distribution. In general the
distribution of a random variable X is obtained from (X − loc)/scale.
The default values are loc = 0 and scale = 1.

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 49 / 72

Statistics, continued

In [19]:

In [19]: from scipy.stats

import norm

In [20]: x = linspace(-5, 5, 100)

In [21]: plot(x, norm.pdf(x))

In [22]:

plot(x,

norm.pdf(x, loc = 1))

In [23]: plot(x,

norm.pdf(x, loc = -1, scale = 2))

In [24]:

6 4 2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

All continuous distributions take ”loc” and ”scale” as keyword parameters
to adjust the location and scale of the distribution. In general the
distribution of a random variable X is obtained from (X − loc)/scale.
The default values are loc = 0 and scale = 1.

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 49 / 72

Statistics, continued

In [19]:

In [19]: from scipy.stats

import norm

In [20]: x = linspace(-5, 5, 100)

In [21]: plot(x, norm.pdf(x))

In [22]: plot(x,

norm.pdf(x, loc = 1))

In [23]:

plot(x,

norm.pdf(x, loc = -1, scale = 2))

In [24]:

6 4 2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

All continuous distributions take ”loc” and ”scale” as keyword parameters
to adjust the location and scale of the distribution. In general the
distribution of a random variable X is obtained from (X − loc)/scale.
The default values are loc = 0 and scale = 1.

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 49 / 72

Statistics, continued

In [19]:

In [19]: from scipy.stats

import norm

In [20]: x = linspace(-5, 5, 100)

In [21]: plot(x, norm.pdf(x))

In [22]: plot(x,

norm.pdf(x, loc = 1))

In [23]: plot(x,

norm.pdf(x, loc = -1, scale = 2))

In [24]:
6 4 2 0 2 4 6

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

All continuous distributions take ”loc” and ”scale” as keyword parameters
to adjust the location and scale of the distribution. In general the
distribution of a random variable X is obtained from (X − loc)/scale.
The default values are loc = 0 and scale = 1.

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 49 / 72

Statistics, continued more

In [24]:

from pylab import hist

In [25]: norm.mean(loc = -1,

scale = 2)

Out[25]: -1.0

In [26]: norm.std(loc = -1,

scale = 2)

Out[27]: 2.0

In [28]: norm.moment(3, loc = -1,

scale = 2)

Out[28]: -13.0

In [29]: samples = norm.rvs(

size = 1000, loc = -1,

scale = 2)

In [30]: h = hist(samples,

bins = 41, normed = True)

In [31]:

plot(x, norm.pdf(x,

loc = -1, scale = 2), ’r’,

linewidth = 2)

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 50 / 72

Statistics, continued more

In [24]: from pylab import hist

In [25]:

norm.mean(loc = -1,

scale = 2)

Out[25]: -1.0

In [26]: norm.std(loc = -1,

scale = 2)

Out[27]: 2.0

In [28]: norm.moment(3, loc = -1,

scale = 2)

Out[28]: -13.0

In [29]: samples = norm.rvs(

size = 1000, loc = -1,

scale = 2)

In [30]: h = hist(samples,

bins = 41, normed = True)

In [31]:

plot(x, norm.pdf(x,

loc = -1, scale = 2), ’r’,

linewidth = 2)

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 50 / 72

Statistics, continued more

In [24]: from pylab import hist

In [25]: norm.mean(loc = -1,

scale = 2)

Out[25]: -1.0

In [26]:

norm.std(loc = -1,

scale = 2)

Out[27]: 2.0

In [28]: norm.moment(3, loc = -1,

scale = 2)

Out[28]: -13.0

In [29]: samples = norm.rvs(

size = 1000, loc = -1,

scale = 2)

In [30]: h = hist(samples,

bins = 41, normed = True)

In [31]:

plot(x, norm.pdf(x,

loc = -1, scale = 2), ’r’,

linewidth = 2)

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 50 / 72

Statistics, continued more

In [24]: from pylab import hist

In [25]: norm.mean(loc = -1,

scale = 2)

Out[25]: -1.0

In [26]: norm.std(loc = -1,

scale = 2)

Out[27]: 2.0

In [28]:

norm.moment(3, loc = -1,

scale = 2)

Out[28]: -13.0

In [29]: samples = norm.rvs(

size = 1000, loc = -1,

scale = 2)

In [30]: h = hist(samples,

bins = 41, normed = True)

In [31]:

plot(x, norm.pdf(x,

loc = -1, scale = 2), ’r’,

linewidth = 2)

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 50 / 72

Statistics, continued more

In [24]: from pylab import hist

In [25]: norm.mean(loc = -1,

scale = 2)

Out[25]: -1.0

In [26]: norm.std(loc = -1,

scale = 2)

