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Overview

• Introduction to GPU programming
• Introduction to CUDA
• CUDA example programs
• CUDA libraries
• OpenACC
• CUDA extensions to the C programming language
• Beyond the basics - initial discussion on optimizing 

CUDA
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Oak Ridge National Labs - operational in October 2012
18,688 Opteron 16-core CPUs
18,688 NVIDIA Tesla K20 GPUs
17.6 peta FLOPS

Fell to #2 on Nov. 2013 list, beat by Intel Phi system

#1 system on Fall 2012 TOP500 list - Titan
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before 2003 - Calculations on GPU, using graphics API
2003 - Brook “C with streams”
2005 - Steady increase in CPU clock speed comes to 
a halt, switch to multicore chips to compensate. At the
same time, computational power of GPUs increases
November, 2006 - CUDA released by NVIDIA
November, 2006 - CTM (Close to Metal) from ATI
December 2007 - Succeeded by AMD Stream SDK
December, 2008  - Technical specification for OpenCL1.0 released
April, 2009 - First OpenCL 1.0 GPU drivers released by NVIDIA
August, 2009 - Mac OS X 10.6 Snow Leopard released, with OpenCL 1.0 included
September 2009 - Public release of OpenCL by NVIDIA
December 2009 - AMD release of ATI Stream SDK 2.0 with OpenCL support
March 2010 - CUDA 3.0 released, incorporating OpenCL
May 2011 - CUDA 4.0 released, better multi-GPU support
mid-2012 - CUDA 5.0
late-2012 - NVIDIA K20 Kepler cards
Future - CPUs will have so many cores they will start to be treated as GPUs?  
Accelerators become universal?

GPU computing timeline
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Introduction to GPU programming

• A graphics processing unit (GPU) is 
a processor whose main job is to 
accelerate the rendering of 3D 
graphics primitives.  Performance 
gains were mostly high performance 
computer gaming market 

 GPU makers have realized that with relatively little additional 
silicon a GPU can be made into a general purpose computer.  
They have added this functionality to increase the appeal of 
cards.

 Even computer games now increasingly take advantage of 
general compute for game physics simulation
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A brief tour of graphics programming
• 2D textures are wrapped around 3D 

meshes to assign colour to individual 
pixels on screen

• Lighting and shadow are applied to 
bring out 3D features

• Shaders allow programmers to define 
custom shadow and lighting 
techniques
– can also combine multiple textures in 

interesting ways

• Resulting pixels get sent to a frame 
buffer for display on the monitor
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Introduction to GPGPU (cont.)

• This was cool for a while, but because all computations 
occurred within the graphics pipeline, there were limitations:
– limited inputs/outputs
– limited data types, graphics-specific semantics
– memory and processor optimized for short vectors, 2D textures
– lack of communication or synchronization between “threads”
– no writes to random memory locations (scatter)
– no in-out textures (had to ping-pong in multi-pass algorithms)
– graphics API overhead
– graphics API learning curve
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General computing APIs for GPUs
• NVIDIA offers CUDA while AMD has moved toward OpenCL (also 

supported by NVIDIA)

• These computing platforms bypass the graphics pipeline and expose the raw 
computational capabilities of the hardware.  Programmer needs to know 
nothing about graphics programming.

• OpenACC compiler directive approach is emerging as an alternative (works 
somewhat like OpenMP)

• More recent and less developed alternative to CUDA:  OpenCL
– a vendor-agnostic computing platform
– supports vendor-specific extensions akin to OpenGL
– goal is to support a range of hardware architectures including GPUs, CPUs, Cell 

processors, Larrabee and DSPs using a standard low-level API
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The appeal of GPGPU

• “Supercomputing for the masses”
– significant computational horsepower at an attractive price point
– readily accessible hardware

• Scalability
– programs can execute without modification on a run-of-the-mill 

PC with a $150 graphics card or a dedicated multi-card 
supercomputer worth thousands of dollars

• Bright future – the computational capability of GPUs 
doubles each year
– more thread processors, faster clocks, faster DRAM, …
– “GPUs are getting faster, faster”



Summer School 2014 Pawel Pomorski

Comparing GPUs and CPUs

• CPU
– “Jack of all trades”
– task parallelism (diverse tasks)
– minimize latency
– multithreaded
– some SIMD

• GPU
– excel at number crunching
– data parallelism (single task)
– maximize throughput
– super-threaded
– large-scale SIMD
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Stream computing

• A parallel processing model where a computational kernel 
is applied to a set of data (a stream)
– the kernel is applied to stream elements in parallel

• GPUs excel at this thanks to a large number of processing 
units and a parallel architecture

8-%>()$5&)C6-*+'$
•  1$C(%(BB>B$C%&5>??*+'$)&3>B$,.>%>$($5&)C6-(-*&+(B$
-).*)/$*?$(CCB*>3$-&$($?>-$&A$3(-($S($01.)23T$
–  -.>$W>%+>B$*?$(CCB*>3$-&$?-%>()$>B>)>+-?$*+$C(%(BB>B$

•  !"#?$>L5>B$(-$-.*?$-.(+W?$-&$($B(%'>$+6)G>%$&A$
C%&5>??*+'$6+*-?$(+3$($C(%(BB>B$(%5.*->5-6%>$

86))>%$85.&&B$OPQP 0R$45/(6'.(+ 

`$ Q$ V$ c$ O$ V$ d$ e$ e$ V$ f$ `$

!" #" $" %" &" $" '" (" (" $" )" !"

