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Material for this class

All the material for the HPC Summer School can be found here:

https:
//wiki.scinet.utoronto.ca/wiki/index.php/2015_Ontario_
Summer_School_for_High_Performance_Computing_Central

The slides for this class can be found here:

http://www.scinethpc.ca/~ejspence/Parallel-Python.pdf

and at the SciNet education website:

http://support.scinet.utoronto.ca/education
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An introduction to parallel Python

This afternoon we will cover the following approaches to parallelizing
Python code:

Getting setup on SciNet.

Memory management.

Out-of-core computation.

numexpr package.

process forks.

Spawned threads (Threading module).

Spawned processes (multiprocessing module).

Pools.

MPI and Python.

ipython cluster.

Erik Spence (SciNet HPC Consortium) Parallel Python 14 July 2015 3 / 59



Getting setup on SciNet

Please perform the following steps to get yourself setup for today’s class.

ejspence@mycomp ~>
ejspence@mycomp ~> ssh ejspence@login.scinet.utoronto.ca -X

ejspence@scinet01-ib0 ~>
ejspence@scinet01-ib0 ~> ssh -X gpc03

ejspence@gpc-f103n084-ib0 ~>
ejspence@gpc-f103n084-ib0 ejspence> type the command below

qsub -l nodes=1:ppn=8,walltime=4:00:00 -X -q teach -I

ejspence@gpc-f108n045-ib0 ~>

It should only take a moment to get your compute node. Raise your hand
if it takes more than a minute.
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Getting setup on SciNet, continued

You now have your own compute node on SciNet. This is where you will
run the code for today’s class.

ejspence@gpc-f108n045-ib0 ~>
ejspence@gpc-f108n045-ib0 ~> pwd

/home/s/scinet/ejspence

ejspence@gpc-f108n045-ib0 ~> cd /scinet/course/ss2015/Python/code

ejspence@gpc-f108n045-ib0 code>

ejspence@gpc-f108n045-ib0 code> pwd

/scinet/course/ss2015/Python/code

ejspence@gpc-f108n045-ib0 code>

ejspence@gpc-f108n045-ib0 code> source ../setup

ejspence@gpc-f108n045-ib0 code>
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Why are we here?

What is the modivation for this class? The basic problem is one of data
analysis:

Datasets can be huge.

Data analysis is often done using languages that are not generally
considered ”high performance”, such as Python and R.

Parallelization of the data analysis process can greatly speed things
up.

The means by which such parallelization is accomplished is often not
well known, or the pitfalls involved are not well-understood.

We’re here to try to help you understand how to parallelize code written in
Python, to speed up data analysis in particular.
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Python and memory management

Python, like R, relies on a ”garbage collector” to clean up un-needed
variables and limit memory usage.

”Every so often” a garbage collection task runs and deletes variables
that won’t be used anymore.

You can force the garbage collector to run at any time by running the
command:

import gc

collect = gc.collect()

That being said, the garbage collector knows how to do its job, so
running it by hand should only be done in specific circumstances.
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Running the garbage collector
Here are some recommendations for runnning the garbage collector (GC)
by hand:

Run the GC after your application has finished starting up and
transitions to a ’steady state’, if appropriate.

Run the GC after running infrequently-run sections of code which use
and then free large amounts of memory.

Do not run the GC very often; it can be a slow function to run. As a
general rule, it knows how to do its job.

import gc, numpy

a = numpy.arange(10000000)

# Do some stuff.

a = 0

collect = gc.collect()
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Deleting variables

Can’t you just delete a variable?

You probably noticed the lack of an analogy to the ”rm(variable)”
function in R.

There is no such function in Python. At least not that can be run
within scripts.

The ”del” command can be run at the interactive prompt, but not
from within a script.

In [1]:

In [1]: a = numpy.arange(10000000)

Do some stuff.

In [2]: del a

In [3]:

Erik Spence (SciNet HPC Consortium) Parallel Python 14 July 2015 9 / 59



Out-of-core computation

Some problems require doing fairly simple analysis on data that is too
large to fit into memory

Min/mean/max.

Data cleaning.

Even linear fitting is pretty simple.

In this case, one processor may be enough; you just want a way to not run
out of memory.

