
Programming GPUs with
CUDA - Day 1

Pawel Pomorski, HPC Software Analyst
SHARCNET, University of Waterloo
ppomorsk@sharcnet.ca
http://ppomorsk.sharcnet.ca/

mailto:ppomorsk@sharcnet.ca
mailto:ppomorsk@sharcnet.ca
http://ppomorsk.sharcnet.ca
http://ppomorsk.sharcnet.ca

Summer School 2014 Pawel Pomorski

Overview

• Introduction to GPU programming
• Introduction to CUDA
• CUDA example programs
• CUDA libraries
• OpenACC
• CUDA extensions to the C programming language
• Beyond the basics - initial discussion on optimizing

CUDA

Summer School 2014 Pawel Pomorski

Oak Ridge National Labs - operational in October 2012
18,688 Opteron 16-core CPUs
18,688 NVIDIA Tesla K20 GPUs
17.6 peta FLOPS

Fell to #2 on Nov. 2013 list, beat by Intel Phi system

#1 system on Fall 2012 TOP500 list - Titan

Summer School 2014 Pawel Pomorski

before 2003 - Calculations on GPU, using graphics API
2003 - Brook “C with streams”
2005 - Steady increase in CPU clock speed comes to
a halt, switch to multicore chips to compensate. At the
same time, computational power of GPUs increases
November, 2006 - CUDA released by NVIDIA
November, 2006 - CTM (Close to Metal) from ATI
December 2007 - Succeeded by AMD Stream SDK
December, 2008 - Technical specification for OpenCL1.0 released
April, 2009 - First OpenCL 1.0 GPU drivers released by NVIDIA
August, 2009 - Mac OS X 10.6 Snow Leopard released, with OpenCL 1.0 included
September 2009 - Public release of OpenCL by NVIDIA
December 2009 - AMD release of ATI Stream SDK 2.0 with OpenCL support
March 2010 - CUDA 3.0 released, incorporating OpenCL
May 2011 - CUDA 4.0 released, better multi-GPU support
mid-2012 - CUDA 5.0
late-2012 - NVIDIA K20 Kepler cards
Future - CPUs will have so many cores they will start to be treated as GPUs?
Accelerators become universal?

GPU computing timeline

Summer School 2014 Pawel Pomorski

Introduction to GPU programming

• A graphics processing unit (GPU) is
a processor whose main job is to
accelerate the rendering of 3D
graphics primitives. Performance
gains were mostly high performance
computer gaming market

 GPU makers have realized that with relatively little additional
silicon a GPU can be made into a general purpose computer.
They have added this functionality to increase the appeal of
cards.

 Even computer games now increasingly take advantage of
general compute for game physics simulation

Summer School 2014 Pawel Pomorski

A brief tour of graphics programming
• 2D textures are wrapped around 3D

meshes to assign colour to individual
pixels on screen

• Lighting and shadow are applied to
bring out 3D features

• Shaders allow programmers to define
custom shadow and lighting
techniques
– can also combine multiple textures in

interesting ways

• Resulting pixels get sent to a frame
buffer for display on the monitor

Summer School 2014 Pawel Pomorski

Introduction to GPGPU (cont.)

• This was cool for a while, but because all computations
occurred within the graphics pipeline, there were limitations:
– limited inputs/outputs
– limited data types, graphics-specific semantics
– memory and processor optimized for short vectors, 2D textures
– lack of communication or synchronization between “threads”
– no writes to random memory locations (scatter)
– no in-out textures (had to ping-pong in multi-pass algorithms)
– graphics API overhead
– graphics API learning curve

Summer School 2014 Pawel Pomorski

General computing APIs for GPUs
• NVIDIA offers CUDA while AMD has moved toward OpenCL (also

supported by NVIDIA)

• These computing platforms bypass the graphics pipeline and expose the raw
computational capabilities of the hardware. Programmer needs to know
nothing about graphics programming.

• OpenACC compiler directive approach is emerging as an alternative (works
somewhat like OpenMP)

• More recent and less developed alternative to CUDA: OpenCL
– a vendor-agnostic computing platform
– supports vendor-specific extensions akin to OpenGL
– goal is to support a range of hardware architectures including GPUs, CPUs, Cell

processors, Larrabee and DSPs using a standard low-level API

Summer School 2014 Pawel Pomorski

The appeal of GPGPU

• “Supercomputing for the masses”
– significant computational horsepower at an attractive price point
– readily accessible hardware

• Scalability
– programs can execute without modification on a run-of-the-mill

PC with a $150 graphics card or a dedicated multi-card
supercomputer worth thousands of dollars

• Bright future – the computational capability of GPUs
doubles each year
– more thread processors, faster clocks, faster DRAM, …
– “GPUs are getting faster, faster”

Summer School 2014 Pawel Pomorski

Comparing GPUs and CPUs

• CPU
– “Jack of all trades”
– task parallelism (diverse tasks)
– minimize latency
– multithreaded
– some SIMD

• GPU
– excel at number crunching
– data parallelism (single task)
– maximize throughput
– super-threaded
– large-scale SIMD

Summer School 2014 Pawel Pomorski

Stream computing

• A parallel processing model where a computational kernel
is applied to a set of data (a stream)
– the kernel is applied to stream elements in parallel

• GPUs excel at this thanks to a large number of processing
units and a parallel architecture

8-%>()$5&)C6-*+'$
•  1$C(%(BB>B$C%&5>??*+'$)&3>B$,.>%>$($5&)C6-(-*&+(B$
-).*)/$*?$(CCB*>3$-&$($?>-$&A$3(-($S($01.)23T$
–  -.>$W>%+>B$*?$(CCB*>3$-&$?-%>()$>B>)>+-?$*+$C(%(BB>B$

•  !"#?$>L5>B$(-$-.*?$-.(+W?$-&$($B(%'>$+6)G>%$&A$
C%&5>??*+'$6+*-?$(+3$($C(%(BB>B$(%5.*->5-6%>$

86))>%$85.&&B$OPQP 0R$45/(6'.(+

`$ Q$ V$ c$ O$ V$ d$ e$ e$ V$ f$ `$

!" #" $" %" &" $" '" (" (" $")" !"

