
Part V

Big C++

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 55 / 124



Object oriented programming (OOP)

Non-OOP: functions and data that are accessible from everywhere.

OOP: Data and functions (methods) together in an object.

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 56 / 124



Object oriented programming (OOP)

Data is encapsulated and accessed using methods specific for that
(kind of) data.

The interface (collection of methods) should be designed around the
meaning of the actions: abstraction.

Programs typically contain multiple objects of the same type, called
instances.

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 57 / 124



Object oriented programming (OOP)

Programs typically contain different types of objects.

Types of objects can be related, and their methods may act in the
same ways, such that the same code can act on different types of
object, without knowing the type: polymorphism.

Types of object may build upon other types through inheritance.

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 58 / 124



OOP Example

Example (abstract object hierarchy)

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 59 / 124



OOP Languages

C++ was one of the earlier languages which supported OOP.
(it also supports other programming paradigms.)

Not the earliest OOP language though: Simula, Smalltalk

Java, C#, D all came later.

And one can program in an object oriented fashion in almost any
modern programming language (see matrix example in C).

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 60 / 124



Aspects of OOP in C++

1 Classes and objects

2 Polymorphism

3 Derived types/Inheritance

4 Advanced: Generic programming/Templates

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 61 / 124



Big C++: Classes and objects

What are classes and objects?

Objects in C++ are made using ’classes’.

A class is a type of object.

Using a class, one can create one or more instances of that class.

These are the objects.

Syntactically, classes are structs with member functions.

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 62 / 124



Classes: Why structs with member functions?

An object should have properties.

1 A struct can already collect properties of different types.

2 It should be possible to declare several objects of the same type, just
as in “int x,y;”. A struct already constitutes a type definition.

3 Functions on structs often pass a pointer to a struct as a parameter.
Embedding functions in structs gives a natural implied parameter.

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 63 / 124



Classes: How do we add these member functions?

class classname {
public:

type1 name1;
type2 name2;
type3 name3(arguments); // declare member function
...

};

public allows use of members from outside the class (later more)

Example

class Point2D {
public:

int j;
double x,y;
void set(int aj,double ax,double ay);

};

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 64 / 124



Classes: How do we define these member functions?

The scope operator ::

type3 classname::name3(arguments) {
statements

}

Example

void Point2D::set(int aj,double ax,double ay) {
j = aj;
x = ax;
y = ay;

}

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 65 / 124



Classes: How do we use the class?

Definition

classname objectname;
classname* objectptrname = new classname;

Access operator . and ->

objectname.name // variable access
objectname.name(arguments); // member function access
objectptrname->name // variable access
objectptrname->name(arguments); // member function access

Example

Point2D myobject;
myobject.set(1,-0.5,3.14);
std::cout << myobject.j << std::endl;

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 66 / 124



Classes: How do we use the class?

The this pointer

The member functions of a class know what object to work on
because under the hood, they are passed the pointer to the object.

For those cases where the pointer to the object is needed, its name is
always this.

In other words, in the set function, j and this->j are the same.

this is implicitly the first argument to the member function
(this will become important in operator overloading later).

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 67 / 124



Data hiding: The secret agenda of classes

Good components hide implementation data and member functions.

Each member function or data member can be
1 private: only member functions of the same class can access these
2 public: accessible from anywhere
3 protected: only this class and its derived classes have access.

These are specified as sections within the class.

Example (Declaration)

class Point2D {
private:

int j;
double x,y;

public:
void set(int aj,double ax,double ay);
int get j();
double get x();
double get y();

};
Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 68 / 124



Data hiding: The secret agenda of classes

Example (Definition)

int Point2D::get j() {
return j;

}
double Point2D::get x() {

return x;
}
double Point2D::get y() {

return y;
}

Example (Usage)

Point2D myobject;
myobject.set(1,-0.5,3.14);
std::cout << myobject.get j() << std::endl;

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 69 / 124



Data hiding: The secret agenda of classes

Gotcha:

When hiding the data through these kinds on accessor functions, now,
each time the data is needed, a function has to be called, and there’s an
overhead associate with that.

The overhead of calling this function can sometimes be optimized
away by the compiler, but often it cannot.

Considering making data is that is needed often by an algorithm just
public, or use a friend .

