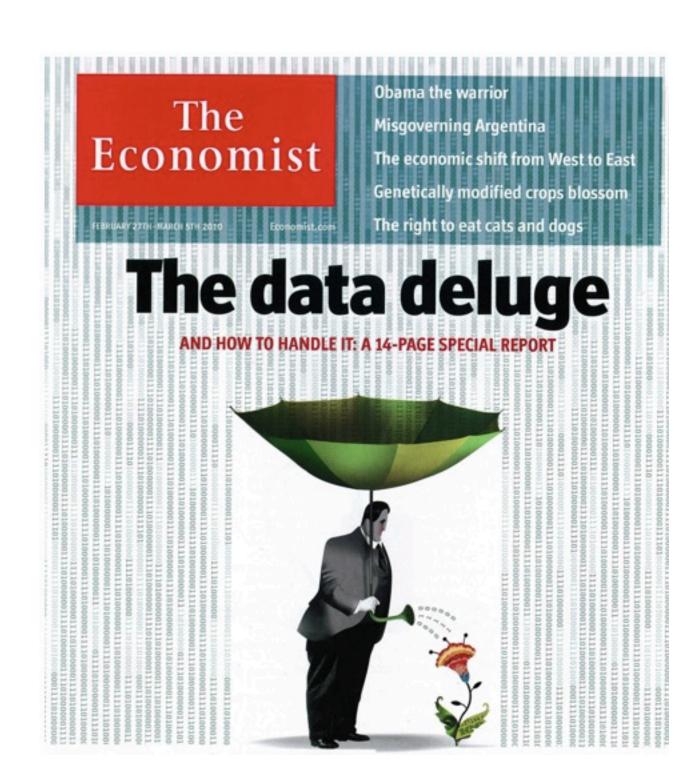
Dealing with Large Datasets

or, "So I have 40TB of data.."

Jonathan Dursi, SciNet/CITA, University of Toronto

Data is getting bigger

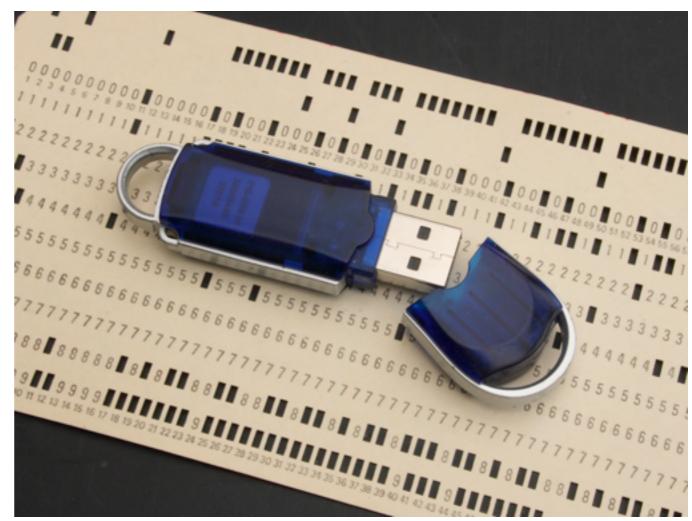
- Increase in computing power makes simulations larger/more frequent
- Increase in sensor technology makes experiments/ observations larger
- Data sizes that used to be measured in MB/GB now measured in TB/PB.
- Easier to make big data than to do something useful with it!



Economist, 27 Feb 2010

What is "big data"?

- Absolute numbers don't matter
 - (and change rapidly anyway)
- Big is defined by its effects on us the scientists
 - What techniques must we use to analyze it?
- Two big milestones that define big..



Big #I:Too Big to fit in Memory

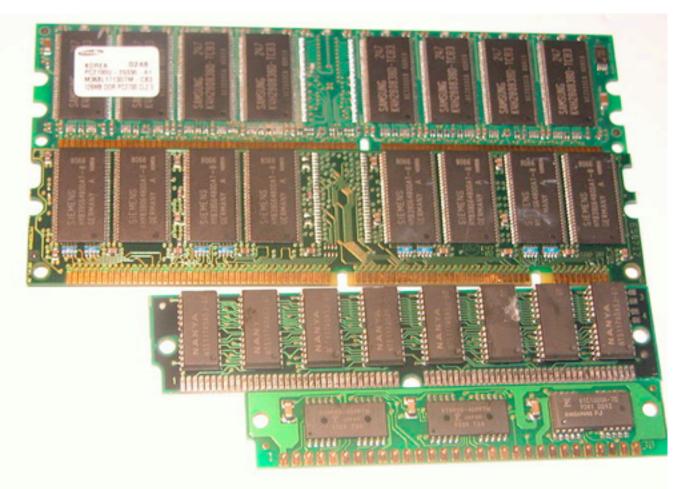
- If fits in memory,
 - easy global view of whole problem
 - simple workflow



http://commons.wikimedia.org/wiki/File:Kinds-of-RAM.JPG

Big #I:Too Big to fit in Memory

- Otherwise, must use more complicated techniques
 - Out of core
 - Multi-resolution
 - Parallel computation



http://commons.wikimedia.org/wiki/File:Kinds-of-RAM.JPG

Big #I:Too Big to fit in Memory

- Today:
 - ~2-I6GB for workstation
 - ~128GB-256GB on specialized (shared) machine.

http://commons.wikimedia.org/wiki/File:Kinds-of-RAM.JPG

Big #2:Too Big to fit on one disk

- Once data size becomes comparable to typical storage medium, I/O becomes significant limitation
- Hardware has to be considered (RAID, parallel file systems)
- Almost certainly need parallel computing.