”Out of core” or ”external memory” computation leaves the data on disk,
bringing into memory only what is needed, or what fits, at any given time.

For some computations, this works out well (but note: disk access is
always much slower than memory access).
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Out-of-core computation, continued

The NumPy.memmap class creates a
memory-map to an array stored in a
binary file on disk. This allows a
file-backed out-of-memory computation,
but only on NumPy arrays.

This approach works fairly well when
one’s data access involves passing
through the entire data set a very small
number of times, either combining data
or extracting a subset.

There are other techniques for Python
out-of-core computations, involving the
combined use of pytables, hdf5 and
numpy, but we won’t cover them today.
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Out-of-core computation, example
First, let us create a large array on file (don’t actually perform these steps).

In [3]: import numpy as np

In [4]:

In [5]: # this creates a 12G file

In [6]: fp = np.memmap(’bigfile’, dtype = ’float64’, mode = ’w+’,

....: shape = (40000, 40000))

In [7]:

In [7]: fp[0,0:5]

Out[7]: memmap([ 0., 0., 0., 0., 0.])

In [8]: fp[0,:] = np.random.rand(40000)

In [9]: fp[0,0:5]

Out[9]: memmap([ 0.78326485, 0.15310125, 0.57022429, 0.39744545, 0.15487935])

In [10]:

In [10]: for i in xrange(40000): fp[i,:] = np.random.rand(40000)

Note: this is really hard on the filesystem (the last command took over an
hour to complete).
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Out-of-core computation, example
Now start over and calculate the mean of the array.

In [11]: exit

ejspence@gpc-f108n045-ib0 ejspence>

ejspence@gpc-f108n045-ib0 ejspence> ipython --pylab

In [1]:

In [1]: import numpy as np

In [2]: fp = np.memmap(’bigfile’, mode = ’r’, shape = (40000, 40000))

In [3]:

In [3]: total = 0.0

In [3]:

In [3]: for i in xrange(40000): total += sum(fp[i,:])

In [4]:

In [4]: average = total / (40000 * 40000)

In [5]:

In [5]: print average

0.0001204345
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Using multiple processors with Python

The rest of today we will cover using multiple processors and/or nodes to
do large-scale computations using Python.

numexpr package.

process forks.

Spawned threads (Threading module).

Spawned processes (multiprocessing module).

Pools.

MPI and Python.

ipython cluster.
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The numexpr package

The numexpr package is useful if you’re doing matrix algebra:

it’s essentially a just-in-time compiler for NumPy.

it takes matrix expressions, breaks things up into threads, and does
the calculation in parallel.

Somewhat awkwardly, it takes it’s input in as a string.

”%timeit” is an IPython ”magic command”. It accesses the
”timeit.timeit” package to time calculations.

In some situations using numexpr can significantly speed up your
calculations.

Erik Spence (SciNet HPC Consortium) Parallel Python 14 July 2015 15 / 59



Using the numexpr package
In [6]:

import numpy as np, numexp as ne

In [7]:

In [7]: a = np.random.rand(1e6)

In [8]: b = np.random.rand(1e6)

In [9]: c = np.zeros(1e6)

In [10]:

In [10]: %timeit c = a**2 + b**2 + 2 * a * b

10 loops, best of 3: 46.6 ms per loop

In [11]:

In [11]: old = ne.set num threads(1)

In [12]: %timeit ne.evaluate("a**2 + b**2 + 2 * a * b", out = c)

10 loops, best of 3: 11.7 ms per loop

In [13]:

In [13]: old = ne.set num threads(2)

In [14]: %timeit ne.evaluate("a**2 + b**2 + 2 * a * b", out = c)

10 loops, best of 3: 7.8 ms per loop

In [15]:
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Process forking
Another simple way to run code in
parallel is to ’fork’ the process.

The system call fork() creates a
copy of the process that called it,
and runs it as a child process.

The child gets ALL the data of the
parent process.

The child gets its own process
number (PID), and as such runs
independently of the parent.

We use the return value of fork()
to determine which process we are;
0 means we’re the child.

Probably doesn’t work in
Windows.