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 70 / 124



Constructors and deconstructors

A class defines a type, and when an instance of that type is declared,
memory is allocated for that struct.

A class is more than just a chunk of memory.
For example, arrays may have to be allocated (new . . . ) when the
object is created.

When the object ceases to exist, some clean-up may be required
(delete . . . ).

Constructor

. . . is called when an object is created.

Destructor

. . . is called when an object is destroyed.

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 71 / 124



Constructors

Declare constructors as member functions of the class with no return type:

class classname{
...

public:
classname(arguments);
...

}

Define them in the usual way,

classname::classname(arguments) {
statements

}

Use them by defining an object or with new.

classname object(arguments);
classname* object = new classname(arguments);

You usually want a constructor without arguments as well.

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 72 / 124



Constructors

Example

class Point2D {
private:

int j;
double x,y;

public:
Point2D(int aj,double ax,double ay);
int get j();
double get x();
double get y();

};
Point2D::Point2D(int aj,double ax,double ay) {

j = aj;
x = ax;
y = ay;

}
Point2D myobject(1,-0.5,3.14);

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 73 / 124



Destructors

Destructor

. . . is called when an object is destroyed.
Occurs when a non-static object goes out-of-scope, or when delete is
used.
Good opportunity to release memory.

Example

classname* object = new classname(arguments);
...
delete object;// object deleted: calls destructor

{
classname object;

}// object goes out of scope: calls destructor

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 74 / 124



Destructors

Declare destructor as a member functions of the class with no return type,
with a name which is the class name plus a ˜ attached to the left.

class classname{
...

public:
˜classname();
...

}

Define a destructor as follows:

classname::˜classname() {
statements

}

A destructor cannot have arguments.

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 75 / 124



Gotcha: Mixing new/delete and malloc/free

Trivial objects (plain structs without constructors) can in principle be
a allocated with new or with malloc.

But pointers allocated with new cannot be freed using free, and for
pointers allocated with malloc, delete should not be used.

Non-trivial objects cannot be allocated with malloc, since the
constructor is not called.

It is best to stick to new and delete .

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 76 / 124



More member functions

. . . to support the class as a new type:

1 Default constructor
The default constructor is a constructor without arguments.
If you have no constructors at all, C++ already knows what to do
upon construction with no arguments (i.e., nothing), and you do
not need to supply a default constructor (but it can still be a good
idea).
If you have any constructors with arguments, omitting a default
constructor severely limits the use of the class.

2 Copy constructor

3 Assignment operator
If the constructor allocates memory, the latter two should be
supplied. If there is no memory allocation in the constructor, C++
can generate the copy constructor and assignment operator for
you, performing a bit-wise or shallow copy.

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 77 / 124



Default constructor

Declaration
classname {

...
public:

classname();
...

};

Definition

classname::classname() {
statements

}

This function is needed to be able to

Declare an object without parameters: classname name;

Declare an array of objects: name = new classname[number];

Should set elements to values so that destruction or assignment work.

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 78 / 124



Copy constructor

Declaration
classname {

...
public:

classname (classname & anobject);
...

};

Definition

classname::classname(classname & anobject) {
statements

}

Used to

Define an object using another object: classname name(existing);

Pass an object by value to a function (often a bad idea).

Return an object from a function.

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 79 / 124



Assignment operator

Declaration
classname {

...
public:

classname& operator=(classname & anobject);
...

};

Definition

classname& classname::operator=(classname & anobject) {
statements
return *this;

}

Used to assign one object to another object: name = existing;

But not in classname name = existing; calls the copy constructor.
Returns a reference to this, to allow for the common C-construction
name = anothername = existing;

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 80 / 124



HANDS-ON:
Convert the matrix structure to a proper c++ class, and rewrite main to
use it.

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 81 / 124



Hands-on 2 - instructions

Copy the whole example nice directory to example big

$ cp -r example nice example big

Modify the code to use:

1 Classes instead of structs

2 Member functions

3 Constructors and deconstructors

4 Private member variables

Test that the code builds and runs.

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 82 / 124



Hands-on 2 - answers

If you did not quite get there, or if you have a few remaining bugs:

Copy the c++ version I made from the example big directory in
scinetcppexamples.tgz, so we can continue later.

Test that the code builds and runs.

Be sure to look at the source code and see if it make sense to you.

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 83 / 124