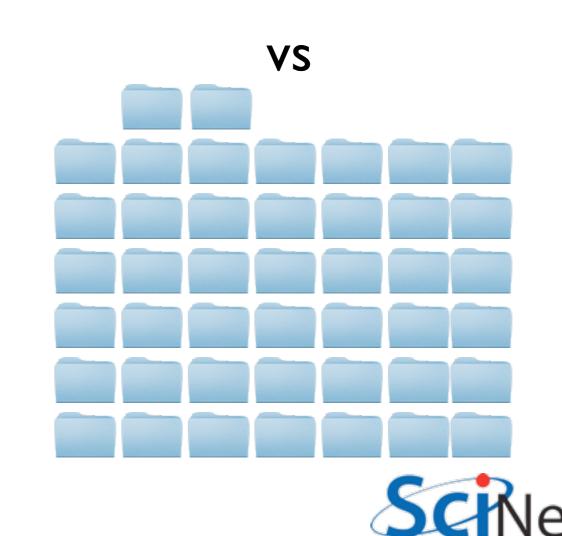
http://commons.wikimedia.org/wiki/File:Hard-drive.jpg

2 Terabytes		20 Terabytes		30 Terabytes	
\$100 Hard drive		medium-sized HPC simulation; 128 GPC nodes, 10 outputs.		raw data for 30x short-read sequence of human genome	
	Ferabytes	330 Teraby	tes	I Petabyte: LSST each ~month,	
Size of MERRA climate database of 1979-current obs. data		Data output by LHC every week		must be searched in ~ real time for transient events	

Si science After Marian Bantjes, Wired magazine, Jun 2008

Big Data can be big, or many, data sets

- Few, very large, simulation outputs
- Very many, comparably small, experimental data
- Both can quickly add to TB
- Surprisingly, advice/techniques for these two cases overlap



For big data, scalability is critical

- Many tools work great on desktop-sized datasets,
- But fail utterly at large scale:
 - on enormous files
 - when same task must be repeated on thousands of files.
- Need to use tools, techniques that handle scale well.

 Not all tools will work

under arbitrarily large loads.

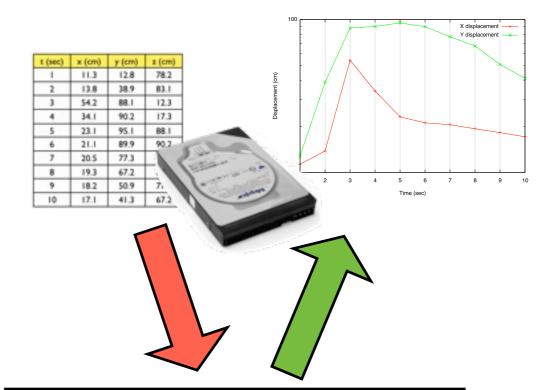
Scalability requires many things:

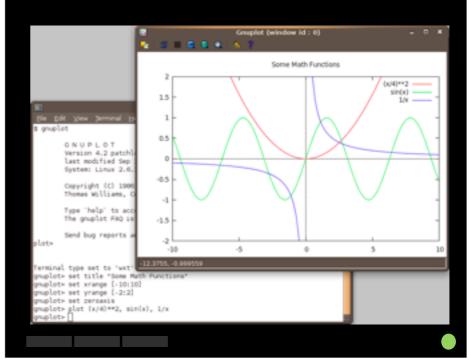
- Scalable I/O strategy
- Scalable data management
- Automatability / scriptability
- Scalable analysis flow
- Scalable tools
- Least scalable link in the workflow will bottleneck **entire process.**

Jessie Menn http://www.flickr.com/photos/jesse_menn/3164739580/

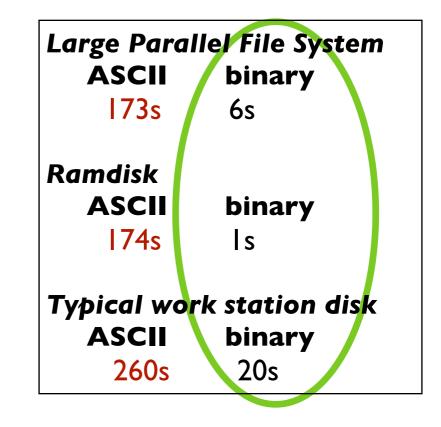
At scale, must plan how to do Input/Output

- Just reading and writing 40 TB from one drive at a time takes ~2weeks!
 - 50MB/s read, 100MB/s write
 - .. And that's **best** case
- Before planning analysis, planning *flow of data* important.



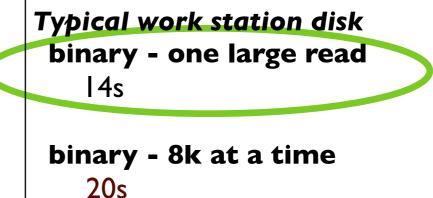


- Binary smaller files, *much* faster to read/write.
- You're not going to read 40TB of data yourself; don't bother trying.
- **Data:** machine-readable
- Output: graphs, summary
- tables human-readable



Timing data: writing 128M double-precision numbers

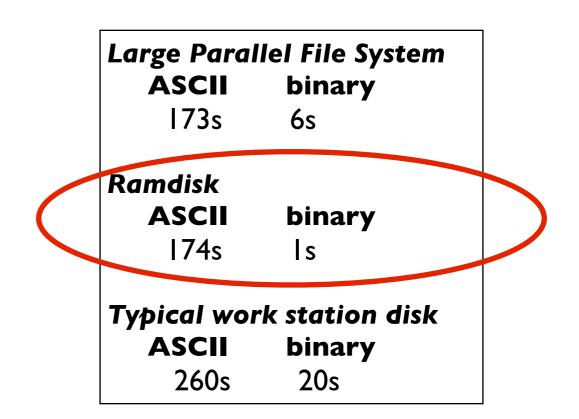
- All disk systems do best when reading/writing large, contiguous chunks
- I/O operations (IOPS) are themselves expensive
 - moving around within a file
 - opening/closing
- Seeks 3-15ms enough time to read 0.75 MB!



- binary 8k chunks, lots of seeks 50s
- binary seeky + open and closes 205s

Timing data: reading 128M double-precision numbers

- RAM is much better for random accesses
- Use right storage medium for the job!
- Where possible, read in contiguous large chunks, do random access in memory
- Much better if you use most of data read in



Ramdisk binary - one large read

binary - 8k at a time s

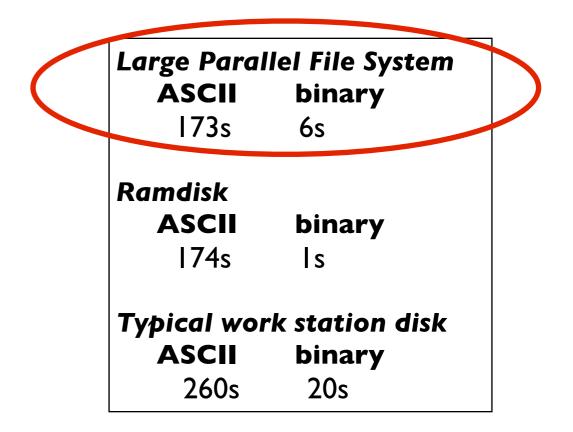
binary - 8k chunks, lots of seeks

```
binary - seeky + open and closes
1.5s
```


Parallel I/O and large file systems

- Large disk systems featuring many servers, disks
- Can serve files to many clients concurrently
- Parallel File Systems -
 - Lustre, Panasas, GlusterFS, Ceph, GPFS...