F,+.,/$

G.7;($1(+,*5$

H;(7;($1(+,*5$

Summer School 2014 Pawel Pomorski

Beyond stream computing

• Current GPUs offer functionality that goes beyond
mere stream computing

• Shared memory and thread synchronization primitives
eliminate the need for data independence

• Gather and scatter operations allow kernels to read
and write data at arbitrary locations

Summer School 2014 Pawel Pomorski

CUDA

• “Compute Unified Device Architecture

• A platform that exposes NVIDIA GPUs as
general purpose compute devices

• Is CUDA considered GPGPU?
– yes and no

• CUDA can execute on devices with no graphics
output capabilities (the NVIDIA Tesla product line)
– these are not “GPUs”, per se

• however, if you are using CUDA to run some
generic algorithms on your graphics card, you are
indeed performing some General Purpose
computation on your Graphics Processing Unit…

Summer School 2014 Pawel Pomorski

What is CUDA used for?

• CUDA has been used in many different areas
– options pricing in finance
– electromagnetic simulations
– fluid dynamics
– GIS
– geophysical data processing
– 3D visualization solutions
– …

• See http://www.nvidia.com/object/cuda_home_new.htm
– long list of projects and speedups achieved

http://www.nvidia.com/object/cuda_home_new.htm
http://www.nvidia.com/object/cuda_home_new.htm

Summer School 2014 Pawel Pomorski

Speedup

• What kind of speedup can I expect?
– 0x – 2000x reported
– 10x – considered typical (vs. multi-CPU machines)
– >= 30x considered worthwhile

• Speedup depends on
– problem structure

• need many identical independent calculations
• preferably sequential memory access

– level of intimacy with hardware
– time investment

Summer School 2014 Pawel Pomorski

How to get running on the GPU?
• Easiest case: the package you are using already has a GPU-

accelerated version. No programming needed.
• Medium case: your program spends most of its time in library

routines which have GPU accelerated versions. Use libraries
that take advantage of GPU acceleration. Small programming
effort required.

• Hard case: You cannot take advantage of the easier two
possibilities, so you must convert some of your code to CUDA
or OpenCL

• Newly available OpenACC framework is an alternative that
should make coding easier.

Summer School 2014 Pawel Pomorski

GPU-enabled software
• A growing number of popular scientific software packages have

now been accelerated for the GPU
• Using a GPU accelerated package requires no programming

effort for the user
• Acceleration of Molecular Dynamics software has been

particularly successful, with all major packages offering the
GPU acceleration option

Summer School 2014 Pawel Pomorski

NAMD
• http://www.ks.uiuc.edu/Research/namd/
• NAMD = Not (just)Another Molecular Dynamics program
• Free and open source
• Written using Charm++ parallel programming model
• Noted for its parallel efficiency

http://www.ks.uiuc.edu/Research/namd/
http://www.ks.uiuc.edu/Research/namd/

Summer School 2014 Pawel Pomorski

NAMD performance on monk
• apoa1 standard NAMD benchmark, 92224 atoms simulated for

500 time steps, wall time in seconds:

#threads no GPU 1 GPU 2 GPU

1 867.3 76.9 76.6

2 440.5 45.7 43.2

4 223.0 40.4 28.6

8 113.7 39.3 23.7

Summer School 2014 Pawel Pomorski

NAMD performance on monk
• apoa1 standard NAMD benchmark, 92224 atoms simulated for

500 time steps, speedup over 1 thread/no GPU:

• Speedup over 8-core/no GPU: 2.9 with 1 GPU, 4.8 with 2
• Most efficient: 2 runs of 4 core/1 GPU, speedup 2*21.5=43.0

#threads no GPU 1 GPU 2 GPU

1 1.0 11.3 11.3

2 2.0 19.0 20.1

4 3.9 21.5 30.3

8 7.7 22.1 36.6

Summer School 2014 Pawel Pomorski

NAMD performance on monk
• bpti6 standard NAMD demo, 1101 atoms simulated for 21,000

time steps, wall time in seconds:

• For smaller system GPU acceleration is less useful.
• Performance depends on system size!

#threads no GPU 1 GPU 2 GPU

1 202.6 48.9 48.7

2 107.4 33.8 31.7

4 56.2 31.7 28.4

8 30.8 34.6 29.1

Summer School 2014 Pawel Pomorski

NAMD performance on monk
• bpti6 standard NAMD demo, 1101 atoms simulated for 21,000

time steps, speedup over 1 thread/no GPU:

#threads no GPU 1 GPU 2 GPU

1 1.0 4.1 4.2

2 1.9 6.0 6.4

4 3.6 6.4 7.1

8 6.6 5.9 7.0

Summer School 2014 Pawel Pomorski

Tesla M2070 ($1000+) vs GTX 570 ($300)
• apoa1 standard NAMD benchmark, 92224 atoms simulated for

500 time steps, wall time in seconds:

#threads no GPU M2070 GTX 570

1 867.3 76.9 73.2

2 440.5 45.7 38.4

4 223.0 40.4 33.3

8 113.7 39.3 32.8

Summer School 2014 Pawel Pomorski

CUDA programming model

• The main CPU is referred to as the host

• The compute device is viewed as a coprocessor capable of
executing a large number of lightweight threads in parallel

• Computation on the device is performed by kernels, functions
executed in parallel on each data element

• Both the host and the device have their own memory
– the host and device cannot directly access each other’s memory, but

data can be transferred using the runtime API

• The host manages all memory allocations on the device, data
transfers, and the invocation of kernels on the device

Summer School 2014 Pawel Pomorski

GPU applications

• The GPU can be utilized in different capacities

• One is to use the GPU as a massively parallel coprocessor
for number crunching applications
– upload data and kernel to GPU
– execute kernel
– download results
– CPU and GPU can execute asynchronously

• Some applications use the GPU for both data crunching
and visualization
– CUDA has bindings for OpenGL and Direct3D

Summer School 2014 Pawel Pomorski

GPU as coprocessor

• Basic paradigm
– host uploads inputs to device
– host remains busy while device performs computation

• prepare next batch of data, process previous results, etc.
– host downloads results

• Can be iterative or multi-stage

Kernel execution is
asynchronous

Asynchronous memory
transfers also available

!"#$(?$5&C%&5>??&%$

•  M(?*5$C(%(3*')$
–  .&?-$6CB&(3?$*+C6-?$-&$3>2*5>$
–  .&?-$%>)(*+?$G6?@$,.*B>$3>2*5>$C>%A&%)?$5&)C6-(-*&+$

•  C%>C(%>$+>L-$G(-5.$&A$3(-(7$C%&5>??$C%>2*&6?$%>?6B-?7$>-5R$
–  .&?-$3&,+B&(3?$%>?6B-?$

•  /(+$G>$*->%(-*2>$&%$)6B-*F?-('>$
86))>%$85.&&B$OPQP 0R$45/(6'.(+

*+,-" ./012/"

k>%+>B$>L>56-*&+$*?$
(?@+5.%&+&6?$

1?@+5.%&+&6?$)>)&%@$
-%(+?A>%?$(B?&$(2(*B(GB>$

Summer School 2014 Pawel Pomorski

Simulation + visualization

• Basic paradigm
– host uploads inputs to device
– host may remain busy while device performs computation