F,+.,/$

G.7;($1(+,*5$

H;(7;($1(+,*5$



Summer School 2014 Pawel Pomorski

Beyond stream computing

• Current GPUs offer functionality that goes beyond 
mere stream computing

• Shared memory and thread synchronization primitives 
eliminate the need for data independence

• Gather and scatter operations allow kernels to read 
and write data at arbitrary locations
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CUDA

• “Compute Unified Device Architecture

• A platform that exposes NVIDIA GPUs as 
general purpose compute devices

• Is CUDA considered GPGPU?
– yes and no

• CUDA can execute on devices with no graphics 
output capabilities (the NVIDIA Tesla product line) 
– these are not “GPUs”, per se

• however, if you are using CUDA to run some 
generic algorithms on your graphics card, you are 
indeed performing some General Purpose 
computation on your Graphics Processing Unit…
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What is CUDA used for?

• CUDA has been used in many different areas
– options pricing in finance
– electromagnetic simulations
– fluid dynamics
– GIS
– geophysical data processing
– 3D visualization solutions
– …

• See http://www.nvidia.com/object/cuda_home_new.htm
– long list of projects and speedups achieved

http://www.nvidia.com/object/cuda_home_new.htm
http://www.nvidia.com/object/cuda_home_new.htm
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Speedup

• What kind of speedup can I expect?
– 0x – 2000x reported
– 10x – considered typical (vs. multi-CPU machines)
– >= 30x considered worthwhile

• Speedup depends on
– problem structure

• need many identical independent calculations
• preferably sequential memory access

– level of intimacy with hardware
– time investment
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How to get running on the GPU?
• Easiest case: the package you are using already has a GPU-

accelerated version.  No programming needed.
• Medium case: your program spends most of its time in library 

routines which have GPU accelerated versions.  Use libraries 
that take advantage of GPU acceleration.  Small programming 
effort required. 

• Hard case: You cannot take advantage of the easier two 
possibilities, so you must convert some of your code to CUDA 
or OpenCL

• Newly available OpenACC framework is an alternative that 
should make coding easier.
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GPU-enabled software
• A growing number of popular scientific software packages have 

now been accelerated for the GPU
• Using a GPU accelerated package requires no programming 

effort for the user
• Acceleration of Molecular Dynamics software has been 

particularly successful, with all major packages offering the 
GPU acceleration option
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NAMD
• http://www.ks.uiuc.edu/Research/namd/
• NAMD = Not (just)Another Molecular Dynamics program
• Free and open source 
• Written using Charm++ parallel programming model
• Noted for its parallel efficiency

http://www.ks.uiuc.edu/Research/namd/
http://www.ks.uiuc.edu/Research/namd/


Summer School 2014 Pawel Pomorski

NAMD performance on monk
• apoa1 standard NAMD benchmark, 92224 atoms simulated for 

500 time steps, wall time in seconds:

#threads no GPU 1 GPU 2 GPU

1 867.3 76.9 76.6

2 440.5 45.7 43.2

4 223.0 40.4 28.6

8 113.7 39.3 23.7
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NAMD performance on monk
• apoa1 standard NAMD benchmark, 92224 atoms simulated for 

500 time steps, speedup over 1 thread/no GPU:

• Speedup over 8-core/no GPU:  2.9 with 1 GPU, 4.8 with 2
• Most efficient: 2 runs of 4 core/1 GPU, speedup 2*21.5=43.0

#threads no GPU 1 GPU 2 GPU

1 1.0 11.3 11.3

2 2.0 19.0 20.1

4 3.9 21.5 30.3

8 7.7 22.1 36.6
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NAMD performance on monk
• bpti6 standard NAMD demo, 1101 atoms simulated for 21,000 

time steps, wall time in seconds:

• For smaller system GPU acceleration is less useful.
• Performance depends on system size!

#threads no GPU 1 GPU 2 GPU

1 202.6 48.9 48.7

2 107.4 33.8 31.7

4 56.2 31.7 28.4

8 30.8 34.6 29.1
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NAMD performance on monk
• bpti6 standard NAMD demo, 1101 atoms simulated for 21,000 

time steps, speedup over 1 thread/no GPU:

#threads no GPU 1 GPU 2 GPU

1 1.0 4.1 4.2

2 1.9 6.0 6.4

4 3.6 6.4 7.1

8 6.6 5.9 7.0
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Tesla M2070 ($1000+) vs GTX 570 ($300)
• apoa1 standard NAMD benchmark, 92224 atoms simulated for 

500 time steps, wall time in seconds:

#threads no GPU M2070 GTX 570

1 867.3 76.9 73.2

2 440.5 45.7 38.4

4 223.0 40.4 33.3

8 113.7 39.3 32.8
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CUDA programming model

• The main CPU is referred to as the host

• The compute device is viewed as a coprocessor capable of 
executing a large number of lightweight threads in parallel

• Computation on the device is performed by kernels, functions 
executed in parallel on each data element

• Both the host and the device have their own memory
– the host and device cannot directly access each other’s memory, but 

data can be transferred using the runtime API

• The host manages all memory allocations on the device, data 
transfers, and the invocation of kernels on the device
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GPU applications

• The GPU can be utilized in different capacities

• One is to use the GPU as a massively parallel coprocessor 
for number crunching applications
– upload data and kernel to GPU
– execute kernel
– download results
– CPU and GPU can execute asynchronously

• Some applications use the GPU for both data crunching 
and visualization
– CUDA has bindings for OpenGL and Direct3D
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GPU as coprocessor

• Basic paradigm
– host uploads inputs to device
– host remains busy while device performs computation

• prepare next batch of data, process previous results, etc.
– host downloads results

• Can be iterative or multi-stage

Kernel execution is
asynchronous

Asynchronous memory
transfers also available
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Simulation + visualization

• Basic paradigm
– host uploads inputs to device
– host may remain busy while device performs computation

• prepare next batch of data, etc.
– results used on device for rendering, no download to host
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Simulation + visualization (cont.)