- Well built parallel file systems can greatly increase bandwidth
- But typically even worse penalties for seeky/IOPSy operations.
- Parallel FS can help with big data in two ways



Large Parallel File System binary - one large read 7.5s

binary - 8k at a time 62 s

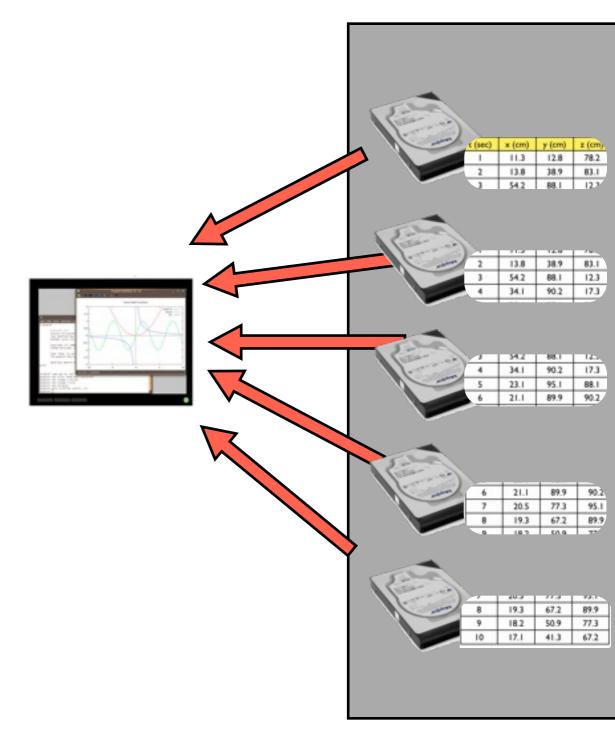
binary - 8k chunks, lots of seeks 428 s

binary - seeky + open and closes 2|37 s

Parallel FS

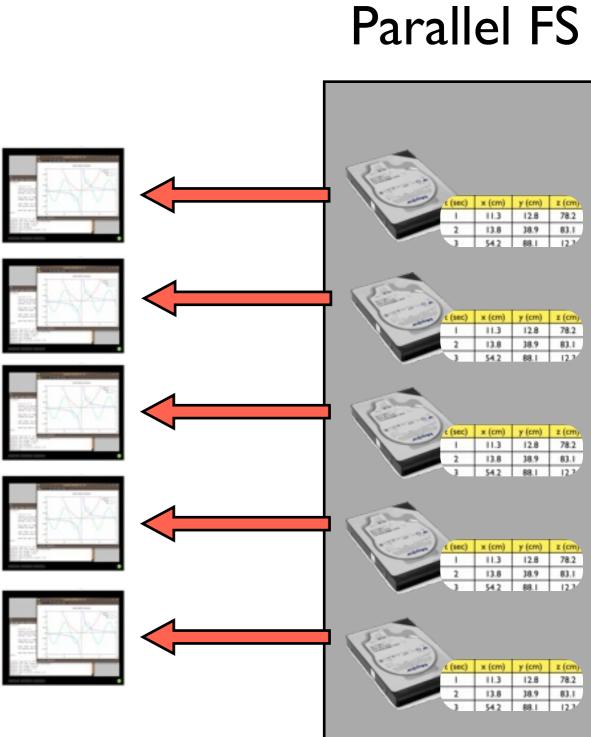
Striping data across disks

- Single client can make use of multiple disk systems simultaneously
- "Stripe" file across many drives
- One drive can be finding next block while another is sending current block



Parallel operations on separate data

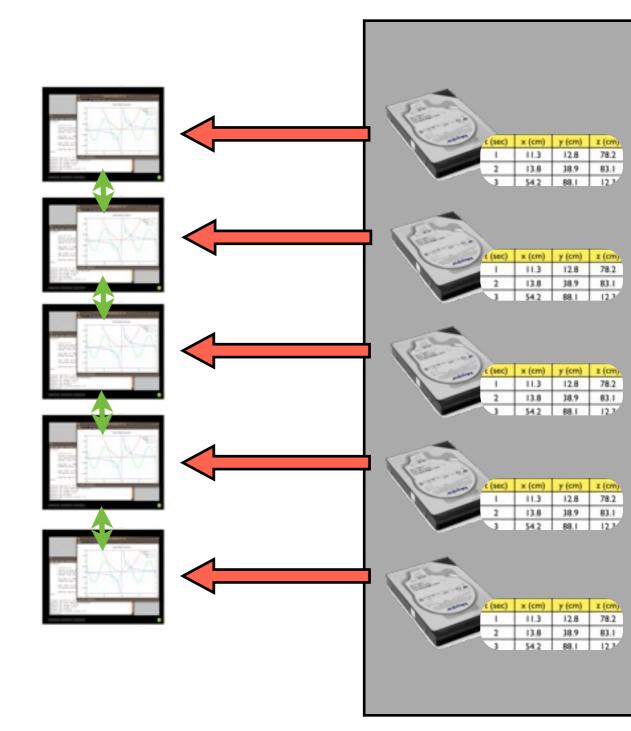
- Or can do truly parallel operations
 - multiple clients doing independent work
- Easy parallelism (good for lots of small data) - process many small files separately