• prepare next batch of data, etc.
– results used on device for rendering, no download to host

8*)6B(-*&+l2*?6(B*\(-*&+$

•  M(?*5$C(%(3*')$
–  .&?-$6CB&(3?$*+C6-?$-&$3>2*5>$
–  .&?-$)(@$%>)(*+$G6?@$,.*B>$3>2*5>$C>%A&%)?$5&)C6-(-*&+$

•  C%>C(%>$+>L-$G(-5.$&A$3(-(7$>-5R$
–  %>?6B-?$6?>3$&+$3>2*5>$A&%$%>+3>%*+'7$+&$3&,+B&(3$-&$.&?-$

86))>%$85.&&B$OPQP 0R$45/(6'.(+

*+,-" ./012/"

Summer School 2014 Pawel Pomorski

Simulation + visualization (cont.)

N-Body Demo

Fluids Demo

Summer School 2014 Pawel Pomorski

SHARCNET GPU systems
• Always check our software page for latest info! See also:

https://www.sharcnet.ca/help/index.php/GPU_Accelerated_Computing

• angel.sharcnet.ca

11 NVIDIA Tesla S1070 GPU servers

each with 4 GPUs + 16GB of global memory

each GPU server connected to two compute nodes (2 4-core Xeon CPUs + 8GB RAM each)

1 GPU per quad-core CPU; 1:1 memory ratio between GPUs/CPUs

• visualization workstations

Some old and don’t support CUDA, but some have up to date cards, check list at:

https://www.sharcnet.ca/my/systems/index

Summer School 2014 Pawel Pomorski

2012 arrival - “monk” cluster

• 54 nodes, InfiniBand interconnect, 80 Tb storage
• Node:

8 x CPU cores (Intel Xeon 2.26 GHz)
48 GB memory
2 x M2070 GPU cards

• Nvidia Tesla M2070 GPU
“Fermi” architecture
ECC memory protection
L1 and L2 caches
2.0 Compute Capability
448 CUDA cores
515 Gigaflops (DP)

Summer School 2014 Pawel Pomorski

CUDA versions installed
• Different versions of CUDA available - choose one via modules

– on monk latest CUDA installed in /opt/sharcnet/cuda/5.0.35/

– sample projects in /opt/sharcnet/cuda/5.0.35/samples
• copy to your work space (e.g. /work/username/cuda_sdk) & compile following instructions on the

software page

https://www.sharcnet.ca/help/index.php/CUDA

Development node: mon54 for interactive use, plus viz stations

https://www.sharcnet.ca/my/software/show/85
https://www.sharcnet.ca/my/software/show/85
https://www.sharcnet.ca/my/software/show/85
https://www.sharcnet.ca/my/software/show/85

Summer School 2014 Pawel Pomorski

Output of device diagnostic program

 ...

 [ppomorsk@mon54:~/CUDA_day1/device_diagnostic] ./device_diagnostic.x
found 2 CUDA devices
 --- General Information for device 0 ---
Name: Tesla M2070
Compute capability: 2.0
Clock rate: 1147000
Device copy overlap: Enabled
Kernel execution timeout : Disabled
 --- Memory Information for device 0 ---
Total global mem: 5636554752
Total constant Mem: 65536
Max mem pitch: 2147483647
Texture Alignment: 512
 --- MP Information for device 0 ---
Multiprocessor count: 14
Shared mem per mp: 49152
Registers per mp: 32768
Threads in warp: 32
Max threads per block: 1024
Max thread dimensions: (1024, 1024, 64)
Max grid dimensions: (65535, 65535, 65535)

 --- General Information for device 1 ---
Name: Tesla M2070
...

Summer School 2014 Pawel Pomorski

Submitting GPU jobs
• See GPU Accelerated Computing article on training wiki for

maximum detail
– note: queue details (mpi vs. gpu – test queue oddities)

– To submit a job to gpu queue on angel
sqsub –q qpu --gpp=1 –n 1 –o out.txt –r 5m ./a.out

Summer School 2014 Pawel Pomorski

Thread batching

• To take advantage of the multiple multiprocessors,
kernels are executed as a grid of threaded blocks

• All threads in a thread block are executed by a single
multiprocessor

• The resources of a multiprocessor are divided among
the threads in a block (registers, shared memory, etc.)
– this has several important implications that will be discussed

later

Summer School 2014 Pawel Pomorski

Hardware basics

• The compute device is composed of a number of
multiprocessors, each of which contains a number of
SIMD processors
– Tesla M2070 has 14 multiprocessors (each with 32 CUDA cores)

• A multiprocessor can execute K threads in parallel
physically, where K is called the warp size
– thread = instance of kernel
– warp size on current hardware is 32 threads

• Each multiprocessor contains a large number of 32-bit
registers which are divided among the active threads

Summer School 2014 Pawel Pomorski

GPU Hardware architecture - NVIDIA Fermi

Looking Beyond Graphics

©2009 In-Stat All Rights Reserved | http://www.in-stat.com Page 7

Figure 3 shows a Fermi streaming multiprocessor with 32 CUDA cores and additional elements. This

diagram explains why CUDA cores can get by without their own register files, caches, or load/store

units — those resources are shared among all 32 CUDA cores in a streaming multiprocessor. Those 32
cores are designed to work in parallel on 32 instructions at a time from a bundle of 32 threads, which

NVIDIA calls a “warp.” (This organization has implications for the CUDA programming model, as we’ll

explain below.)

Figure 3. Streaming-multiprocessor block diagram. In the Fermi architecture, each streaming

multiprocessor has 32 CUDA cores — four times as many as the previous GT200 and G80

architectures. All 32 cores share the resources of their streaming multiprocessor, such as

registers, caches, local memory, and load/store units. The “special function units” (SFUs)

handle complex math operations, such as square roots, reciprocals, sines, and cosines.

Looking Beyond Graphics

©2009 In-Stat All Rights Reserved | http://www.in-stat.com Page 9

Another shared resource in a streaming multiprocessor is a new load/store unit, which can execute 16

load or store operations per clock cycle. It does even better when using a special “uniform cache,” seen

at the bottom of Figure 3. Matrix-math operations often load scalar values from sequential addresses
belonging to a particular thread, and they also load a common value shared among all threads in a

warp. In those cases, a streaming multiprocessor can load two operands per cycle.