N-Body Demo

Fluids Demo
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SHARCNET GPU systems
• Always check our software page for latest info!  See also:

https://www.sharcnet.ca/help/index.php/GPU_Accelerated_Computing

• angel.sharcnet.ca

11 NVIDIA Tesla S1070 GPU servers

each with 4 GPUs + 16GB of global memory

each GPU server connected to two compute nodes (2 4-core Xeon CPUs + 8GB RAM each)

1 GPU per quad-core CPU; 1:1 memory ratio between GPUs/CPUs

• visualization workstations

Some old and don’t support CUDA, but some have up to date cards, check list at:

https://www.sharcnet.ca/my/systems/index
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2012 arrival - “monk” cluster

• 54 nodes, InfiniBand interconnect, 80 Tb storage
• Node: 

8 x CPU cores (Intel Xeon 2.26 GHz) 
48 GB memory
2 x M2070 GPU cards

• Nvidia Tesla M2070 GPU
“Fermi” architecture
ECC memory protection
L1 and L2 caches
2.0 Compute Capability
448 CUDA cores
515 Gigaflops (DP)
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CUDA versions installed
• Different versions of CUDA available - choose one via modules

– on monk latest CUDA installed in /opt/sharcnet/cuda/5.0.35/

– sample projects in /opt/sharcnet/cuda/5.0.35/samples
• copy to your work space (e.g. /work/username/cuda_sdk) & compile following instructions on the 

software page 

https://www.sharcnet.ca/help/index.php/CUDA

Development node: mon54 for interactive use, plus viz stations

https://www.sharcnet.ca/my/software/show/85
https://www.sharcnet.ca/my/software/show/85
https://www.sharcnet.ca/my/software/show/85
https://www.sharcnet.ca/my/software/show/85
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Output of device diagnostic program

   ...

   [ppomorsk@mon54:~/CUDA_day1/device_diagnostic] ./device_diagnostic.x 
found 2 CUDA devices
   --- General Information for device 0 ---
Name:  Tesla M2070
Compute capability:  2.0
Clock rate:  1147000
Device copy overlap:  Enabled
Kernel execution timeout :  Disabled
   --- Memory Information for device 0 ---
Total global mem:  5636554752
Total constant Mem:  65536
Max mem pitch:  2147483647
Texture Alignment:  512
   --- MP Information for device 0 ---
Multiprocessor count:  14
Shared mem per mp:  49152
Registers per mp:  32768
Threads in warp:  32
Max threads per block:  1024
Max thread dimensions:  (1024, 1024, 64)
Max grid dimensions:  (65535, 65535, 65535)

   --- General Information for device 1 ---
Name:  Tesla M2070
...
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Submitting GPU jobs
• See GPU Accelerated Computing article on training wiki for 

maximum detail
– note: queue details (mpi vs. gpu – test queue oddities)

– To submit a job to gpu queue on angel
sqsub –q qpu --gpp=1 –n 1 –o out.txt –r 5m ./a.out
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Thread batching

• To take advantage of the multiple multiprocessors, 
kernels are executed as a grid of threaded blocks

• All threads in a thread block are executed by a single 
multiprocessor

• The resources of a multiprocessor are divided among 
the threads in a block (registers, shared memory, etc.)
– this has several important implications that will be discussed 

later
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Hardware basics

• The compute device is composed of a number of 
multiprocessors, each of which contains a number of 
SIMD processors
– Tesla M2070 has 14 multiprocessors (each with 32 CUDA cores)

• A multiprocessor can execute K threads in parallel 
physically, where K is called the warp size
– thread = instance of kernel
– warp size on current hardware is 32 threads

• Each multiprocessor contains a large number of 32-bit 
registers which are divided among the active threads
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GPU Hardware architecture - NVIDIA Fermi

 

   

Looking Beyond Graphics
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Figure 3 shows a Fermi streaming multiprocessor with 32 CUDA cores and additional elements. This 

diagram explains why CUDA cores can get by without their own register files, caches, or load/store 

units — those resources are shared among all 32 CUDA cores in a streaming multiprocessor. Those 32 
cores are designed to work in parallel on 32 instructions at a time from a bundle of 32 threads, which 

NVIDIA calls a “warp.” (This organization has implications for the CUDA programming model, as we’ll 

explain below.) 













 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



















































 

Figure 3. Streaming-multiprocessor block diagram. In the Fermi architecture, each streaming 

multiprocessor has 32 CUDA cores — four times as many as the previous GT200 and G80 

architectures. All 32 cores share the resources of their streaming multiprocessor, such as 

registers, caches, local memory, and load/store units. The “special function units” (SFUs) 

handle complex math operations, such as square roots, reciprocals, sines, and cosines. 

 

 

   

Looking Beyond Graphics
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Another shared resource in a streaming multiprocessor is a new load/store unit, which can execute 16 

load or store operations per clock cycle. It does even better when using a special “uniform cache,” seen 

at the bottom of Figure 3. Matrix-math operations often load scalar values from sequential addresses 
belonging to a particular thread, and they also load a common value shared among all threads in a 

warp. In those cases, a streaming multiprocessor can load two operands per cycle. 

Figure 5 is the highest-level view of the Fermi architecture. All 16 streaming multiprocessors — each 

with 32 CUDA cores — share a 768KB unified L2 cache. By the standards of modern general-purpose 
CPUs, this cache is relatively small, but previous CUDA architectures had no L2 cache at all. Fermi 

maintains cache coherency for all the streaming multiprocessors sharing the L2 cache. 

 

Figure 5. Fermi architecture block diagram. This top-level view of the architecture shows the 16 

streaming multiprocessors, the six 64-bit DRAM interfaces, the host interface (PCI Express), 

and the GigaThread hardware thread scheduler. This improved scheduler manages thousands 

of simultaneous threads and switches contexts between graphics and compute applications 

in as little as 25 microseconds — ten times faster than NVIDIA’s previous schedulers. 

(Switching among threads within a graphics or compute instruction stream requires only one 

clock cycle, but alternating between graphics and compute workloads takes longer, because 

the caches must be flushed and refilled.) 