Out[27]: 2.0

In [28]: norm.moment(3, loc = -1,

scale = 2)

Out[28]: -13.0

In [29]:

samples = norm.rvs(

size = 1000, loc = -1,

scale = 2)

In [30]: h = hist(samples,

bins = 41, normed = True)

In [31]:

plot(x, norm.pdf(x,

loc = -1, scale = 2), ’r’,

linewidth = 2)

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 50 / 72

Statistics, continued more

In [24]: from pylab import hist

In [25]: norm.mean(loc = -1,

scale = 2)

Out[25]: -1.0

In [26]: norm.std(loc = -1,

scale = 2)

Out[27]: 2.0

In [28]: norm.moment(3, loc = -1,

scale = 2)

Out[28]: -13.0

In [29]: samples = norm.rvs(

size = 1000, loc = -1,

scale = 2)

In [30]:

h = hist(samples,

bins = 41, normed = True)

In [31]:

plot(x, norm.pdf(x,

loc = -1, scale = 2), ’r’,

linewidth = 2)

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 50 / 72

Statistics, continued more

In [24]: from pylab import hist

In [25]: norm.mean(loc = -1,

scale = 2)

Out[25]: -1.0

In [26]: norm.std(loc = -1,

scale = 2)

Out[27]: 2.0

In [28]: norm.moment(3, loc = -1,

scale = 2)

Out[28]: -13.0

In [29]: samples = norm.rvs(

size = 1000, loc = -1,

scale = 2)

In [30]: h = hist(samples,

bins = 41, normed = True)

8 6 4 2 0 2 4 6 8
0.00

0.05

0.10

0.15

0.20

0.25

In [31]:

plot(x, norm.pdf(x,

loc = -1, scale = 2), ’r’,

linewidth = 2)

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 50 / 72

Statistics, continued more

In [24]: from pylab import hist

In [25]: norm.mean(loc = -1,

scale = 2)

Out[25]: -1.0

In [26]: norm.std(loc = -1,

scale = 2)

Out[27]: 2.0

In [28]: norm.moment(3, loc = -1,

scale = 2)

Out[28]: -13.0

In [29]: samples = norm.rvs(

size = 1000, loc = -1,

scale = 2)

In [30]: h = hist(samples,

bins = 41, normed = True)

8 6 4 2 0 2 4 6 8
0.00

0.05

0.10

0.15

0.20

0.25

In [31]: plot(x, norm.pdf(x,

loc = -1, scale = 2), ’r’,

linewidth = 2)

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 50 / 72

Setting the seed
Sometimes you need consistency in
your randomness:

Pseudo-random numbers are
generated from an initial ’seed’.

This seed generates the first
number, which is then used as
the seed for the second number.

If you need consistency in your
random numbers (for
debugging, for example), you
can set the seed explicitly so
that you get the same random
numbers every time.

Don’t do this for production!

In [24]:

In [24]: norm.rvs()

Out[24]: 1.74481176421648

In [25]: norm.rvs()

Out[25]: -0.7612069008951028

In [26]:

In [26]: numpy.random.seed(1)

In [27]: norm.rvs()

Out[27]: 1.6243453636632417

In [28]:

In [28]: numpy.random.seed(1)

In [29]: norm.rvs()

Out[29]: 1.6243453636632417

In [30]:

In [30]: random.seed(1)

In [31]: norm.rvs()

Out[31]: 1.6243453636632417

In [32]:

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 51 / 72

Statistics, a discrete example

In [32]:

from scipy.stats import

poisson

In [33]: x = arange(10)

In [34]: plot(x,

poisson.pmf(x, 4), ’o-’)

In [35]: plot(x,

poisson.cdf(x, 4)

In [36]: poisson.mean(4)

Out[36]: 4.0

In [37]: poisson.var(4)

Out[37]: 4.0

Note that discrete distributions have Probability Mass Functions (PMF)
instead of Probability Distribution Functions (PDF).

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 52 / 72

Statistics, a discrete example

In [32]: from scipy.stats import

poisson

In [33]:

x = arange(10)

In [34]: plot(x,

poisson.pmf(x, 4), ’o-’)

In [35]: plot(x,

poisson.cdf(x, 4)

In [36]: poisson.mean(4)

Out[36]: 4.0

In [37]: poisson.var(4)

Out[37]: 4.0

Note that discrete distributions have Probability Mass Functions (PMF)
instead of Probability Distribution Functions (PDF).

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 52 / 72

Statistics, a discrete example

In [32]: from scipy.stats import

poisson

In [33]: x = arange(10)

In [34]:

plot(x,

poisson.pmf(x, 4), ’o-’)

In [35]: plot(x,

poisson.cdf(x, 4)

In [36]: poisson.mean(4)

Out[36]: 4.0

In [37]: poisson.var(4)

Out[37]: 4.0

Note that discrete distributions have Probability Mass Functions (PMF)
instead of Probability Distribution Functions (PDF).