Figure 5 is the highest-level view of the Fermi architecture. All 16 streaming multiprocessors — each

with 32 CUDA cores — share a 768KB unified L2 cache. By the standards of modern general-purpose
CPUs, this cache is relatively small, but previous CUDA architectures had no L2 cache at all. Fermi

maintains cache coherency for all the streaming multiprocessors sharing the L2 cache.

Figure 5. Fermi architecture block diagram. This top-level view of the architecture shows the 16

streaming multiprocessors, the six 64-bit DRAM interfaces, the host interface (PCI Express),

and the GigaThread hardware thread scheduler. This improved scheduler manages thousands

of simultaneous threads and switches contexts between graphics and compute applications

in as little as 25 microseconds — ten times faster than NVIDIA’s previous schedulers.

(Switching among threads within a graphics or compute instruction stream requires only one

clock cycle, but alternating between graphics and compute workloads takes longer, because

the caches must be flushed and refilled.)

Fermi’s Memory Hierarchy

The memory hierarchy of a Fermi GPU is somewhat different than the better-known hierarchy for a
general-purpose CPU. For one thing, a GPU has a large frame buffer — as much as a gigabyte of

Summer School 2014 Pawel Pomorski

Thread batching: 1D example=.%>(3$G(-5.*+'H$Q0$>L()CB>$

86))>%$85.&&B$OPQP 0R$45/(6'.(+

>91.$
I?+2J"
B$ I?+2J"

G$ I?+2J"
#$ I?+2J"

&$ I?+2J"
$$ I?+2J"

)$ I?+2J"
!$ I?+2J"

'$ I?+2J"
?RRR

I?+2J"$$
;*9/6."

B"
;*9/6."

G"
;*9/6."

#"
;*9/6."

&"
;*9/6."

$"
;*9/6."

@,
RRR$

Summer School 2014 Pawel Pomorski

Thread batching: 2D example

Grid

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Summer School 2014 Pawel Pomorski

Thread batching (cont.)

• At runtime, a thread can determine the block that it
belongs to, the block dimensions, and the thread index
within the block

• These values can be used to compute indices into
input and output arrays

Summer School 2014 Pawel Pomorski

HELLO, CUDA!
Introduction to GPU Programming: CUDA

Summer School 2014 Pawel Pomorski

Language and compiler

• CUDA provides a set of extensions to the C programming
language
– new storage quantifiers, kernel invocation syntax, intrinsics, vector

types, etc.

• CUDA source code saved in .cu files
– host and device code and coexist in the same file
– storage qualifiers determine type of code

• Compiled to object files using nvcc compiler
– object files contain executable host and device code

• Can be linked with object files generated by other C/C++
compilers

Summer School 2014 Pawel Pomorski

• SAXPY (Scalar Alpha X Plus Y) is a common linear
algebra operation. It is a combination of scalar
multiplication and vector addition:

y = α · x + y

– x and y are vectors, α is a scalar
– x and y can be arbitrarily large

SAXPY

Summer School 2014 Pawel Pomorski

SAXPY: CPU version

• Here is SAXPY in vanilla C:

– the CPU processes vector components sequentially using a
for loop

– note that vecY is an in-out parameter here

void saxpy_cpu(float *vecY, float *vecX, float alpha, int n)
{
 int i;

 for (i = 0; i < n; i++)
 vecY[i] = alpha * vecX[i] + vecY[i];
}

Summer School 2014 Pawel Pomorski

SAXPY: CUDA version

• CUDA kernel function implementing SAXPY

• The __global__ qualifier identifies this function as a kernel
that executes on the device

__global__ void saxpy_gpu(float *vecY, float *vecX, float alpha ,int n)
{
 int i;

 i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i<n)
 vecY[i] = alpha * vecX[i] + vecY[i];
}

Summer School 2014 Pawel Pomorski

SAXPY: CUDA version (cont.)

• blockIdx, blockDim and threadIdx are built-in
variables that uniquely identify a thread’s position in the
execution environment
– they are used to compute an offset into the data array

__global__ void saxpy_gpu(float *vecY, float *vecX, float alpha ,int n)
{
 int i;

 i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i<n)
 vecY[i] = alpha * vecX[i] + vecY[i];
}

Summer School 2014 Pawel Pomorski

SAXPY: CUDA version (cont.)

• The host specifies the number of blocks and block size during
kernel invocation:

saxpy_gpu<<<numBlocks, blockSize>>>(y_d, x_d, alpha, n);

__global__ void saxpy_gpu(float *vecY, float *vecX, float alpha ,int n)
{
 int i;

 i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i<n)
 vecY[i] = alpha * vecX[i] + vecY[i];
}

Summer School 2014 Pawel Pomorski

Computing the index

...

...

vecX

vecY

blockIdx.x = 3
blockDim.x = 8
threadIdx.x = 5

Block 0 Block 1 Block 2 Block 3 Block 4

i = 3 * 8 + 5 = 29

 i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i<n)
 vecY[i] = alpha * vecX[i] + vecY[i];

Summer School 2014 Pawel Pomorski

Key differences

• No need to explicitly loop over array elements – each element is processed in a separate
thread

• The element index is computed based on block index, block width and thread index within
the block

void saxpy_cpu(float *vecY, float *vecX, float alpha, int n)
{
 int i;

 for (i = 0; i < n; i++)
 vecY[i] = alpha * vecX[i] + vecY[i];
}

__global__ void saxpy_gpu(float *vecY, float *vecX, float alpha ,int n)
{
 int i;

 i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i<n)
 vecY[i] = alpha * vecX[i] + vecY[i];
}

Summer School 2014 Pawel Pomorski

Key differences

• Could avoid testing whether i < n if we knew n is a multiple of block size (e.g. use
padded arrays --- recall MPI_Scatter issues)

__global__ void saxpy_gpu(float *vecY, float *vecX, float alpha ,int n)
{
 int i;

 i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i<n)
 vecY[i] = alpha * vecX[i] + vecY[i];
}

__global__ void saxpy_gpu(float *vecY, float *vecX, float alpha ,int n)
{
 int i;

 i = blockIdx.x * blockDim.x + threadIdx.x;
 vecY[i] = alpha * vecX[i] + vecY[i];
}

Summer School 2014 Pawel Pomorski

Host code: overview

• The host performs the following operations:
1. initialize device
2. allocate and initialize input arrays in host DRAM
3. allocate memory on device
4. upload input data to device
5. execute kernel on device
6. download results
7. check results
8. clean-up

Summer School 2014 Pawel Pomorski

Host code: initialization
#include <cuda.h> /* CUDA runtime API */
#include <cstdio>

int main(int argc, char *argv[])
{
 float *x_host, *y_host; /* arrays for computation on host*/
 float *x_dev, *y_dev; /* arrays for computation on device */
 float *y_shadow; /* host-side copy of device results */

 int n = 32*1024;
 float alpha = 0.5f;
 int nerror;

 size_t memsize;
 int i, blockSize, nBlocks;

/* here could add some code to check if GPU device is present */

...