 

Fermi’s Memory Hierarchy 

The memory hierarchy of a Fermi GPU is somewhat different than the better-known hierarchy for a 
general-purpose CPU. For one thing, a GPU has a large frame buffer — as much as a gigabyte of 
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Thread batching: 1D example=.%>(3$G(-5.*+'H$Q0$>L()CB>$
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Thread batching: 2D example

Grid

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)
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Thread batching (cont.)

• At runtime, a thread can determine the block that it 
belongs to, the block dimensions, and the thread index 
within the block

• These values can be used to compute indices into 
input and output arrays
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HELLO, CUDA!
Introduction to GPU Programming: CUDA
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Language and compiler

• CUDA provides a set of extensions to the C programming 
language
– new storage quantifiers, kernel invocation syntax, intrinsics, vector 

types, etc.

• CUDA source code saved in .cu files
– host and device code and coexist in the same file
– storage qualifiers determine type of code

• Compiled to object files using nvcc compiler
– object files contain executable host and device code

• Can be linked with object files generated by other C/C++ 
compilers
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• SAXPY (Scalar Alpha X Plus Y) is a common linear 
algebra operation.  It is a combination of scalar 
multiplication and vector addition:

y = α · x + y

– x and y are vectors, α is a scalar
– x and y can be arbitrarily large

SAXPY
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SAXPY: CPU version

• Here is SAXPY in vanilla C:

– the CPU processes vector components sequentially using a 
for loop

– note that vecY is an in-out parameter here

void saxpy_cpu(float *vecY, float *vecX, float alpha, int n)
{
     int i;

     for (i = 0; i < n; i++)
           vecY[i] = alpha * vecX[i] + vecY[i];
}
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SAXPY: CUDA version

• CUDA kernel function implementing SAXPY

• The __global__ qualifier identifies this function as a kernel 
that executes on the device

__global__ void saxpy_gpu(float *vecY, float *vecX, float alpha ,int n)
{
   int i;

   i = blockIdx.x * blockDim.x + threadIdx.x;
   if (i<n)
      vecY[i] = alpha * vecX[i] + vecY[i];
}
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SAXPY: CUDA version (cont.)

• blockIdx, blockDim and threadIdx are built-in 
variables that uniquely identify a thread’s position in the 
execution environment
– they are used to compute an offset into the data array

__global__ void saxpy_gpu(float *vecY, float *vecX, float alpha ,int n)
{
   int i;

   i = blockIdx.x * blockDim.x + threadIdx.x;
   if (i<n)
      vecY[i] = alpha * vecX[i] + vecY[i];
}
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SAXPY: CUDA version (cont.)

• The host specifies the number of blocks and block size during 
kernel invocation:

saxpy_gpu<<<numBlocks, blockSize>>>(y_d, x_d, alpha, n);

__global__ void saxpy_gpu(float *vecY, float *vecX, float alpha ,int n)
{
   int i;

   i = blockIdx.x * blockDim.x + threadIdx.x;
   if (i<n)
      vecY[i] = alpha * vecX[i] + vecY[i];
}
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Computing the index

...

...

vecX

vecY

blockIdx.x = 3
blockDim.x = 8
threadIdx.x = 5

Block 0 Block 1 Block 2 Block 3 Block 4

i = 3 * 8 + 5 = 29

   i = blockIdx.x * blockDim.x + threadIdx.x;
   if (i<n)
      vecY[i] = alpha * vecX[i] + vecY[i];
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Key differences

• No need to explicitly loop over array elements – each element is processed in a separate 
thread

• The element index is computed based on block index, block width and thread index within 
the block

void saxpy_cpu(float *vecY, float *vecX, float alpha, int n)
{
     int i;

     for (i = 0; i < n; i++)
           vecY[i] = alpha * vecX[i] + vecY[i];
}

__global__ void saxpy_gpu(float *vecY, float *vecX, float alpha ,int n)
{
   int i;

   i = blockIdx.x * blockDim.x + threadIdx.x;
   if (i<n)
      vecY[i] = alpha * vecX[i] + vecY[i];
}
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Key differences

• Could avoid testing whether i < n if we knew n is a multiple of block size (e.g. use 
padded arrays --- recall MPI_Scatter issues)

__global__ void saxpy_gpu(float *vecY, float *vecX, float alpha ,int n)
{
   int i;

   i = blockIdx.x * blockDim.x + threadIdx.x;
   if (i<n)
      vecY[i] = alpha * vecX[i] + vecY[i];
}

__global__ void saxpy_gpu(float *vecY, float *vecX, float alpha ,int n)
{
   int i;

   i = blockIdx.x * blockDim.x + threadIdx.x;
   vecY[i] = alpha * vecX[i] + vecY[i];
}
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Host code: overview

• The host performs the following operations:
1. initialize device
2. allocate and initialize input arrays in host DRAM
3. allocate memory on device
4. upload input data to device
5. execute kernel on device
6. download results
7. check results
8. clean-up
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Host code: initialization
#include <cuda.h> /* CUDA runtime API */
#include <cstdio> 

int main(int argc, char *argv[])
{
   float *x_host, *y_host;   /* arrays for computation on host*/
   float *x_dev, *y_dev;     /* arrays for computation on device */
   float *y_shadow;          /* host-side copy of device results */

   int n = 32*1024;
   float alpha = 0.5f;
   int nerror;

   size_t memsize;
   int i, blockSize, nBlocks;

/* here could add some code to check if GPU device is present */

...
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Host code: memory allocation

   ...

   memsize = n * sizeof(float);

   /* allocate arrays on host */

   x_host = (float *)malloc(memsize);
   y_host = (float *)malloc(memsize);
   y_shadow = (float *)malloc(memsize);

   /* allocate arrays on device */

   cudaMalloc((void **) &x_dev, memsize);
   cudaMalloc((void **) &y_dev, memsize);

   /* add checks to catch any errors */

   ...
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Host code: upload data

   ...