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 52 / 72

Statistics, a discrete example

In [32]: from scipy.stats import

poisson

In [33]: x = arange(10)

In [34]: plot(x,

poisson.pmf(x, 4), ’o-’)

In [35]:

plot(x,

poisson.cdf(x, 4)

In [36]: poisson.mean(4)

Out[36]: 4.0

In [37]: poisson.var(4)

Out[37]: 4.0

0 1 2 3 4 5 6 7 8 90.00

0.05

0.10

0.15

0.20

Note that discrete distributions have Probability Mass Functions (PMF)
instead of Probability Distribution Functions (PDF).

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 52 / 72

Statistics, a discrete example

In [32]: from scipy.stats import

poisson

In [33]: x = arange(10)

In [34]: plot(x,

poisson.pmf(x, 4), ’o-’)

In [35]: plot(x,

poisson.cdf(x, 4)

In [36]:

poisson.mean(4)

Out[36]: 4.0

In [37]: poisson.var(4)

Out[37]: 4.0

0 1 2 3 4 5 6 7 8 90.0

0.2

0.4

0.6

0.8

1.0

Note that discrete distributions have Probability Mass Functions (PMF)
instead of Probability Distribution Functions (PDF).

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 52 / 72

Statistics, a discrete example

In [32]: from scipy.stats import

poisson

In [33]: x = arange(10)

In [34]: plot(x,

poisson.pmf(x, 4), ’o-’)

In [35]: plot(x,

poisson.cdf(x, 4)

In [36]: poisson.mean(4)

Out[36]: 4.0

In [37]:

poisson.var(4)

Out[37]: 4.0

0 1 2 3 4 5 6 7 8 90.0

0.2

0.4

0.6

0.8

1.0

Note that discrete distributions have Probability Mass Functions (PMF)
instead of Probability Distribution Functions (PDF).

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 52 / 72

Statistics, a discrete example

In [32]: from scipy.stats import

poisson

In [33]: x = arange(10)

In [34]: plot(x,

poisson.pmf(x, 4), ’o-’)

In [35]: plot(x,

poisson.cdf(x, 4)

In [36]: poisson.mean(4)

Out[36]: 4.0

In [37]: poisson.var(4)

Out[37]: 4.0
0 1 2 3 4 5 6 7 8 90.0

0.2

0.4

0.6

0.8

1.0

Note that discrete distributions have Probability Mass Functions (PMF)
instead of Probability Distribution Functions (PDF).

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 52 / 72

Polynomial fitting

In [38]:

from numpy import arange, zeros

polyfit, polyval, random

In [39]: x = arange(50.)

In [40]: y = x + 50.0 * random.rand(50)

In [41]: plot(x, y, ’o’)

In [42]: fit = polyfit(x, y, 1)

In [43]: fit

Out[43]: array([1.007358, 20.6469503])

In [44]: plot(x, polyval(fit, x))

In [45]: fit = polyfit(x, y, 2)

In [46]: fit

Out[46]: array([-0.02520835,

2.24256777, 10.76527546])

In [47]: plot(x, polyval(fit, x))

In [48]:

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 53 / 72

Polynomial fitting

In [38]: from numpy import arange, zeros

polyfit, polyval, random

In [39]:

x = arange(50.)

In [40]: y = x + 50.0 * random.rand(50)

In [41]: plot(x, y, ’o’)

In [42]: fit = polyfit(x, y, 1)

In [43]: fit

Out[43]: array([1.007358, 20.6469503])

In [44]: plot(x, polyval(fit, x))

In [45]: fit = polyfit(x, y, 2)

In [46]: fit

Out[46]: array([-0.02520835,

2.24256777, 10.76527546])

In [47]: plot(x, polyval(fit, x))

In [48]:

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 53 / 72

Polynomial fitting

In [38]: from numpy import arange, zeros

polyfit, polyval, random

In [39]: x = arange(50.)

In [40]:

y = x + 50.0 * random.rand(50)

In [41]: plot(x, y, ’o’)

In [42]: fit = polyfit(x, y, 1)

In [43]: fit

Out[43]: array([1.007358, 20.6469503])

In [44]: plot(x, polyval(fit, x))

In [45]: fit = polyfit(x, y, 2)

In [46]: fit

Out[46]: array([-0.02520835,

2.24256777, 10.76527546])

In [47]: plot(x, polyval(fit, x))

In [48]:

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 53 / 72

Polynomial fitting

In [38]: from numpy import arange, zeros

polyfit, polyval, random

In [39]: x = arange(50.)