# firstfork.py

import os

# Our child process.

def child():

print "Hello from", os.getpid()

os. exit(0)

# The parent process.

while (True):

newpid = os.fork()

if newpid == 0:

child()

else:

print "Hello from parent",

os.getpid(), newpid

if raw input() == "q": break
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Process forking, continued

What does that look like?

ejspence@gpc-f108n045-ib0 code>

ejspence@gpc-f108n045-ib0 code> python firstfork.py

Hello from parent 27089 27090

Hello from 27090

q

ejspence@gpc-f108n045-ib0 code>

If a python script is given as an argument to the ”python” command, then
Python will run the script.
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forking/executing

What if we prefer to run a completely
different code, rather than copying the
existing code to the child?

we can run one of the os.exec
series of functions.

The os.execlp call replaces the
currently running program with
the new one specified, in the
child process only.

If os.execlp is successful at
lauching the program, it never
returns. Hence the
assert statement is only invoked
if something goes wrong.

# child.py

import os

print "Hello from", os.getpid()

os. exit(0)

# secondfork.py

import os

while (True):

pid = os.fork()

if pid == 0:

os.execlp("python", "python",

"child.py")

assert False,

"Error starting program"

else:

print "The child is", pid

if raw input() == "q": break
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Notes about fork()
Fork was an early implementation used to spawn sub-processes, and is no
longer commonly used. Some things to remember if you try to use this
approach:

use os.waitpid(child pid) if you need to wait for the child process to
finish. Otherwise the parent will exit and the child will live on.

fork() is a Unix command. It doesn’t work on Windows, except under
Cygwin.

This must be used very carefully, ALL the data is copied to the child
process, including file handles, open sockets, database connections...

Be sure to exit using os. exit(0) rather than os.exit(0), or else the
child process will try to clean up resources that the parent process is
still using.

Because of the above, fork() can lead to code that is difficult to
maintain long-term.
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Using fork in data analysis

Some notes about using forks in the context of data analysis:

Something you may have noticed the about fork examples thus far is
the lack of return from the functions.

Forked processes, being processes and not threads, do not share
anything with the parent process.

As such, the only way they can return anything to the parent function
is through inter-process communication.

This is possible (as we saw yesterday with R), though a bit tricky.
We’ll look at one way to do this later in the class.

Your best bet, from a data processing point of view, is to just use
fork for one-time functions that do not return anything to the parent.
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Processes versus threads
There is often confusion on the difference between threads and processes.

A process provides the resources needed to execute a program. A
thread is a path of execution within a process. As such, a process
contains at least one thread, possibly many.

A process contains a considerable amount of state information
(handles to system objects, PID, address space, ...). As such they are
more resource-intensive to create. Threads are very light weight in
comparison.

Threads within the same process share the same address space. This
means they can share the same memory and can easily communicate
with each other.

Different processes do not share the same address space. Different
processes can only communicate with each other through
OS-supplied mechanisms.
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Notes about threads

Are there advantages to using threads, versus processes?

As noted about, threads are light-weight compared to processes. As a
result, they start up more quickly.

Threads can be simpler to program, especially when the threads need
to communicate with each other.

Threads share memory, which can simplify (as well as obfuscate)
programming.

Threads are more portable than forked processes, as they are fully
supported by Windows.

These points aside, there are downsides to using threads in a data-analysis
application, as we’ll see in a moment.
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Spawning threads, which is faster?

# summer.py

def my summer(start, stop):

tot = 0

for i in xrange(start,stop):

tot += i

# summer.serial.py

import time

from summer import my summer

begin = time.time()

threads = []

for i in range(10):

my summer(0, 5000000)

print "Time:", time.time() - begin

# summer.threaded.py

import time, threading

from summer import my summer

begin = time.time()

threads = []

for i in range(10):

t = threading.Thread(target = my summer,

args = (0, 5000000))

threads.append(t)

t.start()

# Wait for all threads to finish.

for t in threads: t.join()

print "Time:", time.time() - begin
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Not even close
The threading code is no faster than the serial code, even on my computer
with two cores. Why?

The Python Interpreter uses the Global Interpreter Lock (GIL).

To prevent race conditions, the GIL prevents threads from the same
Python program from running simultaneously. As such, only one core
is used at any given time.

Consequently the threaded code is no faster than the serial code, and
is generally slower due to thread-creation overhead.