Parallel operations on separate data

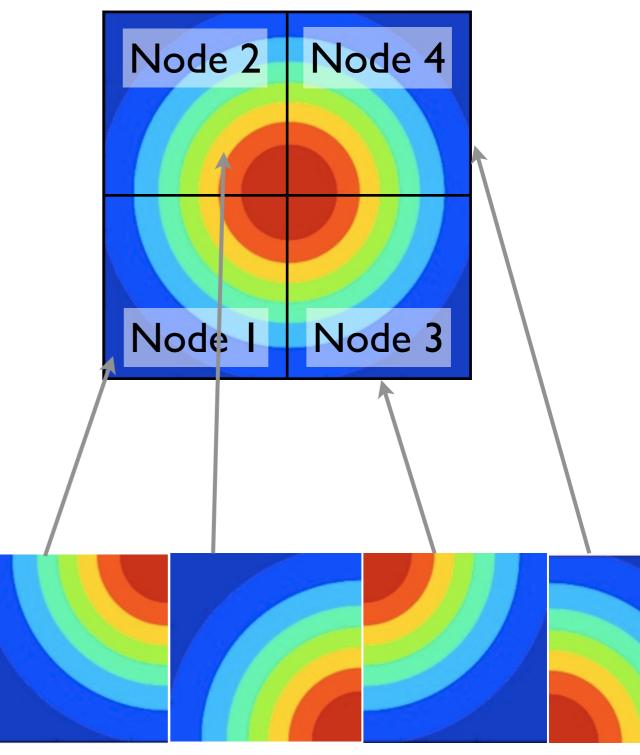
- Or can do truly parallel operations
 - multiple clients doing independent work
- Easy parallelism (good for lots of small data) - process many small files separately
- Harder parallelism each does part of a larger analysis job on a big file.

Parallel FS



Data files must take advantage of parallel I/O

- For parallel operations on single big files, parallel filesystem isn't enough
- Data must be written in such a way that nodes can efficiently access relevant subregions
- HDF5, NetCDF formats typical examples for scientific data

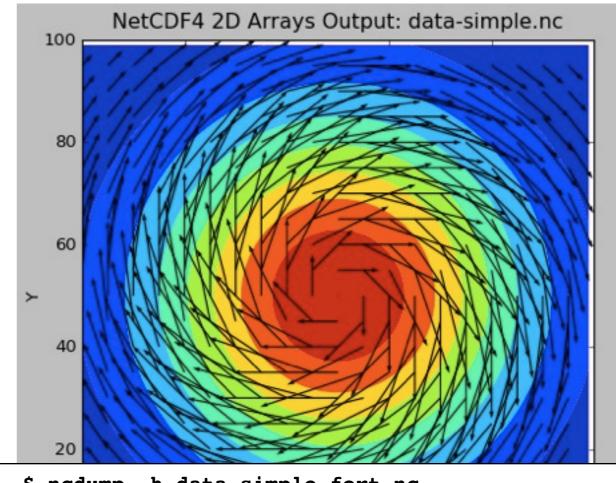


Disk: (HDF5, NetCDF, pVTK..)

These formats are selfdescribing

- HDF5, NetCDF have other advantages anyway
 - Binary
 - Self describing contains not only data but names, descriptions of arrays, etc
 - Many tools can read these formats

• Big data - formats matter



```
$ ncdump -h data-simple-fort.nc
netcdf data-simple-fort {
dimensions:
    X = 100 ;
    Y = 100 ;
    velocity components = 2 ;
variables:
    double Density(Y, X) ;
    double Velocity(Y, X, velocity components) ;
```

}

Data Management

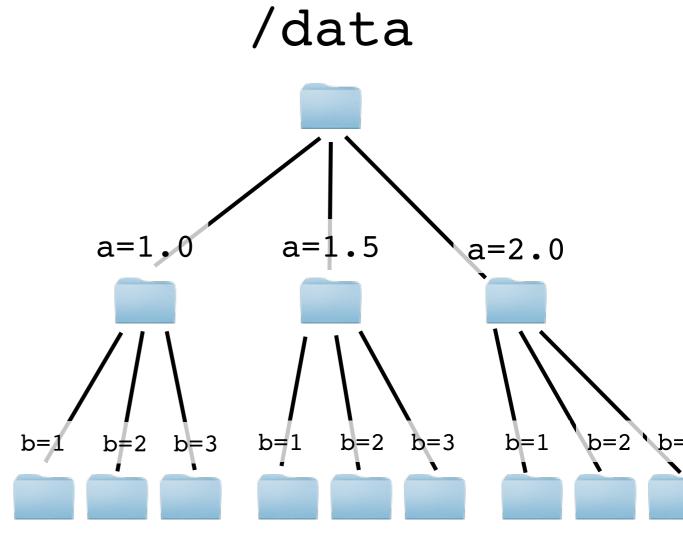
- Human-interpretable filenames lose their charm after few dozen files
- (or even after a few months pass)...
- Rigorously maintained metadata becomes essential.
- Also, need to avoid zillions of files in same directory

Location: 😂 C:\user\research\data			~
Filename 🔺	Date Modified	Size	Туре
関 data_2010.05.28_test.dat	3:37 PM 5/28/2010	420 KB	DAT file
🚦 data_2010.05.28_re-test.dat	4:29 PM 5/28/2010	421 KB	DAT file
🚦 data_2010.05.28_re-re-test.dat	5:43 PM 5/28/2010	420 KB	DAT file
🚦 data_2010.05.28_calibrate.dat	7:17 PM 5/28/2010	1,256 KB	DAT file
🛿 data_2010.05.28_huh??.dat	7:20 PM 5/28/2010	30 KB	DAT file
😝 data_2010.05.28_WTF.dat	9:58 PM 5/28/2010	30 KB	DAT file
😝 data_2010.05.29_aaarrrgh.dat	12:37 AM 5/29/2010	30 KB	DAT file
😝 data_2010.05.29_#\$@*&!!.dat	2:40 AM 5/29/2010	0 KB	DAT file
👩 data_2010.05.29_crap.dat	3:22 AM 5/29/2010	437 KB	DAT file
data_2010.05.29_notbad.dat	4:16 AM 5/29/2010	670 KB	DAT file
data_2010.05.29_woohoo!!.dat	4:47 AM 5/29/2010	1,349 KB	DAT file
🚦 data_2010.05.29_USETHISONE.dat	5:08 AM 5/29/2010	2,894 KB	DAT file
analysis_graphs.xls	7:13 AM 5/29/2010	455 KB	XLS file
ThesisOutline!.doc	7:26 AM 5/29/2010	38 KB	DOC file
Notes_Meeting_with_ProfSmith.txt	11:38 AM 5/29/2010	1,673 KB	TXT file
DUNK	2:45 PM 5/29/2010		Folder
😺 data_2010.05.30_startingover.dat	8:37 AM 5/30/2010	420 KB	DAT file
<]	ſ.		
Type: Ph.D Thesis Modified: too many times	Copyright: Jorge Cham	www.phdcomics.com	