In [40]: y = x + 50.0 * random.rand(50)

In [41]:

plot(x, y, ’o’)

In [42]: fit = polyfit(x, y, 1)

In [43]: fit

Out[43]: array([1.007358, 20.6469503])

In [44]: plot(x, polyval(fit, x))

In [45]: fit = polyfit(x, y, 2)

In [46]: fit

Out[46]: array([-0.02520835,

2.24256777, 10.76527546])

In [47]: plot(x, polyval(fit, x))

In [48]:

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 53 / 72

Polynomial fitting

In [38]: from numpy import arange, zeros

polyfit, polyval, random

In [39]: x = arange(50.)

In [40]: y = x + 50.0 * random.rand(50)

In [41]: plot(x, y, ’o’)

In [42]:

fit = polyfit(x, y, 1)

In [43]: fit

Out[43]: array([1.007358, 20.6469503])

In [44]: plot(x, polyval(fit, x))

In [45]: fit = polyfit(x, y, 2)

In [46]: fit

Out[46]: array([-0.02520835,

2.24256777, 10.76527546])

In [47]: plot(x, polyval(fit, x))

In [48]:

0 10 20 30 40 500

10

20

30

40

50

60

70

80

90

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 53 / 72

Polynomial fitting

In [38]: from numpy import arange, zeros

polyfit, polyval, random

In [39]: x = arange(50.)

In [40]: y = x + 50.0 * random.rand(50)

In [41]: plot(x, y, ’o’)

In [42]: fit = polyfit(x, y, 1)

In [43]:

fit

Out[43]: array([1.007358, 20.6469503])

In [44]: plot(x, polyval(fit, x))

In [45]: fit = polyfit(x, y, 2)

In [46]: fit

Out[46]: array([-0.02520835,

2.24256777, 10.76527546])

In [47]: plot(x, polyval(fit, x))

In [48]:

0 10 20 30 40 500

10

20

30

40

50

60

70

80

90

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 53 / 72

Polynomial fitting

In [38]: from numpy import arange, zeros

polyfit, polyval, random

In [39]: x = arange(50.)

In [40]: y = x + 50.0 * random.rand(50)

In [41]: plot(x, y, ’o’)

In [42]: fit = polyfit(x, y, 1)

In [43]: fit

Out[43]: array([1.007358, 20.6469503])

In [44]:

plot(x, polyval(fit, x))

In [45]: fit = polyfit(x, y, 2)

In [46]: fit

Out[46]: array([-0.02520835,

2.24256777, 10.76527546])

In [47]: plot(x, polyval(fit, x))

In [48]:

0 10 20 30 40 500

10

20

30

40

50

60

70

80

90

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 53 / 72

Polynomial fitting

In [38]: from numpy import arange, zeros

polyfit, polyval, random

In [39]: x = arange(50.)

In [40]: y = x + 50.0 * random.rand(50)

In [41]: plot(x, y, ’o’)

In [42]: fit = polyfit(x, y, 1)

In [43]: fit

Out[43]: array([1.007358, 20.6469503])

In [44]: plot(x, polyval(fit, x))

In [45]:

fit = polyfit(x, y, 2)

In [46]: fit

Out[46]: array([-0.02520835,

2.24256777, 10.76527546])

In [47]: plot(x, polyval(fit, x))

In [48]:

0 10 20 30 40 500

10

20

30

40

50

60

70

80

90

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 53 / 72

Polynomial fitting

In [38]: from numpy import arange, zeros

polyfit, polyval, random

In [39]: x = arange(50.)

In [40]: y = x + 50.0 * random.rand(50)

In [41]: plot(x, y, ’o’)

In [42]: fit = polyfit(x, y, 1)

In [43]: fit

Out[43]: array([1.007358, 20.6469503])

In [44]: plot(x, polyval(fit, x))

In [45]: fit = polyfit(x, y, 2)

In [46]:

fit

Out[46]: array([-0.02520835,

2.24256777, 10.76527546])

In [47]: plot(x, polyval(fit, x))

In [48]:

0 10 20 30 40 500

10

20

30

40

50

60

70

80

90

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 53 / 72

Polynomial fitting

In [38]: from numpy import arange, zeros

polyfit, polyval, random

In [39]: x = arange(50.)

In [40]: y = x + 50.0 * random.rand(50)

In [41]: plot(x, y, ’o’)

In [42]: fit = polyfit(x, y, 1)

In [43]: fit

Out[43]: array([1.007358, 20.6469503])

In [44]: plot(x, polyval(fit, x))

In [45]: fit = polyfit(x, y, 2)

In [46]: fit

Out[46]: array([-0.02520835,

2.24256777, 10.76527546])

In [47]:

plot(x, polyval(fit, x))

In [48]:

0 10 20 30 40 500

10

20

30

40

50

60

70

80

90

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 53 / 72

Polynomial fitting

In [38]: from numpy import arange, zeros

polyfit, polyval, random

In [39]: x = arange(50.)