As a general rule, threads are not used for most Python applications
(GUIs being one important exception). This example is for
demonstration purposes only.

Instead, we will use one of several other modules, depending on the
application in question. These modules will launch subprocesses,
rather than threads.
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The multiprocessing module

The multiprocessing module tries to strike a balance between forks and
threads:

Unlike fork, multiprocessing works on Windows (better portability).

Slightly longer start-up time than threads.

Multiprocessing spawns separate processes, like fork, and as such they
each have their own memory.

Multiprocessing requires pickleability for its processes on Windows,
due to the way in which it is implemented. As such, passing
non-pickleable objects, such as sockets, to spawned processes is not
possible.
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The multiprocessing module, continued

A few notes about the
multiprocessing module:

The Process function
launches a separate process.

The syntax is very similar to
the threading module. This
is intentional.

The details under the hood
depend strongly upon the
system involved (Windows,
Mac, Linux), thus the
portability of code written
with this module.

# summer.multiprocessing.py

import time, multiprocessing

from summer import my summer

begin = time.time()

processes = []

for i in range(10):

p = multiprocessing.Process(

target = my summer,

args = (0, 5000000))

processes.append(t)

p.start()

# Wait for all processes to finish.

for p in processes: p.join()

print "Time:", time.time() - begin
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Multiprocessing example

How does it perform?

ejspence@gpc-f108n045-ib0 code>

ejspence@gpc-f108n045-ib0 code> python summer.serial.py

Time: 4.01846909523

ejspence@gpc-f108n045-ib0 code>

ejspence@gpc-f108n045-ib0 code> python summer.multiprocessing.py

Time: 0.57817697525

ejspence@gpc-f108n045-ib0 code>

Much improved.
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Multiprocessing pools

The process of assigning tasks can
be automated using Pools. The
number of jobs to be run is given
by the number of entries in the
input which is passed.

Note that Pool.map is a blocking
function.

# summer.py

def my summer2(data):

# Only one argument may be

# passed using Pool.

start, stop = data

tot = 0

for i in xrange(start,stop):

tot += i

# summer.multiprocesing.pool.py

import time, multiprocessing

from summer import my summer2

begin = time.time()

numjobs = 10

numprocs = multiprocessing.cpu count()

# The arguments are the same for all.

input = [(0, 5000000)] * numjobs

p = multiprocessing.Pool(

processes = numprocs)

p.map(my summer2, input)

print "Time:", time.time() - begin
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The multiprocess module, shared memory
The multiprocess module allows one
to seamlessly share memory
between processes. This is done
using the ’Value’ and ’Array’
objects.

Value is a wrapper around a ctype
object. The first argument is the
variable type, the second is that
value.

Does this code behave as expect?
Why not?

# multiprocessing.shared.py

import time

from multiprocessing import Process,

Value

def myfunc(v):

for i in range(50):

time.sleep(0.001)

v.value += 1

if name == " main ":

v = Value(’i’, 0); procs = []

for i in range(10):

p = Process(target = myfunc,

args = (v,))

procs.append(p)

p.start()

for proc in procs: proc.join()

print v.value
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Race conditions

What went wrong?

Race conditions occur when program instructions are executed in an
order not intended by the programmer. The most common cause is
when multiple processes are given access to a resource.

In the example here, we’ve modified a location in memory that is
being accessed by multiple processes.

Note that it need not only be processes or threads that can modify a
resource, anything can modify a resource, hardware or software.

Bugs caused by race conditions are extremely hard to find.

Disasters can occur (Therac-25).

Be very very careful when sharing resources between multiple processes or
threads!
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Using shared memory, continued

The solution, of course, is to be
more explicit in your locking.

If you must use shared memory, be
sure to test everything very
thoroughly.

# multiprocessing.shared.fixed.py

import time

from multiprocessing import Process,

Value, Lock

def myfunc(v, lock):

for i in range(50):

time.sleep(0.001)

with lock:

v.value += 1

# multiprocessing.shared.fixed.py,

# continued

if name == " main ":

v = Value(’i’, 0)

lock = Lock()

procs = []

for i in range(10):

p = Process(target = myfunc,

args = (v, lock))

procs.append(p)

p.start()

for proc in procs: proc.join()

print v.value
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Using shared memory, arrays

Multiprocessing also allows you to
share a block of memory through
the Array ctypes wrapper.

