
Image Processing

• Spatial / GIS
• Medical Imaging
• Oil and gas

exploration
• ...
• A good starting

use case for GPUs

Image Processing

• Today:
• Greyscaling (~contrast enhancement)
• Smoothing (de-speckling/de-noising)

• Today’s processing are simple, butbut often
part of real image processing pipeline

• (eg, astronomical image processing)

Allocate arrays

main(), example1.cGenerate image

Write image

imagenrows
= height

ncols = width

...

...

...

g[] =
r[] =

b[] =

nrows*ncols

Greyscaling the image
(CPU)

imagenrows
= height

ncols = width

...

...

...

g[] =
r[] =

b[] =

nrows*ncols

Workflow
• Allocate memory
• Greyscale the image (taking data from input,

processing it, putting it in output)
• Writing to a file
• Freeing memory

Compilation process
.cu file

nvcc
host
obj

code

PTX code device
 code

Intermediate,
device-independent

2nd
compilation

stage
Executable

__host__

__global__

__device__

Workflow

• GPU looks the same
• ...but let’s go a little deeper:

gpuGreyscale(), example1.cu

GPU memory is separate

• Different machine,
different mem

• “Device” vs “Host”
• Copy back and forth

over PCI bus
• Must explicitly

allocate, copy data to/
from host/device

GPU mem

CPU mem

gpuGreyscale(), example1.cu

Allocate input, output
arrays on gpu

gpuGreyscale(), example1.cu

Copy host input data
to GPU input data

gpuGreyscale(), example1.cu

Run GPU code

gpuGreyscale(), example1.cu

Copy output GPU data
to host

gpuGreyscale(), example1.cu

Free GPU mem

Note all the error
checking!

• GPU is essentially an embedded device
• Can’t crash, throw error every time an error

is encountered
• Will fail silently if you give it invalid data and

truck on as best it can
• Need to explicitly test for error conditions.

GPU Code:

GPU Code:
__global__: GPU code, callable as a kernel from the host.

Alternatives: __kernel__ (only callable from other GPU code),
__host__ (on host, default).

GPU Code:

What is our thread index? (which thread are we?)

GPU vs CPU Code:

• CPU: Loops
over pixels

• GPU: Loop over
pixels implicit

GPU Kernel Launch
• Kernel launch starts

nrows*ncols
threads

• Each has a thread
index

• Each thread
operates on one
pixel

• Very fine-grained
parallelism

GPUs and Threads

• The kernel launch
starts a block of
nrows*ncols threads

• Threads run in lock
step

• Each operates on a
work item

• Data parallelism

each thread takes one work item

threadIdx = 0 1 2 3 4 ...

Image size
• Right now, we’re working in

very small images
• That’s no good!
• Increase dimx/dimy to be

closer to lgdmix/lgdimy.
• Recompile, run.
• What happens?

Image size
• Right now, we’re working in

very small images
• That’s no good!
• Increase dimx/dimy to be

closer to lgdmix/lgdimy.
• Recompile, run.
• What happens?

Maximum # threads

• Compile, run querydevs
• On my laptop:

!!

Maximum # threads

• On a machine with a Tesla
M2070 (Fermi):

!!

cudaGetDeviceProperty

querydevs.cu

Maximum # threads

• Huh? How can we do big/
fast computing if we can only
operate on 1k pixels?

Threads, Blocks, Grids

• CUDA threads are
organized into blocks

• Threads operate in
SIMD(ish) manner -- each
executing same
instructions in lockstep.

• Only difference are
thread ids

• Can have a grid of
multiple blocks

CUDA Thread

Block of
CUDA Threads

Grid of
CUDA Blocks

GPUs and Threads

• The GPU is split up
into several “streaming
multiprocessors”
(SMs)

• Each have several
cores, all operating in
lockstep.

CUDA - H/W mapping
• Blocks are assigned to a

particular SM

• Executed there one
‘warp’ at a time
(typically 32 threads)

• Multiple blocks may be on
SM concurrently

• Good; latency hiding

• Bad - SM resources
must be divided
between blocks

• If only use 1 Block - 1 SM

GPU

SM#1 SM#2

GPUs and Threads
• With only one block,

locked onto one SM -
using only fraction of
your GPU.

• Better is to break
computation onto many
blocks of threads

• Take advantage of
multiple SMs

• Can have many more
blocks than SMs, this is
often helpful.

Multi-block greyscaling

• Look in example2
• (Nclab: download

http://support.scinet.utoronto.ca/~ljdursi/example2.py)
• Break into multiple blocks
• Can take full advantage of GPU

http://support.scinet.utoronto.ca/~ljdursi/example2.py
http://support.scinet.utoronto.ca/~ljdursi/example2.py
http://support.scinet.utoronto.ca/~ljdursi/example2.py

Multi-block greyscaling

example2/testpattern.cu : gpuGreyscaleWithBlocks()

Multi-block greyscaling

blockIdx = 0; blockDim = 5
threadIdx = 0 1 2 3 4

blockIdx =1
threadIdx 0 1 2 3 4

Multi-block greyscaling

• Now we can operate on full-
sized image

• Only limit here is size of
memory on GPU

• (can get from querydevs.cu;
~1GB on my laptop)

Let’s take 15 minutes to get familiar with this;
modify example 2 so that it does something else

to image:

- Makes image red-only
- Puts big blue square in top right corner

...

Smoothing

• Smoothing/Blurring

• So far, we’ve done operations
that only depend on the local
pixel values.

• Many/most image processing
algorithms also depend on
neighbouring values.

Smoothing
• “Stencil”

• For each point, consider
it and it’s nearest
neighbour

• Take weighted average of
r, g, b values

• Averages out noise

• Can use different stencil
size - tradeoff between
reducing noise and
washing out small scale
features.

CPU Code
example3/testpattern.cu

GPU Code
example3/testpattern.cu

GPU Code
example3/testpattern.cu