Summer School 2014 Pawel Pomorski

Host code: memory allocation

 ...

 memsize = n * sizeof(float);

 /* allocate arrays on host */

 x_host = (float *)malloc(memsize);
 y_host = (float *)malloc(memsize);
 y_shadow = (float *)malloc(memsize);

 /* allocate arrays on device */

 cudaMalloc((void **) &x_dev, memsize);
 cudaMalloc((void **) &y_dev, memsize);

 /* add checks to catch any errors */

 ...

Summer School 2014 Pawel Pomorski

Host code: upload data

 ...

 /* initialize arrays on host */

 for (i = 0; i < n; i++)
 {
 x_host[i] = rand() / (float)RAND_MAX;
 y_host[i] = rand() / (float)RAND_MAX;
 }

 /* copy arrays to device memory (synchronous) */

 cudaMemcpy(x_dev, x_host, memsize, cudaMemcpyHostToDevice);
 cudaMemcpy(y_dev, y_host, memsize, cudaMemcpyHostToDevice);

 ...

Summer School 2014 Pawel Pomorski

Host code: kernel execution

 ...

 /* set up device execution configuration */
 blockSize = 512;
 nBlocks = n / blockSize + (n % blockSize > 0);

 /* execute kernel (asynchronous!) */

 saxpy_gpu<<<nBlocks, blockSize>>>(y_dev, x_dev, alpha, n);

 /* could add check if this succeeded */

 /* execute host version (i.e. baseline reference results) */
 saxpy_cpu(y_host, x_host, alpha, n);

 ...

Summer School 2014 Pawel Pomorski

Host code: download results

 ...

 /* retrieve results from device (synchronous) */
 cudaMemcpy(y_shadow, y_dev, memsize, cudaMemcpyDeviceToHost);

 /* ensure synchronization (cudaMemcpy is synchronous in most cases, but not all) */

 cudaDeviceSynchronize();

 /* check results */
 nerror=0;
 for(i=0; i < n; i++)
 {
 if(y_shadow[i]!=y_host[i]) nerror=nerror+1;
 }
 printf("test comparison shows %d errors\n",nerror);

 ...

Summer School 2014 Pawel Pomorski

Host code: clean-up

 ...

 /* free memory on device*/
 cudaFree(x_dev);
 cudaFree(y_dev);

 /* free memory on host */
 free(x_host);
 free(y_host);
 free(y_shadow);

 return 0;
} /* main */

Summer School 2014 Pawel Pomorski

Checking for errors in CUDA calls

 ...
 /* check CUDA API function call for possible error */
 if (error = cudaMemcpy(x_dev, x_host, memsize, cudaMemcpyHostToDevice))
 {
 printf ("Error %d\n", error);
 exit (error);
 }

 ...

 saxpy_gpu<<<nBlocks, blockSize>>>(y_dev, x_dev, alpha, n);
 /* make sure kernel has completed*/
 cudaDeviceSynchronize();
 /* check for any error generated by kernel call*/
 if(error = cudaGetLastError())
 {
 printf ("Error detected after kernel %d\n", error);
 exit (error);
 }

Summer School 2014 Pawel Pomorski

Compiling

• nvcc -arch=sm_20 -O2 program.cu -o program.x
• -arch=sm_20 means code is targeted at Compute

Capability 2.0 architecture (what monk has)
• -O2 optimizes the CPU portion of the program
• There are no flags to optimize CUDA code
• Various fine tuning switches possible
• SHARCNET has a CUDA environment module preloaded.

See what it does by executing: module show cuda
• add -lcublas to link with CUBLAS libraries

Summer School 2014 Pawel Pomorski

Be aware of memory bandwidth bottlenecks

• The connection between CPU and GPU has low bandwidth
– need to minimize data transfers
– important to use asynchronous transfers if possible (overlap

computation and transfer)

32GB
SDRAM

CPU
~150 GF

6GB
GDDR

GPU
~0.5 TF

~40 GB/s ~170 GB/s

PCI
8 GB/s

Summer School 2014 Pawel Pomorski

Using pinned memory

• The transfer between host and device is very slow compared to
access to memory within either the CPU or the GPU

• One way to speed it up by a factor of 2 or so is to use pinned
memory on the host for memory allocation of array that will be
transferred to the GPU

int main(int argc, char *argv[])
{
cudaMallocHost((void **) &a_host, memsize_input)
...
cudaFree(a_host);

Summer School 2014 Pawel Pomorski

Timing GPU accelerated codes

• Presents specific difficulties because the CPU and GPU
can be computing independently in parallel, i.e.
asynchronously

• On the cpu can use standard function gettimeofday(...)
(microsecond precision) and process the result

• If trying to time events on GPU with this function, must
ensure synchronization

• This can be done with a call to cudaDeviceSynchronize()
• Memory copies to/from device are synchronized, so can be

used for timing.
• Timing GPU kernels on the CPU may be insufficiently

accurate

Summer School 2014 Pawel Pomorski

Using mechanisms on the GPU for timing

• This is highly accurate on the GPU side, and very useful
for optimizing kernels

...
 cudaEvent_t start, stop;
 float kernel_timer;
...
 cudaEventCreate(&start);
 cudaEventCreate(&stop);
 cudaEventRecord(start, 0);

 saxpy_gpu<<<nBlocks, blockSize>>>(y_dev, x_dev, alpha, n);

 cudaEventRecord(stop, 0);
 cudaEventSynchronize(stop);
 cudaEventElapsedTime(&kernel_timer, start, stop);

 printf("Test Kernel took %f ms\n",kernel_timer);
 cudaEventDestroy(start);
 cudaEventDestroy(stop);

Summer School 2014 Pawel Pomorski

Linear algebra on the GPU

• Linear algebra on the CPU: BLAS, LAPACK
• GPU analogues: CUBLAS, CULA
• CUSPARSE library for sparse matrices
• Use of highly optimised libraries is always better than writing

your own code, especially since GPU codes cannot yet be
efficiently optimized by compilers to achieve acceptable
performance

• Writing efficient GPU code requires special care and
understanding the peculiarities of underlying hardware

Summer School 2014 Pawel Pomorski

CUBLAS

• Implementation of BLAS (Basic Linear Algebra Subprograms)
on top of CUDA

• Included with CUDA (hence free)
• Workflow:

1. allocate vectors and matrices in GPU memory
2. fill them with data
3. call sequence of CUBLAS functions
4. transfer results from GPU memory to host

• Helper functions to transfer data to/from GPU provided

Summer School 2014 Pawel Pomorski

Error checks

• in following example most error checks were removed for
clarity

• each CUBLAS function returns a status object containing
information about possible errors

• It’s very important these objects to catch errors, via calls like
this:

if (status != CUBLAS_STATUS_SUCCESS) {
print diagnostic information and exit}

Summer School 2014 Pawel Pomorski

Initialize program

#include <cuda.h> /* CUDA runtime API */
#include <cstdio>
#include <cublas_v2.h>

int main(int argc, char *argv[])
{
 float *x_host, *y_host; /* arrays for computation on host*/
 float *x_dev, *y_dev; /* arrays for computation on device */

 int n = 32*1024;
 float alpha = 0.5f;
 int nerror;

 size_t memsize;
 int i;

 /* could add device detection here */

 memsize = n * sizeof(float);

Summer School 2014 Pawel Pomorski

Allocate memory on host and device
 /* allocate arrays on host */

 x_host = (float *)malloc(memsize);
 y_host = (float *)malloc(memsize);

/* allocate arrays on device */

 cudaMalloc((void **) &x_dev, memsize);
 cudaMalloc((void **) &y_dev, memsize);

 /* initialize arrays on host */

 for (i = 0; i < n; i++)
 {
 x_host[i] = rand() / (float)RAND_MAX;
 y_host[i] = rand() / (float)RAND_MAX;
 }

 /* copy arrays to device memory (synchronous) */

 cudaMemcpy(x_dev, x_host, memsize, cudaMemcpyHostToDevice);
 cudaMemcpy(y_dev, y_host, memsize, cudaMemcpyHostToDevice);

Summer School 2014 Pawel Pomorski

Call CUBLAS function

 cublasHandle_t handle;
 cublasStatus_t status;

 status = cublasCreate(&handle);

 int stride = 1;
 status = cublasSaxpy(handle,n,&alpha,x_dev,stride,y_dev,stride);

 /* check if cublasSaxpy launched succesfully */

 if (status != CUBLAS_STATUS_SUCCESS)
 {
 printf ("Error in launching CUBLAS routine \n");
 exit (20);
 }

 status = cublasDestroy(handle);

Summer School 2014 Pawel Pomorski

Retrieve computed data and finish

 /* retrieve results from device (synchronous) */
 cudaMemcpy(y_host, y_dev, memsize, cudaMemcpyDeviceToHost);

 /* ensure synchronization (cudaMemcpy is synchronous in most cases, but not all) */

 cudaDeviceSynchronize();

 /* use data in y_host*/

 /* free memory */
 cudaFree(x_dev);
 cudaFree(y_dev);
 free(x_host);
 free(y_host);

 return 0;
}

Summer School 2014 Pawel Pomorski

OpenACC
• New standard for parallel computing developed by compiler

makers. See: http://www.openacc-standard.org/
• Specified in late 2011, released in 2012
• SHARCNET has the PGI compiler on monk which supports it
• OpenACC works somewhat like OpenMP
• Goal is to provide simple directives to the compiler which enable

it to accelerate the application on the GPU
• The tool is aimed at developers aiming to quickly speed up their

code without extensive recoding in CUDA
• As tool is very new and this course focuses on CUDA, only a brief

demo of OpenACC follows

http://www.openacc-standard.org/
http://www.openacc-standard.org/

Summer School 2014 Pawel Pomorski

SAXPY with OpenACC
...
#include <openacc.h>

void saxpy_openacc(float *restrict vecY, float *vecX, float alpha, int n)
{
 int i;
#pragma acc kernels
 for (i = 0; i < n; i++)
 vecY[i] = alpha * vecX[i] + vecY[i];
}

...
 /* execute openacc accelerated function on GPU */
 saxpy_openacc(y_shadow, x_host, alpha, n);
...

• OpenACC automatically builds a kernel function that will run
on GPU

• Memory transfers between device and host handled by
OpenACC and need not be explicit

Summer School 2014 Pawel Pomorski

Compiling SAXPY with OpenACC
[ppomorsk@mon54:~] module unload intel
[ppomorsk@mon54:~] module load pgi
[ppomorsk@mon54:~/CUDA_day1/saxpy] pgcc -acc -Minfo=accel -fast saxpy_openacc.c
saxpy_openacc:
 25, Generating copyin(vecX[0:n])
 Generating copy(vecY[0:n])
 Generating compute capability 1.0 binary
 Generating compute capability 2.0 binary
 26, Loop is parallelizable
 Accelerator kernel generated
 26, #pragma acc loop gang, vector(256) /* blockIdx.x threadIdx.x */
 CC 1.0 : 4 registers; 52 shared, 4 constant, 0 local memory bytes
 CC 2.0 : 8 registers; 4 shared, 64 constant, 0 local memory bytes
[ppomorsk@mon54:~/CUDA_day1/saxpy] export ACC_NOTIFY=1
[ppomorsk@mon54:~/CUDA_day1/saxpy] export PGI_ACC_TIME=1
[ppomorsk@mon54:~/CUDA_day1/saxpy] ./a.out
launch kernel file=/home/ppomorsk/CUDA_day1/saxpy/saxpy_openacc.c function=saxpy_openacc
line=26 device=0 grid=128 block=256 queue=0

Accelerator Kernel Timing data
/home/ppomorsk/CUDA_day1/saxpy/saxpy_openacc.c
 saxpy_openacc
 25: region entered 1 time
 time(us): total=4241617 init=4240714 region=903
 kernels=22 data=461
 w/o init: total=903 max=903 min=903 avg=903
 26: kernel launched 1 times
 grid: [128] block: [256]
 time(us): total=22 max=22 min=22 avg=22

Summer School 2014 Pawel Pomorski

Is OpenACC always this easy?
• No, the loop we accelerated was particularly easy for the compiler

to interpret. It was very simple, and each iteration was completely
independent of the others

• If the accelerate directive is placed before a more complicated
loop, the compiler refuse to accelerate the region, complaining of
errors

• More specific compiler directives must hence be provided for
more complicated functions

• Memory transfers must be handled explicitly if we don’t want to
transfer memory to/from device every time kernel is called

• For complex problems OpenACC grows as complex as CUDA,
but it might get better in the future