Only 1-D arrays are permitted.
Note that multiprocessing.Process
must be used; shared memory does
not work with
multiprocessing.Pool.map.

Note that, since arr is actually a
ctypes object, you must print the
contents of arr to see the result.

# multiprocessing.shared.array.py

from numpy import arange

from multiprocessing import Process,

Array

def myfuncf(a, i): a[i] = -a[i]

if name == " main ":

arr = Array(’d’, arange(10.))

procs = []

for i in range(10):

p = Process(target = myfunc,

args = (arr, i))

procs.append(p)

p.start()

for proc in procs: proc.join()

print arr[:]

Erik Spence (SciNet HPC Consortium) Parallel Python 14 July 2015 33 / 59



But there’s more!

The multiprocessing module is loaded with functionality. Other features
include:

Inter-process communciation, using Pipes and Queues.

multiprocessing.manager, which allows jobs to be spread over multiple
’machines’ (nodes).

subclassing of the Process object, to allow further customization of
the child process.

multiprocessing.Event, which allows event-driven programming
options.

multiprocess.condition, which is used to synchronize processes.

We’re not going to cover these features today.
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The multiprocessing package is ubiquitous

The multiprocessing module is the module used my many other packages
to handle parallel functionality. Some of these include:

scikit-learn, a machine-learning suite.

fabric, a package used to streamline SSH commands in applications.

rufus, used for simplifying pipelines.

PyCAM, a toolpath generator for 3-axis CNC machining.

Nipype, a toolkit for neuroimaging pipelines.

pydoit, a task dependency and execution manager.

Pythics, laboratory instrument control software.

depparse, a dependency parser.

And many others.
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The focus of parallel Python

As you may have noticed, the parallel capabilities of Python are kinda
clunky, at least for data analysis:

The approach of the multiprocessing package is rather low-level as
compared to what we saw yesterday. It lacks the nice
detail-management which is baked into the parallel R functionality.

The approach is not nearly as compatible with interactive
programming as parallel R.

The approach does not lend itself as well to data analysis as parallel R
functionality. Most of what we’ve seen is better suited to systems
administration.

Nonetheless, with some work multiple processors could be worked into
your workflow. In particular, analyses that are not exploratory, but
rather simply repetitive number crunching.
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However, there are other options

The multiprocessing module offers an interface for spawning independent
processes. As such, it’s pretty handy and easy to use. However, there are
other packages out there that also attempt to fill this role:

Parallel Python

pprocess

joblib

Celery

and others.

One advantage of multiprocessing is that it’s part of the standard Python
distribution, and thus is the most commonly used.
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Python and MPI

There are other approaches available to parallelize your Python data
analysis. You may be wondering where MPI is in all of this?

Python interfaces to MPI functionality have been written. There are
several implementations available.

These interfaces have all of the usual MPI functionality that you’ve
come to know and love.

However, I’ve never seen anyone use Python MPI for data processing.

Why?
I Python MPI interfaces are not nearly as fast as compiled MPI codes

(C, C++, Fortran).
I There are easier ways to parallelize your Python workflows (as we’ve

seen).
I MPI is better suited to communication-heavy problems; data analysis

usually doesn’t fall into this category.

For completeness, we’ll cover one example.
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Python MPI

Several interfaces to MPI have been implemented in Python.

mpi4py, pypar, MaroonMPI, pyMPI, pupyMPI, . . .

We will use pypar for our example.

Note that, on GPC, pypar has been compiled with IntelMPI, so that
module must be loaded for pypar to work.
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Area-under-the-curve using pypar
# AUC.parallel.py

import pypar, sys

from numpy import zeros

numprocs = pypar.size()

myid = pypar.rank()

# buffers for communication

msg = zeros(1)

answer = zeros(1)

if (len(sys.argv) == 2):

n = int(sys.argv[1])

else: n = 10

dx = 3.0 / n # Width of each bar.