      /* initialize arrays on host */

   for ( i = 0; i < n; i++)
   {
      x_host[i] = rand() / (float)RAND_MAX;
      y_host[i] = rand() / (float)RAND_MAX;
   }

   /* copy arrays to device memory (synchronous) */

   cudaMemcpy(x_dev, x_host, memsize, cudaMemcpyHostToDevice);
   cudaMemcpy(y_dev, y_host, memsize, cudaMemcpyHostToDevice);

   ...
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Host code: kernel execution

   ...

      /* set up device execution configuration */
   blockSize = 512;
   nBlocks = n / blockSize + (n % blockSize > 0);

   /* execute kernel (asynchronous!) */

   saxpy_gpu<<<nBlocks, blockSize>>>(y_dev, x_dev, alpha, n);

   /* could add check if this succeeded */

   /* execute host version (i.e. baseline reference results) */
   saxpy_cpu(y_host, x_host, alpha, n);

   ...
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Host code: download results

   ...

   /* retrieve results from device (synchronous) */
   cudaMemcpy(y_shadow, y_dev, memsize, cudaMemcpyDeviceToHost);

   /* ensure synchronization (cudaMemcpy is synchronous in most cases, but not all) */

   cudaDeviceSynchronize();

   /* check results */ 
   nerror=0; 
   for(i=0; i < n; i++)
   {
      if(y_shadow[i]!=y_host[i]) nerror=nerror+1;
   }
   printf("test comparison shows %d errors\n",nerror); 
   
   ...
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Host code: clean-up

   ...

   /* free memory on device*/
   cudaFree(x_dev);
   cudaFree(y_dev);

  /* free memory on host */
   free(x_host);
   free(y_host);
   free(y_shadow);

   return 0;
} /* main */
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Checking for errors in CUDA calls

   ...
   /* check CUDA API function call for possible error */
  if (error = cudaMemcpy(x_dev, x_host, memsize, cudaMemcpyHostToDevice))
    {
      printf ("Error %d\n", error);
      exit (error);
    }
     
   ...

   saxpy_gpu<<<nBlocks, blockSize>>>(y_dev, x_dev, alpha, n);
   /* make sure kernel has completed*/
   cudaDeviceSynchronize();
   /* check for any error generated by kernel call*/
   if(error = cudaGetLastError())
    {
      printf ("Error detected after kernel %d\n", error);
      exit (error);
    }



Summer School 2014 Pawel Pomorski

Compiling

• nvcc -arch=sm_20 -O2 program.cu -o program.x
• -arch=sm_20 means code is targeted at Compute 

Capability 2.0 architecture (what monk has)
• -O2 optimizes the CPU portion of the program
• There are no flags to optimize CUDA code
• Various fine tuning switches possible
• SHARCNET has a CUDA environment module preloaded.  

See what it does by executing:  module show cuda
• add -lcublas to link with CUBLAS libraries
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Be aware of memory bandwidth bottlenecks

• The connection between CPU and GPU has low bandwidth
– need to minimize data transfers 
– important to use asynchronous transfers if possible (overlap 

computation and transfer)

32GB
SDRAM

CPU
~150 GF

6GB
GDDR

GPU
~0.5 TF

~40 GB/s ~170 GB/s

PCI
8 GB/s
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Using pinned memory

• The transfer between host and device is very slow compared to 
access to memory within either the CPU or the GPU

• One way to speed it up by a factor of 2 or so is to use pinned 
memory on the host for memory allocation of array that will be 
transferred to the GPU

int main(int argc, char *argv[])
{
cudaMallocHost((void **) &a_host, memsize_input)
...
cudaFree(a_host);
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Timing GPU accelerated codes

• Presents specific difficulties because the CPU and GPU 
can be computing independently in parallel, i.e. 
asynchronously

• On the cpu can use standard function gettimeofday(...) 
(microsecond precision) and process the result

• If trying to time events on GPU with this function, must 
ensure synchronization

• This can be done with a call to cudaDeviceSynchronize()
• Memory copies to/from device are synchronized, so can be 

used for timing.
• Timing GPU kernels on the CPU may be insufficiently 

accurate
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Using mechanisms on the GPU for timing

• This is highly accurate on the GPU side, and very useful 
for optimizing kernels

...
   cudaEvent_t start, stop;
   float kernel_timer;
...
   cudaEventCreate(&start);
   cudaEventCreate(&stop);
   cudaEventRecord(start, 0);

   saxpy_gpu<<<nBlocks, blockSize>>>(y_dev, x_dev, alpha, n);

   cudaEventRecord(stop, 0);
   cudaEventSynchronize( stop );
   cudaEventElapsedTime( &kernel_timer, start, stop );

   printf("Test Kernel took %f ms\n",kernel_timer);
   cudaEventDestroy(start);
   cudaEventDestroy(stop);
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Linear algebra on the GPU

• Linear algebra on the CPU: BLAS, LAPACK
• GPU analogues: CUBLAS, CULA
• CUSPARSE library for sparse matrices
• Use of highly optimised libraries is always better than writing 

your own code, especially since GPU codes cannot yet be 
efficiently optimized by compilers to achieve acceptable 
performance

• Writing efficient GPU code requires special care and 
understanding the peculiarities of underlying hardware
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CUBLAS

• Implementation of BLAS (Basic Linear Algebra Subprograms) 
on top of CUDA

• Included with CUDA (hence free)
• Workflow:

1. allocate vectors and matrices in GPU memory
2. fill them with data
3. call sequence of CUBLAS functions
4. transfer results from GPU memory to host

• Helper functions to transfer data to/from GPU provided
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Error checks

• in following example most error checks were removed for 
clarity

• each CUBLAS function returns a status object containing 
information about possible errors