In [40]: y = x + 50.0 * random.rand(50)

In [41]: plot(x, y, ’o’)

In [42]: fit = polyfit(x, y, 1)

In [43]: fit

Out[43]: array([1.007358, 20.6469503])

In [44]: plot(x, polyval(fit, x))

In [45]: fit = polyfit(x, y, 2)

In [46]: fit

Out[46]: array([-0.02520835,

2.24256777, 10.76527546])

In [47]: plot(x, polyval(fit, x))

In [48]:

0 10 20 30 40 500

10

20

30

40

50

60

70

80

90

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 53 / 72

Dealing with inhomogeneous data

Not all data comes in an array format.

Some data is organized more like an Excel file (tabular format) than
as a numeric array.

This means there are usually ’headers’ (column titles), and sometimes
indexes (row numbers).

Generally speaking, the data contains a mixture of datatypes (strings,
floats, integers, booleans), not just a single type.

The data is commonly stored several different formats. We will touch
on the CSV (”Comma Separated Values”).

For this we will use the Python ’pandas’ package, which allows us to use
data frames (very similar to data frames in R).

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 54 / 72

Working with data frames

In [48]: import pandas as pd

In [49]: df = pd.read csv("http://www.scinethpc.ca/~ejspence/311-reqs.csv")

In [50]:

In [50]: df.shape

Out[50]: (10000, 52)

In [51]:

In [51]: df.columns

Index([u’Unique Key’, u’Created Date’, u’Closed Date’, u’Agency’,

.

.

.

u’Ferry Direction’, u’Ferry Terminal Name’, u’Latitude’, u’Longitude’,

u’Location’], dtype=’object’)

In [52]:

The data have been cast into a ’DataFrame’ type, which is the type used
by pandas.

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 55 / 72

http://www.scinethpc.ca/~ejspence/311-reqs.csv

Working with data frames, continued

In [52]:

In [52]: df.values[0]

array([26589651, ’10/31/2013 02:08:41 AM’, nan, ’NYPD’, ’New York

City Police Department’, ’Noise - Street/Sidewalk’, ’Loud Talking’,

’Street/Sidewalk’, 11432.0, ’90-03 169 STREET’, ’169 STREET’, ’90 AVENUE’,

’91 AVENUE’, nan, nan, ’ADDRESS’, ’JAMAICA’, nan, ’Precinct’, ’Assigned’,

’10/31/2013 10:08:41 AM’, ’10/31/2013 02:35:17 AM’, ’12 QUEENS’, ’QUEENS’,

1042027.0, 197389.0, ’Unspecified’, ’QUEENS’, ’Unspecified’, ’Unspecified’,

’Unspecified’, ’Unspecified’, ’Unspecified’, ’Unspecified’, ’Unspecified’,

’Unspecified’, ’Unspecified’, ’N’, nan, nan, nan, nan, nan, nan, nan, nan,

nan, nan, nan, 40.70827532593202, -73.79160395779721, ’(40.70827532593202,

-73.79160395779721)’], dtype=object)

In [53]:

Specifying the index gives us all the values in that row.

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 56 / 72

Noise-complaint data
Suppose we’re only interested in the noise-complaint data.

In [53]: noise = df[df["Complaint Type"] == "Noise - Street/Sidewalk"]

In [54]: noise[0:3]

Out[54]:
Unique Key Created Date Closed Date Agency \

0 26589651 10/31/2013 02:08:41 AM NaN NYPD

16 26594086 10/31/2013 12:54:03 AM 10/31/2013 02:16:39 AM NYPD

25 26591573 10/31/2013 12:35:18 AM 10/31/2013 02:41:35 AM NYPD

Agency Name Complaint Type

0 New York City Police Department Noise - Street/Sidewalk ...

16 New York City Police Department Noise - Street/Sidewalk

25 New York City Police Department Noise - Street/Sidewalk

.

.

.

In [55]: noise.shape

(71, 52)

This picks out all ”Noise - Street/Sidewalk” complaints.

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 57 / 72

Who complains the most?

So which borough is responsible for the most complaints?

In [56]:

In [56]: noise["Borough"].value counts()

MANHATTAN 34

BROOKLYN 14

BRONX 14

QUEENS 6

STATEN ISLAND 3

dtype: int64

In [57]:

In [57]: noise["Borough"].value counts().plot(kind = "bar")

In [58]:

Manhattan!

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 58 / 72

Who complains the most?