area = 0.0

# Width of each processor’s block.

width = 3.0 / numprocs

# Number of bars for each processor.

numbars = n / numprocs

# My starting x value.

x = myid * width

# Each proc. just works on numbars.

for i in range(numbars):

y = 0.7 * x**3 - 2 * x**2 + 4

area = area + y * dx

x = x + dx

msg[0] = area

pypar.reduce(msg, pypar.SUM, 0,

buffer = answer)

if (myid == 0):

print "The area is", answer

pypar.finalize()
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What’s the output?

ejspence@gpc-f108n045-ib0 code>

ejspence@gpc-f108n045-ib0 code> mpirun -np 2 python AUC.parallel.py

Pypar (version 2.1.5) initialised MPI OK with 2 processors

The area is 8.09175

ejspence@gpc-f108n045-ib0 code>

ejspence@gpc-f108n045-ib0 code> mpirun -np 2 python AUC.parallel.py 100

Pypar (version 2.1.5) initialised MPI OK with 2 processors

The area is 8.1620175

ejspence@gpc-f108n045-ib0 code>

ejspence@gpc-f108n045-ib0 code> mpirun -np 10 python AUC.parallel args.py

20000000

Pypar (version 2.1.5) initialised MPI OK with 10 processors

The area is [ 8.17499993]

ejspence@gpc-f108n045-ib0 code>

The exact area for this problem is 8.175.
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IPython’s Parallel Architecture

Interestingly, IPython comes with a
built-in parallel engine. It consists of
four components:

Engines: Do the work. One
core, one engine.

Schedulers: Deliver and divide
the work.

Hub: Coordinates and logs the
engine and schedule activity.

Clients: Request work to be
done on engines.

Schedulers + Hub + Engine = Cluster
Schedulers + Hub = Controller
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Starting an IPython cluster
Starting up an IPython cluster is not difficult. But there are some steps
that you need to go through carefully:

1 In your current SciNet terminal, on the compute node:
1 Get the hostname of your node. You’ll need this on for the next slide.
2 Change to the ipython directory.
3 Source the setup file.
4 Start the IPython cluster.

ejspence@gpc-f108n045-ib0 code> hostname

gpc-f108n045

ejspence@gpc-f108n045-ib0 code> pwd

/scratch/s/scinet/ejspence/Python

ejspence@gpc-f108n045-ib0 code> cd ipython

ejspence@gpc-f108n045-ib0 ipython> source setup

ejspence@gpc-f108n045-ib0 ipython> ipcluster start -n 4

a bunch of messages...

You can minimize this terminal, but don’t close it.
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Starting an IPython cluster, continued

Now for step 2:

2 Open a second terminal on your laptop.

1 ssh into a SciNet login node.
2 From the login node, ssh directly into YOUR compute node.

ejspence@mycomp ~>
ejspence@mycomp ~> ssh ejspence@login.scinet.utoronto.ca -X

ejspence@scinet01-ib0 ~>
ejspence@scinet01-ib0 ~> ssh gpc-f108n045

ejspence@gpc-f108n045-ib0 ~>
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Starting an IPython cluster, continued
We are now ready to access the running cluster. In your new terminal, on
your compute node:

Move to the correct directory.

Start IPython.

Then grab the handles to the clients.

ejspence@gpc-f108n045-ib0 ~>
ejspence@gpc-f108n045-ib0 ~> cd /scinet/course/ss2015/Python/ipython

ejspence@gpc-f108n045-ib0 ipython>

ejspence@gpc-f108n045-ib0 ipython> source setup

ejspence@gpc-f108n045-ib0 ipython>

ejspence@gpc-f108n045-ib0 ipython> ipython --pylab

In [1]:

In [1]: from IPython.parallel import Client

In [2]: clients = Client()

In [3]:
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Accessing the Clients

Let’s see what we’ve got here.

In [3]:

In [3]: # use synchronous computations

In [3]: clients.block = True

In [4]:

In [4]: print len(clients)

4

In [5]:

In [5]: print clients.ids

[0, 1, 2, 3]

In [6]:

Each client has been assigned an id, starting at 0.
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Accessing the Clients, continued

Here’s simple function to execute on the cores:

In [6]:

In [6]: def minus(a, b): return a - b

In [7]:

In [7]: minus(5, 6)

Out[7]: -1

In [8]:

Execution on the first engine only:

In [8]:

In [8]: clients[0].apply(minus, 5, 6)

Out[9]: -1

In [10]:
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Interfaces to the Engines

Some notes about the engines:

The python environment that holds the ‘Clients’ part is completely
separate from that of the ‘Engines’.