•  It’s very important these objects to catch errors, via calls like 
this: 

if (status != CUBLAS_STATUS_SUCCESS) {
print diagnostic information and exit} 
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Initialize program

#include <cuda.h> /* CUDA runtime API */
#include <cstdio> 
#include <cublas_v2.h>

int main(int argc, char *argv[])
{
   float *x_host, *y_host; /* arrays for computation on host*/
   float *x_dev, *y_dev;   /* arrays for computation on device */

   int n = 32*1024;
   float alpha = 0.5f;
   int nerror;

   size_t memsize;
   int i;

   /*  could add device detection here */

   memsize = n * sizeof(float);
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Allocate memory on host and device
     /* allocate arrays on host */

   x_host = (float *)malloc(memsize);
   y_host = (float *)malloc(memsize);

/* allocate arrays on device */

   cudaMalloc((void **) &x_dev, memsize);
   cudaMalloc((void **) &y_dev, memsize);

   /* initialize arrays on host */

   for ( i = 0; i < n; i++)
   {
      x_host[i] = rand() / (float)RAND_MAX;
      y_host[i] = rand() / (float)RAND_MAX;
   }

   /* copy arrays to device memory (synchronous) */

   cudaMemcpy(x_dev, x_host, memsize, cudaMemcpyHostToDevice);
   cudaMemcpy(y_dev, y_host, memsize, cudaMemcpyHostToDevice);



Summer School 2014 Pawel Pomorski

Call CUBLAS function

   cublasHandle_t handle;
   cublasStatus_t status;

   status  = cublasCreate(&handle);

   int stride = 1;
   status = cublasSaxpy(handle,n,&alpha,x_dev,stride,y_dev,stride);

   /* check if cublasSaxpy launched succesfully */

   if (status != CUBLAS_STATUS_SUCCESS)
    {
      printf ("Error in launching CUBLAS routine \n");
      exit (20);
    }

   status = cublasDestroy(handle);
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Retrieve computed data and finish

   /* retrieve results from device (synchronous) */
   cudaMemcpy(y_host, y_dev, memsize, cudaMemcpyDeviceToHost);

  /* ensure synchronization (cudaMemcpy is synchronous in most cases, but not all) */

   cudaDeviceSynchronize();

   /* use data in y_host*/

   /* free memory */
   cudaFree(x_dev);
   cudaFree(y_dev);
   free(x_host);
   free(y_host);

   return 0;
}
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OpenACC
• New standard for parallel computing developed by compiler 

makers.  See: http://www.openacc-standard.org/
• Specified in late 2011, released in 2012
• SHARCNET has the PGI compiler on monk which supports it
• OpenACC works somewhat like OpenMP
• Goal is to provide simple directives to the compiler which enable 

it to accelerate the application on the GPU
• The tool is aimed at developers aiming to quickly speed up their 

code without extensive recoding in CUDA
• As tool is very new and this course focuses on CUDA, only a brief 

demo of OpenACC follows

http://www.openacc-standard.org/
http://www.openacc-standard.org/
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SAXPY with OpenACC
...
#include <openacc.h>

void saxpy_openacc(float *restrict vecY, float *vecX, float alpha, int n)
{
     int i;
#pragma acc kernels
     for (i = 0; i < n; i++)
           vecY[i] = alpha * vecX[i] + vecY[i];
}

...
   /* execute openacc accelerated function on GPU */
   saxpy_openacc(y_shadow, x_host, alpha, n);
...

• OpenACC automatically builds a kernel function that will run 
on GPU 

• Memory transfers between device and host handled by 
OpenACC and need not be explicit
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Compiling SAXPY with OpenACC
[ppomorsk@mon54:~] module unload intel
[ppomorsk@mon54:~] module load pgi
[ppomorsk@mon54:~/CUDA_day1/saxpy] pgcc -acc -Minfo=accel -fast saxpy_openacc.c
saxpy_openacc:
     25, Generating copyin(vecX[0:n])
         Generating copy(vecY[0:n])
         Generating compute capability 1.0 binary
         Generating compute capability 2.0 binary
     26, Loop is parallelizable
         Accelerator kernel generated
         26, #pragma acc loop gang, vector(256) /* blockIdx.x threadIdx.x */
             CC 1.0 : 4 registers; 52 shared, 4 constant, 0 local memory bytes
             CC 2.0 : 8 registers; 4 shared, 64 constant, 0 local memory bytes
[ppomorsk@mon54:~/CUDA_day1/saxpy] export ACC_NOTIFY=1
[ppomorsk@mon54:~/CUDA_day1/saxpy] export PGI_ACC_TIME=1
[ppomorsk@mon54:~/CUDA_day1/saxpy] ./a.out 
launch kernel  file=/home/ppomorsk/CUDA_day1/saxpy/saxpy_openacc.c function=saxpy_openacc 
line=26 device=0 grid=128 block=256 queue=0

Accelerator Kernel Timing data
/home/ppomorsk/CUDA_day1/saxpy/saxpy_openacc.c
  saxpy_openacc
    25: region entered 1 time
        time(us): total=4241617 init=4240714 region=903
                  kernels=22 data=461
        w/o init: total=903 max=903 min=903 avg=903
        26: kernel launched 1 times
            grid: [128]  block: [256]
            time(us): total=22 max=22 min=22 avg=22
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Is OpenACC always this easy?
• No, the loop we accelerated was particularly easy for the compiler 

to interpret.  It was very simple, and each iteration was completely 
independent of the others

• If the accelerate directive is placed before a more complicated 
loop, the compiler refuse to accelerate the region, complaining of 
errors

• More specific compiler directives must hence be provided for 
more complicated functions

• Memory transfers must be handled explicitly if we don’t want to 
transfer memory to/from device every time kernel is called