PhD Comics http://www.phdcomics.com/comics/archive.php?comicid=1323

Data Management

- Hierarchy of directories work better,
- As long as layout will meet all analysis needs
- Some metadata is included in the directory structure itself
- Avoids tonnes of files in single
 directory



Databases for science

- Databases?
- Overhead (seeky), but not so bad if chunks in database very large
- Very handy if will be often regrouping the data
 - Don't yet know what relations you will highlight, or
 - Will highlight several overlapping relations

	run#	success	size	transport	•••		
	93	no	I2k	eth			
	I	yes	512	eth			
	87	yes	64	ib			
	13	no	32	eth			
$ $ $ $ $ $ $ $ $ $ $ $							

insert into benchmarkruns
values (newrunnum, datestr,
timestr, juliannum)

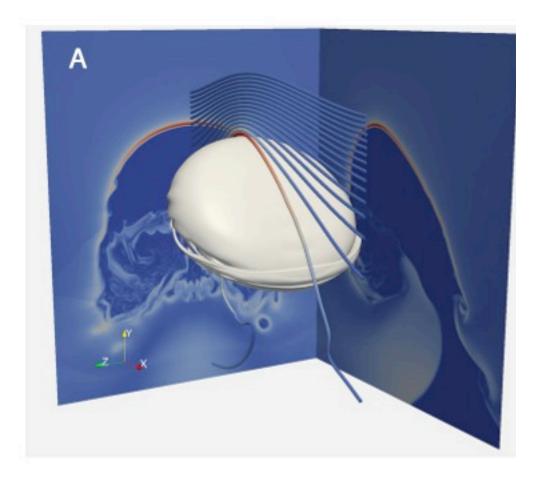
```
SELECT
```

```
nprocs,test,size,transport,mpi
ype,runtime,mopsperproc,run
FROM mpirundata WHERE
(success=1)
```


At scale, crucial to track data

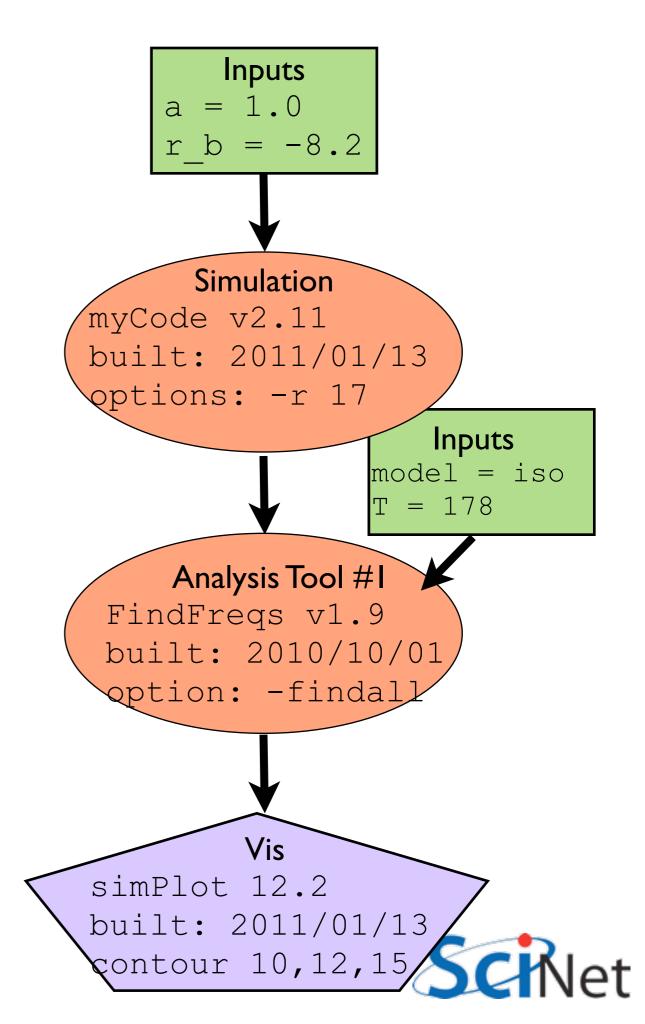
provenance

- Two of my inputs and one analysis routine changed; do I need to redo this figure?
- How What steps were involved in making this figure?
- 2 years later, someone questions the result - can I reproduce this key figure with new code, etc?
- Different at scale more plots,
 longer to generate



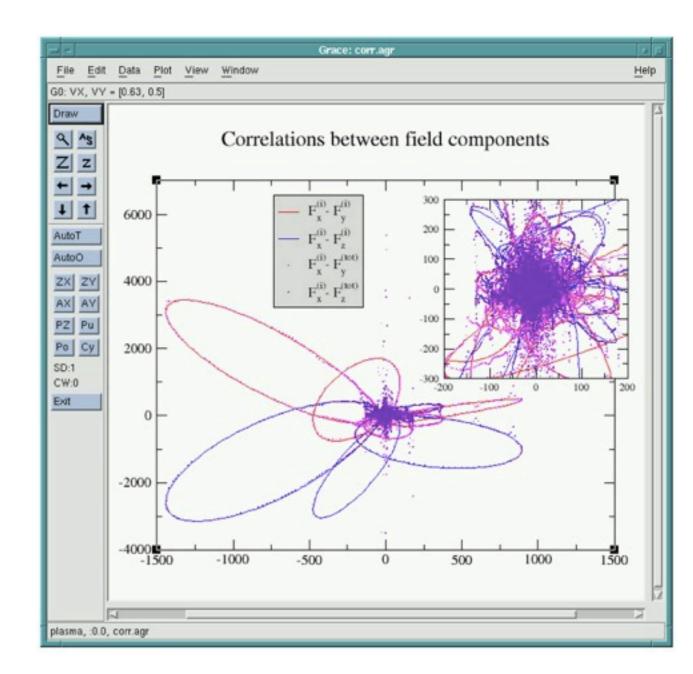
At scale, *crucial* to track data provenance

- Provenance documentation of origin of a work
- Inputs, tools, steps in process
- Versions, dates, options
- Version control can greatly help you with this
- Then propagate the data along steps, keep it in (say) comment fields
- <u>http://software-carpentry.org/4_0/</u> <u>essays/provenance</u>



