
Image Processing

• Spatial / GIS
• Medical Imaging
• Oil and gas 

exploration
• ...
• A good starting

use case for GPUs



Image Processing

• Today:
• Greyscaling (~contrast enhancement)
• Smoothing (de-speckling/de-noising)

• Today’s processing are simple, butbut often 
part of real image processing pipeline

• (eg, astronomical image processing)





Allocate arrays

main(), example1.cGenerate image

Write image



imagenrows 
= height

ncols = width

...

...

...

g[] = 
r[] = 

b[] = 

nrows*ncols



Greyscaling the image
(CPU)



imagenrows 
= height

ncols = width

...

...

...

g[] = 
r[] = 

b[] = 

nrows*ncols



Workflow
• Allocate memory
• Greyscale the image (taking data from input, 

processing it, putting it in output)
• Writing to a file
• Freeing memory



Compilation process
.cu file

nvcc
host 
obj 

code

PTX code device
 code

Intermediate,
device-independent

2nd 
compilation 

stage
Executable

__host__

__global__

__device__



Workflow

• GPU looks the same
• ...but let’s go a little deeper:



gpuGreyscale(), example1.cu



GPU memory is separate

• Different machine, 
different mem

• “Device” vs “Host”
• Copy back and forth 

over PCI bus
• Must explicitly 

allocate, copy data to/
from host/device

GPU mem

CPU mem



gpuGreyscale(), example1.cu

Allocate input, output
arrays on gpu



gpuGreyscale(), example1.cu

Copy host input data
to GPU input data



gpuGreyscale(), example1.cu

Run GPU code



gpuGreyscale(), example1.cu

Copy output GPU data
to host



gpuGreyscale(), example1.cu

Free GPU mem



Note all the error 
checking!

• GPU is essentially an embedded device
• Can’t crash, throw error every time an error 

is encountered
• Will fail silently if you give it invalid data and 

truck on as best it can
• Need to explicitly test for error conditions.



GPU Code:



GPU Code:
__global__: GPU code, callable as a kernel from the host.

Alternatives: __kernel__ (only callable from other GPU code), 
__host__ (on host, default).



GPU Code:

What is our thread index? (which thread are we?)



GPU vs CPU Code:

• CPU: Loops 
over pixels

• GPU: Loop over 
pixels implicit



GPU Kernel Launch
• Kernel launch starts 

nrows*ncols 
threads

• Each has a thread 
index

• Each thread 
operates on one 
pixel

• Very fine-grained 
parallelism



GPUs and Threads

• The kernel launch 
starts a block of 
nrows*ncols threads

• Threads run in lock 
step

• Each operates on a 
work item

• Data parallelism

each thread takes one work item

threadIdx = 0    1    2   3    4   ...



Image size
• Right now, we’re working in 

very small images
• That’s no good!  
• Increase dimx/dimy to be 

closer to lgdmix/lgdimy.
• Recompile, run.
• What happens?
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Maximum # threads

• Compile, run querydevs
• On my laptop:

!!



Maximum # threads

• On a machine with a Tesla 
M2070 (Fermi):

!!



cudaGetDeviceProperty

querydevs.cu



Maximum # threads

• Huh?  How can we do big/
fast computing if we can only 
operate on 1k pixels?



Threads, Blocks, Grids

• CUDA threads are 
organized into blocks

• Threads operate in 
SIMD(ish) manner -- each 
executing same 
instructions in lockstep. 

• Only difference are 
thread ids

• Can have a grid of 
multiple blocks

CUDA Thread

Block of 
CUDA Threads

Grid of 
CUDA Blocks



GPUs and Threads

• The GPU is split up 
into several “streaming 
multiprocessors” 
(SMs)

• Each have several 
cores, all operating in 
lockstep.



CUDA - H/W mapping
• Blocks are assigned to a 

particular SM

• Executed there one 
‘warp’ at a time 
(typically 32 threads)

• Multiple blocks may be on   
SM concurrently

• Good; latency hiding

• Bad - SM resources 
must be divided 
between blocks

• If only use 1 Block - 1 SM

GPU

SM#1 SM#2



GPUs and Threads
• With only one block, 

locked onto one SM - 
using only fraction of 
your GPU.

• Better is to break 
computation onto many 
blocks of threads

• Take advantage of 
multiple SMs

• Can have many more 
blocks than SMs, this is 
often helpful.



Multi-block greyscaling

• Look in example2
• (Nclab: download

http://support.scinet.utoronto.ca/~ljdursi/example2.py )
• Break into multiple blocks
• Can take full advantage of GPU

http://support.scinet.utoronto.ca/~ljdursi/example2.py
http://support.scinet.utoronto.ca/~ljdursi/example2.py
http://support.scinet.utoronto.ca/~ljdursi/example2.py


Multi-block greyscaling

example2/testpattern.cu : gpuGreyscaleWithBlocks()



Multi-block greyscaling



blockIdx = 0; blockDim = 5
threadIdx = 0  1  2  3  4  

blockIdx =1
threadIdx  0  1  2  3  4  



Multi-block greyscaling

• Now we can operate on full-
sized image

• Only limit here is size of 
memory on GPU

• (can get from querydevs.cu; 
~1GB on my laptop)



Let’s take 15 minutes to get familiar with this;
modify example 2 so that it does something else

to image:

- Makes image red-only
- Puts big blue square in top right corner

...



Smoothing

• Smoothing/Blurring

• So far, we’ve done operations 
that only depend on the local 
pixel values.

• Many/most image processing 
algorithms also depend on 
neighbouring values.



Smoothing
• “Stencil”

• For each point, consider 
it and it’s nearest 
neighbour

• Take weighted average of 
r, g, b values

• Averages out noise

• Can use different stencil 
size - tradeoff between 
reducing noise and 
washing out small scale 
features.



CPU Code
example3/testpattern.cu 



GPU Code
example3/testpattern.cu 



GPU Code
example3/testpattern.cu 