• For complex problems OpenACC grows as complex as CUDA, 
but it might get better in the future
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CUDA EXTENSION TO THE C 
PROGRAMMING LANGUAGE

Introduction to GPU Programming: CUDA
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Storage class qualifiers

__global__ Device kernels callable from host

__device__ Device functions (only callable from device)

__host__ Host functions (only callable from host)

__shared__ Memory shared by a block of threads executing on a 
multiprocessor.

__constant__ Special memory for constants (cached)

Functions

Data
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CUDA data types
• C primatives:

– char, int, float, double, …

• Short vectors:
– int2, int3, int4, uchar2, uchar4, float2, float3, float4, …
– no built-in vector math (although a utility header, cutil_math.h, defines some 

common operations)

• Special type used to represent dimensions
– dim3

• Support for user-defined structures, e.g.:
 struct particle
 {
     float3 position, velocity, acceleration;
     float mass;
 };
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Library functions available to kernels

• Math library functions:
– sin, cos, tan, sqrt, pow, log, …
– sinf, cosf, tanf, sqrtf, powf, logf, …

• ISA intrinsics
– __sinf, __cosf, __tanf, __powf, __logf, …
– __mul24, __umul24, …

• Intrinsic versions of math functions are faster but less 
precise
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Built-in kernel variables

dim3 gradDim
– number of blocks in grid

dim3 blockDim
– number of threads per block

dim3 blockIdx
– number of current block within grid

dim3 threadIdx
– index of current thread within block
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CUDA kernels: limitations

• No recursion (on devices older than CC 2.0)

• No variable argument lists

• No dynamic memory allocation

• No pointers-to-functions

• No static variables inside kernels
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Launching kernels
• Launchable kernels must be declared as ‘__global__ void’

__global__ void myKernel(paramList);

• Kernel calls must specify device execution environment
– grid definition – number of blocks in grid
– block definition – number of threads per block
– optionally, may specify amount of shared memory per block (more on that later)

• Kernel launch syntax:

myKernel<<<GridDef, BlockDef>>>(paramList);
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Thread addressing

• Kernel launch syntax:

myKernel<<<GridDef, BlockDef>>>(paramlist);

• GridDef and BlockDef can be specified as dim3 
objects
– grids can be 1D, 2D or 3D
– blocks can be 1D, 2D or 3D

• This makes it easy to set up different memory addressing 
for multi-dimensional data.
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Thread addressing (cont.)
• 1D addressing example: 100 blocks with 256 threads per block:

dim3 gridDef1(100,1,1);
dim3 blockDef1(256,1,1);
kernel1<<<gridDef1, blockDef1>>>(paramList);

• 2D addressing example: 10x10 blocks with 16x16 threads per block:

dim3 gridDef2(10,10,1);
dim3 blockDef2(16,16,1);
kernel2<<<gridDef2, blockDef2>>>(paramList);

• Both examples launch the same number of threads, but block and thread 
indexing is different
– kernel1 uses blockIdx.x, blockDim.x and threadIdx.x
– kernel2 uses blockIdx.[xy], blockDim.[xy], threadIdx.[xy]
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Thread addressing (cont.)
• One-dimensional addressing example:

• Two-dimensional addressing example:

__global__ void kernel1(float *idata, float *odata)
{
    int i;

    i = blockIdx.x * blockDim.x + threadIdx.x;
    odata[i] = func(idata[i]);
}
   

__global__ void kernel2(float *idata, float *odata, int pitch)
{
    int x, y, i;

    x = blockIdx.x * blockDim.x + threadIdx.x;
    y = blockIdx.y * blockDim.y + threadIdx.y;
    i = y * pitch + x;
    odata[i] = func(idata[i]);
}
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Thread addressing (cont.)=.%>(3$(33%>??*+'$S5&+-RT$
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__global__ void kernel1(float *idata, float *odata) 
{ 
    int i; 

    i = blockIdx.x * blockDim.x + threadIdx.x; 
    odata[i] = func(idata[i]); 
} 
… 
dim3 gridDef1(100,1,1); 
dim3 gridDef1(256,1,1); 
kernel1<<<gridDef1, blockDef1>>>(paramList); 
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__global__ void kernel1(float *idata, float *odata)
{
    int i;

    i = blockIdx.x * blockDim.x + threadIdx.x;
    odata[i] = func(idata[i]);
}
...
dim3 gridDef1(100,1,1);
dim3 blockDef1(256,1,1);
kernel1<<<gridDef1, blockDef1>>>(paramList);
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Thread addressing (cont.)

Grid

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

__global__ void kernel2(float *idata, float *odata, int pitch)
{
    int x, y, i;

    x = blockIdx.x * blockDim.x + threadIdx.x;
    y = blockIdx.y * blockDim.y + threadIdx.y;
    i = y * pitch + x;
    odata[i] = func(idata[i]);
}
...
dim3 gridDef2(10,10,1);
dim3 blockDef2(16,16,1);
kernel2<<<gridDef2, blockDef2>>>(paramList);

   



Summer School 2014 Pawel Pomorski

OPTIMIZATION STRATEGIES
Introduction to GPU Programming: CUDA
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Beyond the basics…

• Exposing parallelism

• Memory address coalescing

• Shared memory

• Thread synchronization
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Exploiting fully the parallelism of the problem
• A GPU has a large number of cores, to take full advantage 

of the GPU they must all be given something to do.
• It is hence beneficial to have the work to be done 

decomposed among a large number of threads.
– GPU architecture can easily handle large numbers of threads 

without overhead (unlike CPU)
– for this to work optimally threads belonging to the same block 

must be executing similar (ideally exactly the same) instructions, 
operating on different data

– this means one must avoid divergent branches within a block
– size of block should be multiple of 32 (warp size), must not 

exceed the maximum for device
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Important caveat: is more threads always useful? 
• Each thread consumes some resources, mainly registers and 

shared memory.  Given that these resources are limited, the 
number of threads “alive” at any one time (i.e. actively 
running on the hardware) is also limited.

