
N-Body 1

N-Body Everywhere

Gravity important in most
astrophysical situations.

Cosmology

Slice of Hubble-volume
simulation. 109 particles.

Uses Hydra code of Hugh
Couchman.

Picture 1% of simulation.

(At least on large scales)

Galaxy Clusters

From millennium
simulation. 1010
particles. Image

from Springel et al.

Galaxy Mergers

• Movie from John Dubinski @CITA

• Calculated on CITA McKenzie -
predecessor to Sunnyvale.

• (Play move here...)

Globular Clusters

HST Picture of
M80

Star Formation

Solar System

• >2 bodies generally
not stable.

• Is solar system
stable on long
times?

• High-precision,
conservative n-body
sims way to answer.

Gravity Not Easy

• All particles talk to all particles.

• Can use FFTs for large-scale gravity

• See also tree codes, AMR...

Difficulties

• Somehow information about all particles
has to make it to all particles. Lots of
communication.

• Universe is clumpy - clumps have more
particles, higher acceleration.

• Good codes go like nlogn (or even better?)

Nothing Compared to...
Holmberg in 1941 did analog n-body simulation.
Took light bulbs - light falls like r2, just like gravity.
Started off 74 light bulbs, used photovoltaic cell to
measure light intensity at each light bulb, which is
gravity. Calculated motion, physically moved
lightbulbs, repeat. Found colliding galaxies merged,
took 30 years to verify.

Claimed to get spiral structure. (Experts?)

Direct Summation
• One way to do gravity is direct summation. For every pair of

particles, find force between them.

• Have to sum over all pairs of particles: n particles n times means n2
work.

• Difference between n2 and nlogn when n=1010 is, um, big.

• So, only used for science in special purpose runs, especially solar
system dynamics. However, even fancy codes use direct summation,
ends up limiting step.

• Need to do 2 things: calculate forces, and update particle positions.

Step 1: Calculate Forces

• Look at nbody.c.

• In general, particles should not be thought of as point
masses. Instead, treat as diffuse blobs of matter.

• Force law if Fx,i=∑(xi-xj)/rij3/2 ,rij2=ε2+(xi-xj)2.

• Extra ε2 softens force between very close particles. So,
F→0 as xi→xj. Kicks in when |xi-xj| ~ ε.

Why Soften?

• Well, let’s see. Grab the new nbody. Edit it and set EPS=0.1
at the top.

• Compile and run. Look at the final output column. That is
total system energy. How does it behave?

• For ref: columns are iter, step dt, simulation time elapsed,
wall-clock time for step, total system energy.

• Now re-do with EPS=0.0. How did the total energy do this
time?

What’s Going on?

• If there is no softening, particles that interact closely
have arbitrarily large accelerations.

• Must track acceleration accurately for accurate
solution.

• δv=aδt. If δv in a timestep << vtypical, system
behaves. Max force at r~ε, a~Gm/ε2. So, want
δt<<ε2vtypical/Gm. Can’t do this if ε=0.

Step 2: Update

• We do simplest possible update - at each step, x=x
+vδt. v=v+aδt.

• If interpret positions and velocities as staggered by 1/2
timestep, then updating is accurate to 2nd order.

Quick Note on Enery

• Leapfrog technique nominally conserves energy.
Energy should be conserved.

• What is energy? A bit tricky if v and r known at
different times.

• We ignore time difference. So, will be scatter in
reported results when V rapidly transformed to K.

• Energy does return to starting value.

Oh, and Step 0: Initial
Conditions

• Simulation depends on starting positions.

• Results from bunch of stationary particles look
very different from to blobs look different from
blobs rotating around each other.

• Put in a few different initial conditions for you.

Command Line Args
• getopt library. Look at code for example.

• Have three classes - spherical collapse, two
galaxies at rest, and two orbiting galaxies.

• run nbody -s [1,2,3] for three classes.

• Can also set initial velocity dispersion
--vamp, galaxy mass ratio --mass_ratio etc.

• do nbody -h for options.

Let’s Watch!

• Cold initial collapse.

• Warm collapse

• Galaxy merger

• Orbiting merger

Now, Let’s Talk Nitty-Gritty
• Have to loop through all pairs of particles,

summing up pair-wise forces.

• Most expensive bit is √ calculation.

• Would like to do as much as possible with
√ while I have it.

• Single CPU: loop over particles, particles,
and dimensions.

Core Code
Clear out forces at beginning.

Also going to accumulate
potential energy of particles.

Core Code

Loop over all particles

Loop over all particles
current particle hasn’t met.

Core Code

Apply force softening

Find errors in all dimensions.

Find r2

Core Code

Find square root, r-3/2. Ouch

Loop over dimensions,
sum forces on i,j.

Accumulate potential energy.

Homework: Step 1

• Make a copy of nbody.c called nbody_omp.c. OpenMP the
force routine without using temporary buffers.

• In its simplest incarnation, to avoid data race, may have to
find force of jth particle on ith, but not add force to jth.

• How well does this scale vs. single cpu?

Homework: Step 2

• Make a copy of nbody.c called nbody_buf.c. OpenMP the
force routine allowing yourself as much temporary space
as you like. Should no longer need to do double work.

• How well are you scaling? If you aren’t getting factor of 2,
can you think of why? Might OpenMP be able to help you?

• Do a top while running serial and openmp. What is ratio
of memory usage?

• What is your estimate of computing to reduction work,
and how does it scale with n?

Homework: Step 3

• Ideal code would scale well (no factor of 2) and have no large
buffers (i.e. comparable to total particles per thread). Code
also needs to produce correct answers.

• Can you make a code, nbody_nobuf.c that does this?

• Use whatever OpenMP arsenal you like/need: schedules,
locks... Concepts from the matrix block-multiply may be useful.
You can restrict # of particles to be, say, multiple of 100.

• No particular solution in mind. Be creative!

(Tricky)