M
A

N
H

A
T
T
A

N

B
R

O
O

K
LY

N

B
R

O
N

X

Q
U

E
E
N

S

S
T
A

T
E
N

 I
S
LA

N
D

0

5

10

15

20

25

30

35

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 59 / 72

Pop quiz!

Which borough submits the largest fraction of complaints, overall?

In [58]:

In [58]: total = df.shape[0]

In [59]:

In [59]: df["Borough"].value counts() / total

Out[59]:
BROOKLYN 0.2984

QUEENS 0.2114

MANHATTAN 0.2040

BRONX 0.1766

Unspecified 0.0693

STATEN ISLAND 0.0403

dtype: float64

In [60]:

Brooklyn!

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 60 / 72

Pop quiz!

Which borough submits the largest fraction of complaints, overall?

In [60]:

In [60]: total = df.shape[0]

In [61]:

In [61]: df["Borough"].value counts() / total

Out[61]:
BROOKLYN 0.2984

QUEENS 0.2114

MANHATTAN 0.2040

BRONX 0.1766

Unspecified 0.0693

STATEN ISLAND 0.0403

dtype: float64

In [62]:

Brooklyn!

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 60 / 72

A note on file formats

CSV (Comma Separated Value) – or any text-based format – is the worst
possible format for quantitative data. It manages the trifecta of being:

Slow to read.

Huge in size.

Inaccurate.

Converting floating point numbers back and forth between internal
representations and strings is slow and prone to trunctation errors.

Use binary formats whenever possible. Python has a few built-in formats
that we’ll look at. Portable formats like HDF5 (for data frames) or
NetCDF4 (for matrices and arrays) are compact, accurate, fast (though
not as fast as the built-in Python formats), portable, and can be read by
tools other than Python.

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 61 / 72

Pickle

A flexible and useful Python
format, pickle:

Base64 encoding using
readable ASCII

Portable for the same version
of python.

In the pickle module.

Flexible, can serialize almost
any structure.

In [62]: import pickle

In [63]:

In [63]: a = zeros([1000, 1000])

In [64]:

In [64]: f = open(’a.pickle’, ’w’)

In [65]: pickle.dump(a, f)

In [66]: f.close()

In [67]:

In [67]: g = open(’a.pickle’, ’r’)

In [68]: b = pickle.load(g)

In [69]: g.close()

In [70]:

In [70]: b.shape

Out[70]: (1000, 1000)

In [71]:

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 62 / 72

Shelve

Shelve is built on top of pickle,
but has some advantages:

Your file handle is treated
like a dictionary.

As such, you can save as
many different pieces of data
as you like.

And you can search the file
for the data that you’re after.

Based on pickle, and thus
has restrictions based on
serialization.

In [71]: import shelve

In [72]:

In [72]: a = zeros([1000, 1000])

In [73]:

In [73]: f = shelve.open(’my.data’)

In [74]: f[’a’] = a

In [75]: f.close()

In [76]:

In [76]: g = shelve.open(’my.data’)

In [77]: g.keys()

Out[77]: [’a’]

In [78]: g[’a’].shape

Out[78]: (1000, 1000)

In [79]:

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 63 / 72

Pass by value or reference?
Does Python ”pass by value” or by ”pass by reference”? (These are also
sometimes called by ”call by value” and ”call by reference”.)

Meaning, if I call a function, f(x), what exactly is ’x’, when I get inside the
function?

In pass-by-value languages (R, C++, Java), the value of x is copied
and passed to the inside of the function. This can lead to memory
problems if x is large.

In pass-by-reference languages (Fortran), the memory-address of x is
passed to the inside of the function. As such, the function can modify
the value of the variable and those changes will persist after the
function is finished.

Which is Python? The answer is: technically neither.
See the next slide.

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 64 / 72

Pass by value or reference?
Does Python ”pass by value” or by ”pass by reference”? (These are also
sometimes called by ”call by value” and ”call by reference”.)

Meaning, if I call a function, f(x), what exactly is ’x’, when I get inside the
function?

In pass-by-value languages (R, C++, Java), the value of x is copied
and passed to the inside of the function. This can lead to memory
problems if x is large.

In pass-by-reference languages (Fortran), the memory-address of x is
passed to the inside of the function. As such, the function can modify
the value of the variable and those changes will persist after the
function is finished.

Which is Python? The answer is: technically neither.
See the next slide.

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 64 / 72

Pass by value or reference?
Does Python ”pass by value” or by ”pass by reference”? (These are also
sometimes called by ”call by value” and ”call by reference”.)

Meaning, if I call a function, f(x), what exactly is ’x’, when I get inside the
function?

In pass-by-value languages (R, C++, Java), the value of x is copied
and passed to the inside of the function. This can lead to memory
problems if x is large.