Scalability requires Automation

- Need for automation clear when dealing with thousands of small datasets..
- But large sets, too. (Sitting at a GUI for hours while waiting data to load not an option)



XMGrace, <u>http://plasma-gate.weizmann.ac.il/Grace/</u>

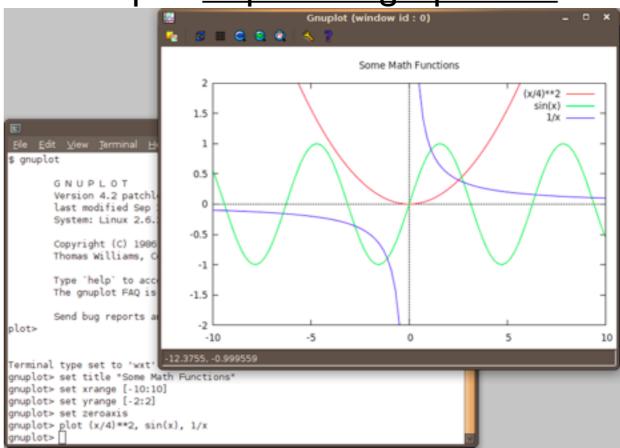
Gnuplot http://www.gnuplot.info

Scalability requires Automation

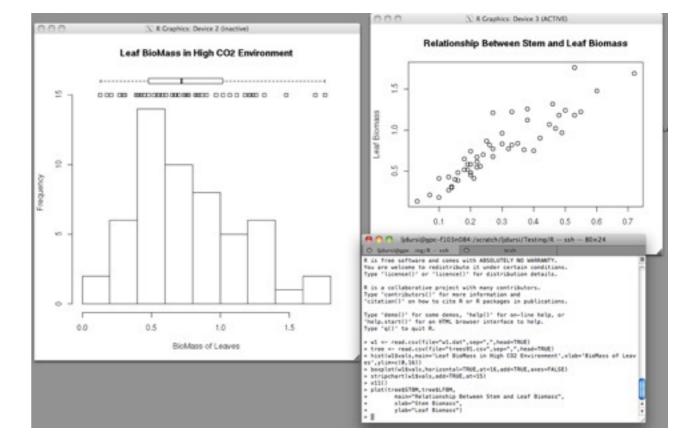
- Scripting based packages like gnuplot, matplotlib, R...
- Implicitly automatable
- Harder learning curve

SCIENCE illustrated

- Learning basic Unix shell scripting priceless for automation
- <u>http://software-carpentry.org/</u>
 4 0/shell/



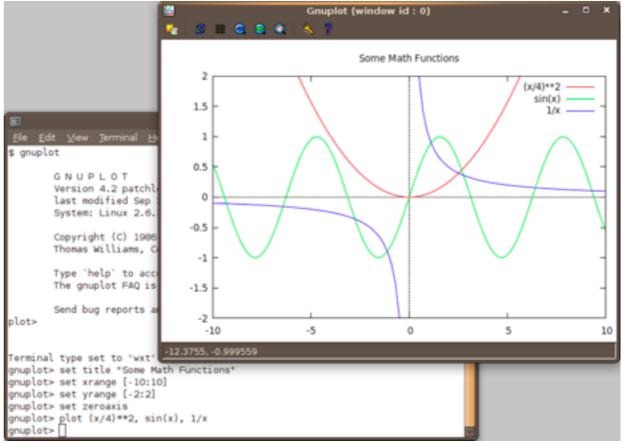
R <u>http://www.r-project.org/</u>



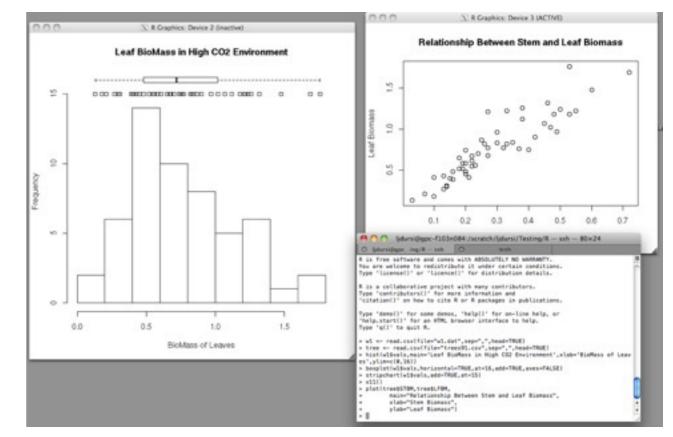
Gnuplot http://www.gnuplot.info

Scalability requires Automation

- Scripting makes processing thousands of files feasible, redoing huge visualizations less tedious
- Provides reproducibility, some form of documentation of process
- Scripts can be kept in version control



R <u>http://www.r-project.org/</u>



Planning your analysis pipeline

- Start w/ 40 TB, will presumably end with much less
- Do as much of that reduction as early as possible in the process
 - Average, bin, integrate, combine, contour
- Automate everything
- Easier if you know exactly what you'll be doing

58 57 74

32 39

18

17 34 26 29 15 88 74 23 25 41 19

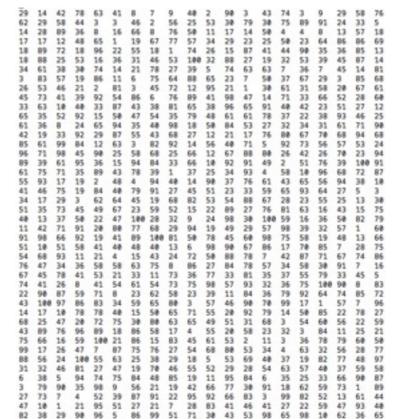
27

44 32

53

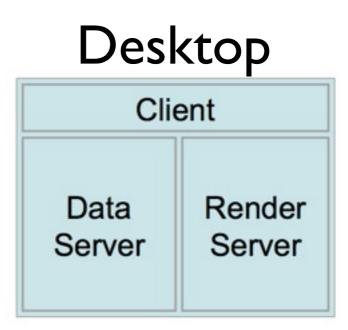
Planning your analysis pipeline

- Don't generate dozens of TB of data without knowing what you're going to do with it!
- Start small
- Explore on smaller data, or subsets