Summer School 2014 Pawel Pomorski

CUDA EXTENSION TO THE C
PROGRAMMING LANGUAGE

Introduction to GPU Programming: CUDA

Summer School 2014 Pawel Pomorski

Storage class qualifiers

__global__ Device kernels callable from host

__device__ Device functions (only callable from device)

__host__ Host functions (only callable from host)

__shared__ Memory shared by a block of threads executing on a
multiprocessor.

__constant__ Special memory for constants (cached)

Functions

Data

Summer School 2014 Pawel Pomorski

CUDA data types
• C primatives:

– char, int, float, double, …

• Short vectors:
– int2, int3, int4, uchar2, uchar4, float2, float3, float4, …
– no built-in vector math (although a utility header, cutil_math.h, defines some

common operations)

• Special type used to represent dimensions
– dim3

• Support for user-defined structures, e.g.:
 struct particle
 {
 float3 position, velocity, acceleration;
 float mass;
 };

Summer School 2014 Pawel Pomorski

Library functions available to kernels

• Math library functions:
– sin, cos, tan, sqrt, pow, log, …
– sinf, cosf, tanf, sqrtf, powf, logf, …

• ISA intrinsics
– __sinf, __cosf, __tanf, __powf, __logf, …
– __mul24, __umul24, …

• Intrinsic versions of math functions are faster but less
precise

Summer School 2014 Pawel Pomorski

Built-in kernel variables

dim3 gradDim
– number of blocks in grid

dim3 blockDim
– number of threads per block

dim3 blockIdx
– number of current block within grid

dim3 threadIdx
– index of current thread within block

Summer School 2014 Pawel Pomorski

CUDA kernels: limitations

• No recursion (on devices older than CC 2.0)

• No variable argument lists

• No dynamic memory allocation

• No pointers-to-functions

• No static variables inside kernels

Summer School 2014 Pawel Pomorski

Launching kernels
• Launchable kernels must be declared as ‘__global__ void’

__global__ void myKernel(paramList);

• Kernel calls must specify device execution environment
– grid definition – number of blocks in grid
– block definition – number of threads per block
– optionally, may specify amount of shared memory per block (more on that later)

• Kernel launch syntax:

myKernel<<<GridDef, BlockDef>>>(paramList);

Summer School 2014 Pawel Pomorski

Thread addressing

• Kernel launch syntax:

myKernel<<<GridDef, BlockDef>>>(paramlist);

• GridDef and BlockDef can be specified as dim3
objects
– grids can be 1D, 2D or 3D
– blocks can be 1D, 2D or 3D

• This makes it easy to set up different memory addressing
for multi-dimensional data.

Summer School 2014 Pawel Pomorski

Thread addressing (cont.)
• 1D addressing example: 100 blocks with 256 threads per block:

dim3 gridDef1(100,1,1);
dim3 blockDef1(256,1,1);
kernel1<<<gridDef1, blockDef1>>>(paramList);

• 2D addressing example: 10x10 blocks with 16x16 threads per block:

dim3 gridDef2(10,10,1);
dim3 blockDef2(16,16,1);
kernel2<<<gridDef2, blockDef2>>>(paramList);

• Both examples launch the same number of threads, but block and thread
indexing is different
– kernel1 uses blockIdx.x, blockDim.x and threadIdx.x
– kernel2 uses blockIdx.[xy], blockDim.[xy], threadIdx.[xy]

Summer School 2014 Pawel Pomorski

Thread addressing (cont.)
• One-dimensional addressing example:

• Two-dimensional addressing example:

__global__ void kernel1(float *idata, float *odata)
{
 int i;

 i = blockIdx.x * blockDim.x + threadIdx.x;
 odata[i] = func(idata[i]);
}

__global__ void kernel2(float *idata, float *odata, int pitch)
{
 int x, y, i;

 x = blockIdx.x * blockDim.x + threadIdx.x;
 y = blockIdx.y * blockDim.y + threadIdx.y;
 i = y * pitch + x;
 odata[i] = func(idata[i]);
}

Summer School 2014 Pawel Pomorski

Thread addressing (cont.)=.%>(3$(33%>??*+'$S5&+-RT$

86))>%$85.&&B$OPQP 0R$45/(6'.(+

__global__ void kernel1(float *idata, float *odata)
{
 int i;

 i = blockIdx.x * blockDim.x + threadIdx.x;
 odata[i] = func(idata[i]);
}
…
dim3 gridDef1(100,1,1);
dim3 gridDef1(256,1,1);
kernel1<<<gridDef1, blockDef1>>>(paramList);

>91.$
I?+2J"
B$ I?+2J"

G$ I?+2J"
#$ I?+2J"

&$ I?+2J"
$$ I?+2J"

)$ I?+2J"
!$ I?+2J"

'$ I?+2J"
FFRRR

I?+2J"$$
;*9/6."

B"
;*9/6."

G"
;*9/6."

#"
;*9/6."

&"
;*9/6."

$"
;*9/6."
GHH,

RRR$

__global__ void kernel1(float *idata, float *odata)
{
 int i;

 i = blockIdx.x * blockDim.x + threadIdx.x;
 odata[i] = func(idata[i]);
}
...
dim3 gridDef1(100,1,1);
dim3 blockDef1(256,1,1);
kernel1<<<gridDef1, blockDef1>>>(paramList);

Summer School 2014 Pawel Pomorski

Thread addressing (cont.)

Grid

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

__global__ void kernel2(float *idata, float *odata, int pitch)
{
 int x, y, i;

 x = blockIdx.x * blockDim.x + threadIdx.x;
 y = blockIdx.y * blockDim.y + threadIdx.y;
 i = y * pitch + x;
 odata[i] = func(idata[i]);
}
...
dim3 gridDef2(10,10,1);
dim3 blockDef2(16,16,1);
kernel2<<<gridDef2, blockDef2>>>(paramList);

Summer School 2014 Pawel Pomorski

OPTIMIZATION STRATEGIES
Introduction to GPU Programming: CUDA

Summer School 2014 Pawel Pomorski

Beyond the basics…

• Exposing parallelism

• Memory address coalescing

• Shared memory

• Thread synchronization

Summer School 2014 Pawel Pomorski

Exploiting fully the parallelism of the problem
• A GPU has a large number of cores, to take full advantage

of the GPU they must all be given something to do.
• It is hence beneficial to have the work to be done

decomposed among a large number of threads.
– GPU architecture can easily handle large numbers of threads

without overhead (unlike CPU)
– for this to work optimally threads belonging to the same block

must be executing similar (ideally exactly the same) instructions,
operating on different data

– this means one must avoid divergent branches within a block
– size of block should be multiple of 32 (warp size), must not

exceed the maximum for device

Summer School 2014 Pawel Pomorski

Important caveat: is more threads always useful?
• Each thread consumes some resources, mainly registers and

shared memory. Given that these resources are limited, the
number of threads “alive” at any one time (i.e. actively
running on the hardware) is also limited.