In pass-by-reference languages (Fortran), the memory-address of x is
passed to the inside of the function. As such, the function can modify
the value of the variable and those changes will persist after the
function is finished.

Which is Python? The answer is: technically neither.
See the next slide.

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 64 / 72

Pass by value or reference?
Does Python ”pass by value” or by ”pass by reference”? (These are also
sometimes called by ”call by value” and ”call by reference”.)

Meaning, if I call a function, f(x), what exactly is ’x’, when I get inside the
function?

In pass-by-value languages (R, C++, Java), the value of x is copied
and passed to the inside of the function. This can lead to memory
problems if x is large.

In pass-by-reference languages (Fortran), the memory-address of x is
passed to the inside of the function. As such, the function can modify
the value of the variable and those changes will persist after the
function is finished.

Which is Python? The answer is: technically neither.
See the next slide.

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 64 / 72

Copying array variables

Use caution when copying array
variables. There’s a ’feature’ here
that may be unexpected.

In [79]: a = 10

In [80]: b = a

In [81]: a = 20

In [82]: a, b

Out[82]: (20, 10)

In [83]: a = array([[1,2,3], [2,3,4]])

In [84]: b = a

In [85]: a[1,0] = -10

In [86]: a

Out[86]:
array([[1, 2, 3],

[-10, 3, 4]])

In [87]:

In [87]:

In [87]: b

Out[87]:
array([[1, 2, 3],

[-10, 3, 4]])

In [88]: b = a.copy()

In [89]: a[1,0] = 16

In [90]: a

Out[90]:
array([[1, 2, 3],

[16, 3, 4]])

In [91]: b

Out[91]:
array([[1, 2, 3],

[-10, 3, 4]])

In [92]:

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 65 / 72

Copying array variables, continued
What happened here?

Variables are all ”pointers”.
They point to the value in
memory (sort of).

Integers are ”immutable”,
which means their values
can’t be changed. When
”b = a; a = 20”, ’b’ points
to 10, and then ’a’ points
to a new integer, 20.

Arrays are ”mutable”,
meaning their values can
be changed. The pointers
’a’ and ’b’ both point to
the same object.

In [92]: a = 10

In [93]: b = a

In [94]: a = 20

In [95]: a, b

Out[95]: (20, 10)

In [96]: a = array([[1,2,3], [2,3,4]])

In [97]: b = a

In [98]: a[1,0] = -10

In [99]: a

Out[99]:
array([[1, 2, 3],

[-10, 3, 4]])

In [100]:

In [100]: b

Out[100]:
array([[1, 2, 3],

[-10, 3, 4]])

In [101]:

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 66 / 72

”Pass by object reference”
Technically, Python is ”pass by object reference” (also called ”call by
sharing”):

The inside of the function, f(x), (sort of) gets a copy of a pointer to
the object ’x’ (call the pointer ’y’).

If ’x’ is immutable (number, string, boolean, tuple, ...), meaning the
value can’t be changed, and our pointer ’y’ is reassigned within the
function, then

I a new object is created and ’y’ points to that.
I when the function exits ’y’ disappears, and nothing changes outside the

function.

if ’x’ is mutable (list, array, dictionary, ...), and our pointer ’y’
changes what it points to (assignment, append, expansion, whatever),
then ’x’ itself is also modified.

For most intents and purposes, you should think of Python as
pass-by-reference.

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 67 / 72

Loop indices
Which is faster? Why?

Python is row major. This means
that, in memory, the array is stored
in blocks of constant row. We’ve
seen this on previous slides when we
declare an array:

In [101]: a = array([[1,2,3], [2,3,4]])

In [102]: a

Out[102]:
array([[1, 2, 3],

[2, 3, 4]])

mylooper1.py

from numpy import zeros

a = zeros([20000, 20000])

for i in xrange(20000):

for j in xrange(20000):

a[i,j] = i + j

mylooper2.py

from numpy import zeros

a = zeros([20000, 20000])

for j in xrange(20000):

for i in xrange(20000):

a[i,j] = i + j

Always, always loop over the right-most index on the inner-most loop.
These array elements will closest together in memory, and thus
will be accessed faster within the loop.

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 68 / 72

Loop indices
Which is faster? Why?

Python is row major. This means
that, in memory, the array is stored
in blocks of constant row. We’ve
seen this on previous slides when we
declare an array:

In [101]: a = array([[1,2,3], [2,3,4]])

In [102]: a

Out[102]:
array([[1, 2, 3],

[2, 3, 4]])

mylooper1.py

from numpy import zeros

a = zeros([20000, 20000])

for i in xrange(20000):

for j in xrange(20000):

a[i,j] = i + j

mylooper2.py

from numpy import zeros

a = zeros([20000, 20000])

for j in xrange(20000):

for i in xrange(20000):

a[i,j] = i + j

Always, always loop over the right-most index on the inner-most loop.
These array elements will closest together in memory, and thus
will be accessed faster within the loop.