8828

1 5 8



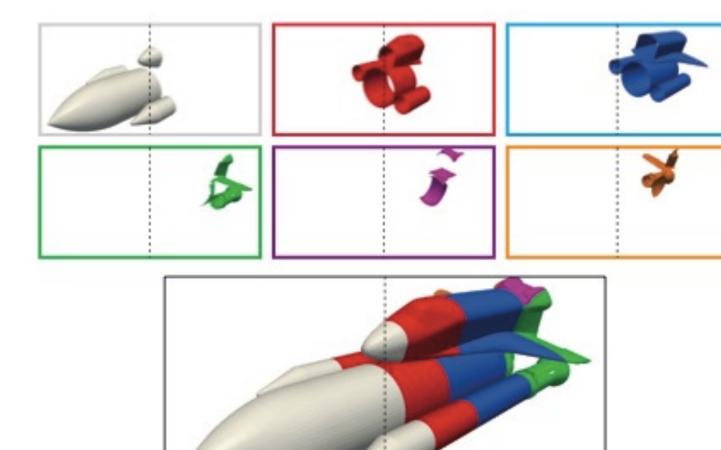
Scalability may require parallel

- Scalable visualization packages
 - eg, ParaView, VislT
- Client/Server model
- On desktop, client/server coexist
- Or, servers can be many nodes on cluster!

Parallel Cluster Desktop Render Data Client Server Server Paraview Tutorial, <u>http://paraview.org/</u>

Parallel Visualization

- Decompose data onto many processors (need parallel file systems, format!)
- Each processor generates its portion of the geometry, or image
- Composited en route to client
- Can control visualization interactively from desktop

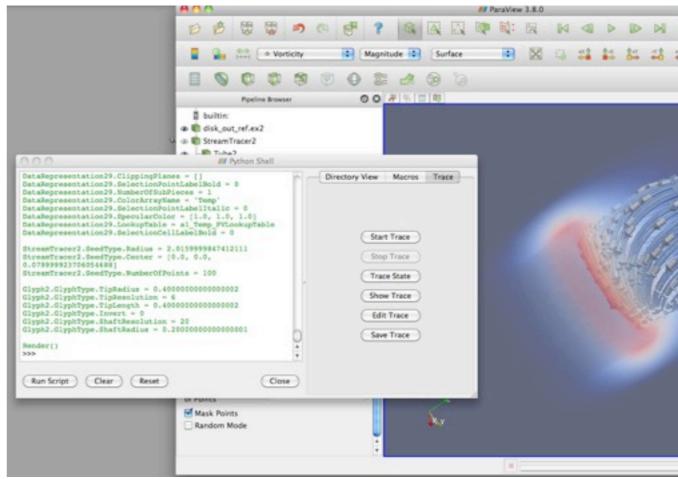


IceT users guide, <u>http://www.cs.unm.edu/~kmorel/IceT/</u>

Remains scriptable

- Even in client/server mode, these tools are scriptable and automatable
- Client end can be run as a script
- Client coordinates all communication with server nodes
- Can also be run without GUI, pure batch mode on cluster.

llustrated



Paraview, <u>http://paraview.org</u>/

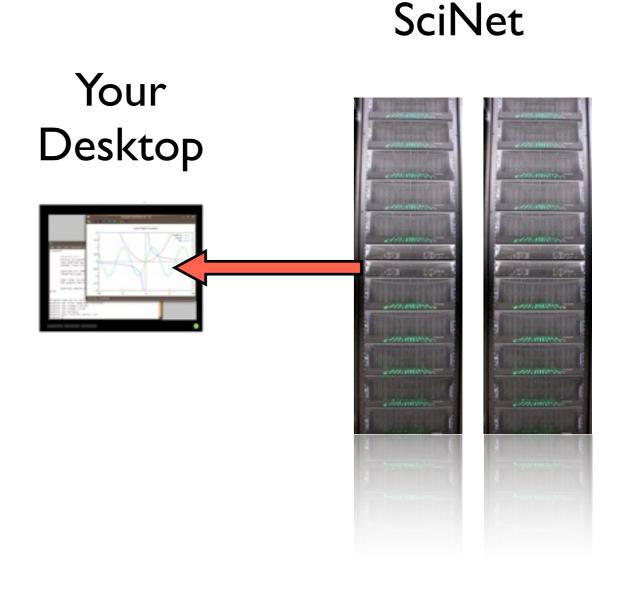
Highly Scalable Parallel Visualization

- Can work to extremely large scales
- Vislt 4 trillion zone simulations
- ParaView billions of polygons/ sec

Red RoSE visualization cluster (credit: Sandia Nat'l Lab)

Paraview on SciNet

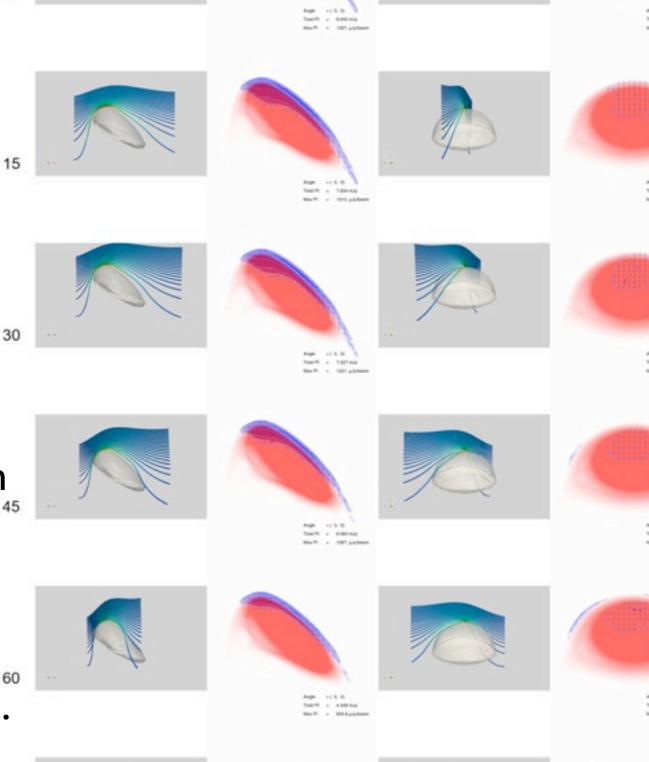
- Launch job on cluster
- Module load paraview
- Mpirun paraview server
- Interactive? Connect your desktop client
- Run visualization