• Hence the benefit of adding more threads tends to plateau.
– one can optimize around the resources needed, especially

registers, to improve performance

Summer School 2014 Pawel Pomorski

Avoiding transfers between GPU and device
• That is a huge bottleneck, but unavoidable since GPU has

limited capabilities, most significantly no access to file
system (note: AMD’s APU Fusion avoids this problem)

• CPU essential because GPU cannot be independent. All
kernels must be launched from the CPU which is the overall
controller
– changed on Kepler architecture released in late 2012 on which

kernels can launch other kernels
• Using pinned memory helps a bit
• Using asynchronous transfers (overlapping computation and

transfer) also helps

Summer School 2014 Pawel Pomorski

Optimizing access to global memory
• A GPU has a large number of cores with great

computational power, but they must be “fed” with data from
global memory

• If too little computation done on core relative to memory
transfer, then it becomes the bottleneck.
– most of the time is spent moving data in memory rather than

number crunching
– for many problems this is unavoidable

• Utilizing the memory architecture effectively tends to be
the biggest challenge in CUDA-fying algorithms

Summer School 2014 Pawel Pomorski

GPU memory is high bandwidth/high latency
• A GPU has potentially high bandwidth for data transfer

from global memory to cores. However, the latency for this
transfer for any individual thread is also high (hundreds of
cycles)

• Using many threads, latency can be overcome by hiding it
among many threads.
– group of threads requests some memory, while it is waiting for it

to arrive, another group is computing
– the more threads you have, the better this works

• The pattern of global memory access is also very important,
as cache size of the GPU is very limited.

Summer School 2014 Pawel Pomorski

Global memory access is fast when coalesced
• It is best for adjacent threads belonging to the same warp

(group of 32 threads) to be accessing locations adjacent in
memory (or as close as possible)

• Good access pattern: thread i accesses global memory array
member a[i]

• Inferior access pattern: thread i accesses global memory
array member as a[i*nstride] where nstride >1

• Clearly, random access of memory is a particularly bad
paradigm on the GPU

Summer School 2014 Pawel Pomorski

For some problems coalesced access is hard
• Example: matrix transpose
• A bandwidth-limited problem that is dominated by memory

access

4(-%*L$-%(+?C&?>$S5&+-RT$

86))>%$85.&&B$OPQP 0R$45/(6'.(+

Q$ O$ V$ f$ `$ d$

Q$
O$
V$
f$
`$
d$

I*(=1,.580,2.),8.:11)*,20,
65/=3*0,:*,14),5=1(=1,321.:D,

Summer School 2014 Pawel Pomorski

Naïve matrix transpose (cont.)
;(u2>$)(-%*L$-%(+?C&?>$S5&+-RT$

86))>%$85.&&B$OPQP 0R$45/(6'.(+

Q$ O$ V$ f$

Q$ O$ V$ f$ N$

N$

J:*6),14),321.:6)0,2.),015.);,20,
K%,2..270L,4).)M0,8421,:0,
261=2//7,42(()*:*9N,

Summer School 2014 Pawel Pomorski

Can this problem be a avoided?

• Yes, by using a special memory which does not have a
penalty when accessed in a non-coalesced way

• On the GPU this is the shared memory

• Shared memory accesses are faster than even coalesced
global memory accesses. If accessing same data multiple
times, try to put it in shared memory.

• Unfortunately, it is very small (48 KB or 16KB)

• Must be managed by the programmer

Summer School 2014 Pawel Pomorski

Shared memory

• Each multiprocessor has some fast
on-chip shared memory

• Threads within a thread block can
communicate using the shared
memory

• Each thread in a thread block has R/
W access to all of the shared
memory allocated to a block

• Threads can synchronize using the
intrinsic

__syncthreads();

Looking Beyond Graphics

©2009 In-Stat All Rights Reserved | http://www.in-stat.com Page 7

Figure 3 shows a Fermi streaming multiprocessor with 32 CUDA cores and additional elements. This

diagram explains why CUDA cores can get by without their own register files, caches, or load/store

units — those resources are shared among all 32 CUDA cores in a streaming multiprocessor. Those 32
cores are designed to work in parallel on 32 instructions at a time from a bundle of 32 threads, which

NVIDIA calls a “warp.” (This organization has implications for the CUDA programming model, as we’ll

explain below.)

Figure 3. Streaming-multiprocessor block diagram. In the Fermi architecture, each streaming

multiprocessor has 32 CUDA cores — four times as many as the previous GT200 and G80

architectures. All 32 cores share the resources of their streaming multiprocessor, such as

registers, caches, local memory, and load/store units. The “special function units” (SFUs)

handle complex math operations, such as square roots, reciprocals, sines, and cosines.

Summer School 2014 Pawel Pomorski

Helpful tools

• CUDA 5 released - supports CC 3.5 features
• CUDA 5 includes Nsight, an Integrated Development

Environment (IDE) for Linux/Mac based on Eclipse. IDE
incorporates CUDA-aware editor, profiler and debugger in
one close-integrated package. Try it out!

• There is a Visual Studio edition of Nsight for Windows
• On SHARCNET the DDT visual debugger has powerful

GPU debugging capability

Summer School 2014 Pawel Pomorski

Further reading

• CUDA Programming Guide

• CUDA sample projects
– many contain extended documentation
– similarity to the matrix transpose, the reduction project is an

excellent step-by-step walkthrough of how to optimize code for
the hardware (read/write coalescing, shared memory, bank
conflicts, etc.)

• Lots of documentation/presentations/tutorials online
• NVIDIA website - lots of materials

Summer School 2014 Pawel Pomorski

Now released - NVIDIA Kepler K20 and K20X
Tesla K10 Tesla K20 Tesla K20X Tesla K40

CC 3.0 3.5 3.5 3.5

Dynamic
Parallelism &
HyperQ

NO YES YES YES

DP floating point 0.19 TF 1.17 TF 1.31 TF 1.43 TF

SP floating point 4.58 TF 3.52 TF 3.95 TF 4.29 TF

CUDA cores 2x1536 2496 2688 2880

Memory 8 GB 5 GB 6 GB 12 GB

Other CC 3.5 cards: GTX Titan, GTX780 ($700), GT 640 ($100)

Summer School 2014 Pawel Pomorski

HyperQ

• multiple CPU cores can access the GPU at once

Summer School 2014 Pawel Pomorski

Dynamic parallelism

• Kernels can be launched on the GPU

Summer School 2014 Pawel Pomorski

Dynamic parallelism

• Kernels can be launched by other kernels, syntax similar to
that on GPU