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 68 / 72

Iterators and generators

Why did I use ”xrange” instead of
”range”? What’s the difference?

”xrange” is like an ”iterator”. It only
returns values on demand.

”range” returns a list, which requires
all the memory up front.

mylooper1.py

from numpy import zeros

a = zeros([20000, 20000])

for i in xrange(20000):

for j in xrange(20000):

a[i,j] = i + j

In [101]:

xrange(int(1e10))

Out[101]: xrange(10000000000)

In [102]: range(int(1e10))

--

MemoryError Traceback (most recent call last)

<ipython-input-19-2db10653fd33> in <module>()

----> 1 range(int(1e10))

MemoryError:

In [103]:

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 69 / 72

Iterators and generators

Why did I use ”xrange” instead of
”range”? What’s the difference?

”xrange” is like an ”iterator”. It only
returns values on demand.

”range” returns a list, which requires
all the memory up front.

mylooper1.py

from numpy import zeros

a = zeros([20000, 20000])

for i in xrange(20000):

for j in xrange(20000):

a[i,j] = i + j

In [101]: xrange(int(1e10))

Out[101]: xrange(10000000000)

In [102]:

range(int(1e10))

--

MemoryError Traceback (most recent call last)

<ipython-input-19-2db10653fd33> in <module>()

----> 1 range(int(1e10))

MemoryError:

In [103]:

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 69 / 72

Iterators and generators

Why did I use ”xrange” instead of
”range”? What’s the difference?

”xrange” is like an ”iterator”. It only
returns values on demand.

”range” returns a list, which requires
all the memory up front.

mylooper1.py

from numpy import zeros

a = zeros([20000, 20000])

for i in xrange(20000):

for j in xrange(20000):

a[i,j] = i + j

In [101]: xrange(int(1e10))

Out[101]: xrange(10000000000)

In [102]: range(int(1e10))

--

MemoryError Traceback (most recent call last)

<ipython-input-19-2db10653fd33> in <module>()

----> 1 range(int(1e10))

MemoryError:

In [103]:

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 69 / 72

Building your own generators

If you create a function which returns a
list or array, it may be in your best
(memory) interest to create a
”generator” function:

A generator function is ’lazily’
evaluated: values are only calculated
and returned when needed.

More importantly: values are thrown
away when they’re no longer needed.

This saves alot of memory.

To create a generator function, use
the ’yield’ command to return just
the single element that your want
returned at each iteration.

mygen.py

def firstn1(n):

nums = [0]

for i in xrange(1,n):

temp = nums[-1]

nums.append(i + temp)

return nums

def firstn2(n):

temp = 0

for i in xrange(n):

temp += i

yield temp

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 70 / 72

Building your own generators, continued
In [103]: from mygen import firstn1,

firstn2

In [104]: firstn1(3)

Out[104]: [0, 1, 3]

In [105]:

In [105]: firstn2(3)

Out[105]: <generator object firstn2 at

0x7f53f52ac7d0>

In [106]: list(firstn2(3))

Out[106]: [0, 1, 3]

In [107]: for i in firstn2(3):

....: print i

0

1

3

In [107]:

mygen.py

def firstn1(n):

nums = [0]

for i in xrange(1,n):

temp = nums[-1]

nums.append(i + temp)

return nums

def firstn2(n):

temp = 0

for i in xrange(n):

temp += i

yield temp

Using ’list’ forces the generator to generate all the values, and defeats the
purpose of having a generator. This is for demonstration only.

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 71 / 72

Enough to get started

There’s obviously alot more to learn about using Python. Nonetheless, this
is enough to get you started.

We’ll discuss implementing Python functions in parallel this afternoon.

NumPy: http://wiki.scipy.org/Tentative_NumPy_Tutorial

SciPy:
http://docs.scipy.org/doc/scipy/reference/tutorial

Erik Spence (SciNet HPC Consortium) Python for Scientific Computing 13 July 2016 72 / 72

http://wiki.scipy.org/Tentative_NumPy_Tutorial
http://docs.scipy.org/doc/scipy/reference/tutorial

	Getting started
	About Python
	Python on SciNet

	Python data types
	Integers
	Floats
	Booleans

	Containers
	Lists
	Arrays
	Matrix arithmetic

	Plotting
	Basic plotting

	Statistics
	Normal distribution
	Poisson distribution

	Data frames
	Example

	Advanced topics
	Saving data
	Pass by what?
	Row major
	Iterators