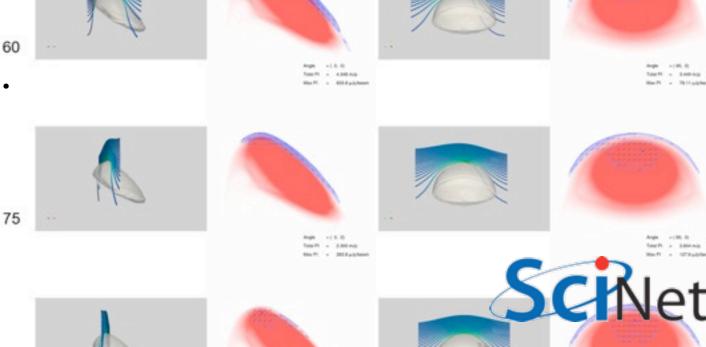


Paraview on SciNet

0

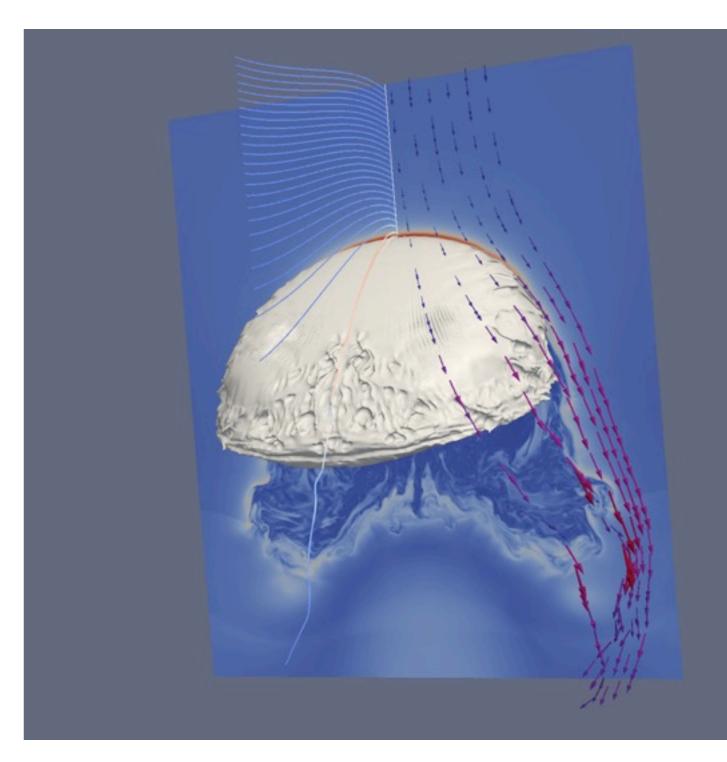
- One of first simulations run on SciNet's GPC
- Full data set was about 40 TB
- Included collections of smaller simulations and big simulations.





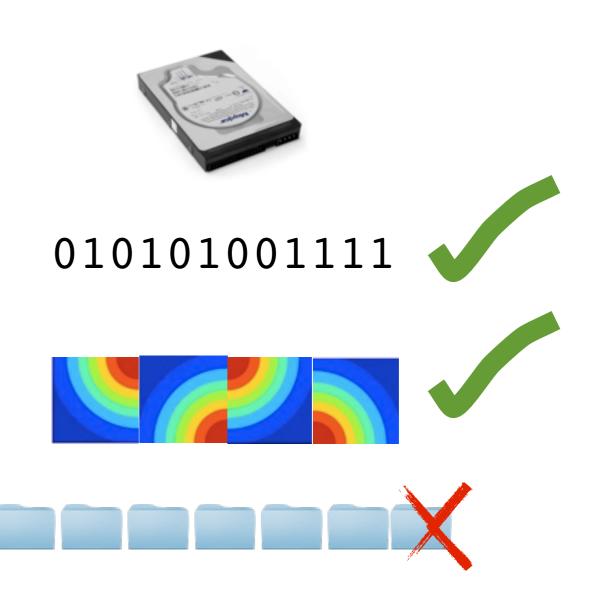
Paraview on SciNet

- High resolution simulation
- 2.5 billion zones
- 330,000 cpu hours
- 256 processors just to load, visualize data



Plan I/O carefully

- Binary files
- As much as possible, large files
- File formats that can be read in parallel, subregions extracted
- Avoid zillions of files
- Especially avoid zillions of files in single directory

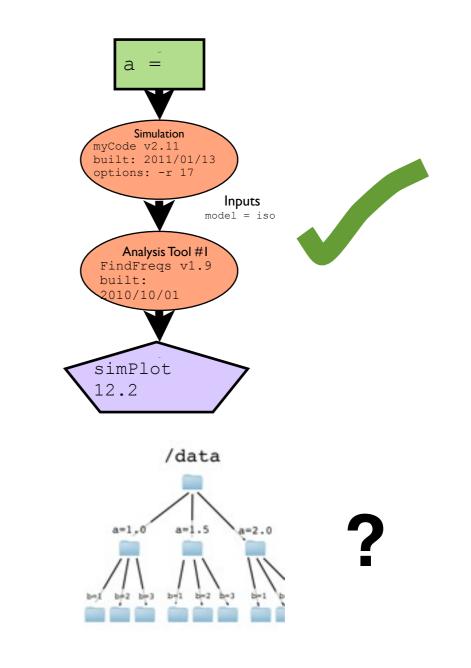


Data management must scale

 Include metadata for provenance

SCIENCE illustrated

- Reduce need to re-do
- Sensible data management
 - Hierarchy of data directories only if that will always work
 - Data bases, formats that allow metadata



Use scalable, automatable tools.

- For large data sets, parallel tools
 ParaView, Vislt, etc
- Scriptable tools gnuplot, python, R, ParaView/Visit...
- Scripts provide reproducability!



Carefully plan your workflow

- Reduce data as early as possible in the process
 - Average, integrate, combine, contour
- Automate everything

gnuplot> reset gnuplot> set xrange [-5:5] gnuplot> set yrange [-5:5] gnuplot> unset key gnuplot> set palette rgbformulae 33,13,10 gnuplot> p 'test.dat' with image, 'cont.dat' w l lt -1 lw 1.5 gnuplot> show term

terminal type is aqua 0 title "Figure 0" size 846,594 font "T

Thanks to

- Mubdi Rahman, for putting this all together
- Ramses van Zon, Scott Northrup, Danny Gruner importance of I/O