• Hence the benefit of adding more threads tends to plateau.
– one can optimize around the resources needed, especially 

registers, to improve performance 
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Avoiding transfers between GPU and device
• That is a huge bottleneck, but unavoidable since GPU has 

limited capabilities, most significantly no access to file 
system (note: AMD’s APU Fusion avoids this problem)

• CPU essential because GPU cannot be independent. All 
kernels must be launched from the CPU which is the overall 
controller 
– changed on Kepler architecture released in late 2012 on which 

kernels can launch other kernels
• Using pinned memory helps a bit
• Using asynchronous transfers (overlapping computation and 

transfer) also helps
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Optimizing access to global memory
• A GPU has a large number of cores with great 

computational power, but they must be “fed” with data from 
global memory

• If too little computation done on core relative to memory 
transfer, then it becomes the bottleneck.
– most of the time is spent moving data in memory rather than 

number crunching
– for many problems this is unavoidable

• Utilizing the memory architecture effectively tends to be 
the biggest challenge in CUDA-fying algorithms
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GPU memory is high bandwidth/high latency
• A GPU has potentially high bandwidth for data transfer 

from global memory to cores.  However, the latency for this 
transfer for any individual thread is also high (hundreds of 
cycles)

• Using many threads, latency can be overcome by hiding it 
among many threads.
– group of threads requests some memory, while it is waiting for it 

to arrive, another group is computing 
– the more threads you have, the better this works

• The pattern of global memory access is also very important, 
as cache size of the GPU is very limited.
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Global memory access is fast when coalesced
• It is best for adjacent threads belonging to the same warp 

(group of 32 threads) to be accessing locations adjacent in 
memory (or as close as possible)

• Good access pattern: thread i accesses global memory array 
member a[i]

• Inferior access pattern: thread i accesses global memory 
array member as a[i*nstride] where nstride >1

• Clearly, random access of memory is a particularly bad 
paradigm on the GPU
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For some problems coalesced access is hard
• Example: matrix transpose 
• A bandwidth-limited problem that is dominated by memory 

access

4(-%*L$-%(+?C&?>$S5&+-RT$

86))>%$85.&&B$OPQP 0R$45/(6'.(+ 

Q$ O$ V$ f$ `$ d$

Q$
O$
V$
f$
`$
d$

I*(=1,.580,2.),8.:11)*,20,
65/=3*0,:*,14),5=1(=1,321.:D,



Summer School 2014 Pawel Pomorski

Naïve matrix transpose (cont.)
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Can this problem be a avoided?

• Yes, by using a special memory which does not have a 
penalty when accessed in a non-coalesced way

• On the GPU this is the shared memory

• Shared memory accesses are faster than even coalesced 
global memory accesses.  If accessing same data multiple 
times, try to put it in shared memory.

• Unfortunately, it is very small (48 KB or 16KB) 

• Must be managed by the programmer
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Shared memory

• Each multiprocessor has some fast 
on-chip shared memory

• Threads within a thread block can 
communicate using the shared 
memory

• Each thread in a thread block has R/
W access to all of the shared 
memory allocated to a block

• Threads can synchronize using the 
intrinsic

__syncthreads();
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Figure 3 shows a Fermi streaming multiprocessor with 32 CUDA cores and additional elements. This 

diagram explains why CUDA cores can get by without their own register files, caches, or load/store 

units — those resources are shared among all 32 CUDA cores in a streaming multiprocessor. Those 32 
cores are designed to work in parallel on 32 instructions at a time from a bundle of 32 threads, which 

NVIDIA calls a “warp.” (This organization has implications for the CUDA programming model, as we’ll 

explain below.) 













 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



















































 

Figure 3. Streaming-multiprocessor block diagram. In the Fermi architecture, each streaming 

multiprocessor has 32 CUDA cores — four times as many as the previous GT200 and G80 

architectures. All 32 cores share the resources of their streaming multiprocessor, such as 

registers, caches, local memory, and load/store units. The “special function units” (SFUs) 

handle complex math operations, such as square roots, reciprocals, sines, and cosines. 
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Helpful tools

• CUDA 5 released - supports CC 3.5 features
• CUDA 5 includes Nsight, an Integrated Development 

Environment (IDE) for Linux/Mac based on Eclipse.  IDE 
incorporates CUDA-aware editor, profiler and debugger in 
one close-integrated package.  Try it out!

• There is a Visual Studio edition of Nsight for Windows 
• On SHARCNET the DDT visual debugger has powerful 

GPU debugging capability
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Further reading

• CUDA Programming Guide

• CUDA sample projects
– many contain extended documentation
– similarity to the matrix transpose, the reduction project is an 

excellent step-by-step walkthrough of how to optimize code for 
the hardware (read/write coalescing, shared memory, bank 
conflicts, etc.)

• Lots of documentation/presentations/tutorials online
• NVIDIA website - lots of materials
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Now released - NVIDIA Kepler K20 and K20X
Tesla K10 Tesla K20 Tesla K20X Tesla K40

CC 3.0 3.5 3.5 3.5

Dynamic 
Parallelism &
HyperQ

NO YES YES YES

DP floating point 0.19 TF 1.17 TF 1.31 TF 1.43 TF

SP floating point 4.58 TF 3.52 TF 3.95 TF 4.29 TF

CUDA cores 2x1536 2496 2688 2880

Memory 8 GB 5 GB 6 GB 12 GB

Other CC 3.5 cards: GTX Titan, GTX780 ($700), GT 640 ($100)
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HyperQ

• multiple CPU cores can access the GPU at once
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Dynamic parallelism

• Kernels can be launched on the GPU
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Dynamic parallelism

• Kernels can be launched by other kernels, syntax similar to 
that on GPU