As such, you need to move data and code to the Engines.

You also need to request to execute code on the Engines.

The Controller (Schedulers + Hub) is the single point of contact for the
clients.
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Views

Views are a layer over sets of engines that allow access to engine variables
through a dictionary, storing settings, and scheduling tasks.

There are two kinds of views:

A Direct interface, where engines are addressed explicitly. You get
this view by using square brackets. For example: Client()[1:8:2].

A LoadBalanced interface, where the Scheduler is trusted with
assigning work to appropriate engines. You get this from
Clients.load balanced view().

View is selected by the client.
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Parallel Execution

There are a number of ways to invoke the Engines:

clients[:].run takes a script and runs in on the engine(s).

clients[:].execute takes a command, as a string, to run on the
engine(s).

clients[:].apply takes a function and arguments, to run on the
engine(s).

clients[:].map takes a function and a list, to distribute over the
engine(s).

In the last two, the function and arguments get shipped to the engine.
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Blocking/Nonblocking

There are two modes in which execution of code can run:

In blocking mode (“synchronous”), all execution must be finished
before results are recorded.

In non-blocking mode, an ”AsyncResult” is returned, which we can
ask if it is done (.ready()), and what the result is (.get()).

The latter is potentially faster, but requires a bit more ‘infrastructure’.
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Examples

Execute minus in parallel on all the engines at once:

In [10]:

In [10]: clients[:].apply(minus, 5, 6)

Out[10]: [-1, -1, -1, -1]

In [11]:

What if we want different arguments to each engine? In normal Python we
could use ”map”:

In [11]:

In [11]: map(minus [11, 10, 9, 8], [5, 6, 7, 8])

Out[11]: [6, 4, 2, 0]

In [12]:
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Examples, continued

The client view’s ”map” function executes in parallel. Using a
load-balanced view, this would look like this:

In [12]:

In [12]: view = clients.load balanced view()

In [13]:

In [13]: view.map(minus, [11, 10, 9, 8], [5, 6, 7, 8])

Out[13]: [6, 4, 2, 0]

In [14]:
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Direct view

Recall that the ”Direct View” allows you to directly command the engines.
To execute a command on all the engines:

In [14]:

In [14]: clients.block = True

In [14]:

In [14]: dview = clients.direct view()

In [15]:

In [15]: dview.block = True

In [16]:

In [16]: dview.apply(sum, [1, 2, 3])

Out[16]: [6, 6, 6, 6]

In [17]:
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Direct view, continued

Slicing a Client’s object gets you a Direct view as well:

In [17]:

In [17]: clients[::2]

Out[17]: <DirectView [0, 2]>

In [18]: clients[::2].apply(sum, [1, 2, 3])

Out[18]: [6, 6]

In [19]:

Which we saw previously, when we used clients[:].apply(minus, 5, 6).
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Load Balanced View

To execute a command on all the engines, using the Load Balanced View:

In [19]:

In [19]: dview = Clients().load balanced view()

In [20]:

In [20]: dview.block = True

In [21]:

In [21]: dview.apply(sum, [1, 2, 3])

Out[21]: 6

In [22]:

This view is useful if you’re going to execute tasks one by one, or if the
tasks take a varying amount of time.

We will focus on direct view in the remainder, which is a bit more flexible.
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Data movement to and from engines
Moving data around is straighforward.

You can access variables though a dictionary-like interface.

Indexing a client gives access to the dictionary for a particular engine.

A view has a dictionary interface too, which gives you a list of the
values in all the engines.

In [22]:

In [22]: v = clients[:]

In [23]: v.block = True

In [24]: v.execute(’from os import getpid’)

Out[24]: <AsyncResult: finished>

In [25]: v.execute(’x = getpid()’)

Out[25]: <AsyncResult: finished>

In [26]: v[’x’]

Out[26]: [24068, 24067, 24065, 24066]

In [27]: c[3][’x’]

Out[27]: 24066
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Scatter/Gather

Some of the parallelization features we saw yesterday are built in as well.

Sometimes you want to explicitly divide a list or array on the engines:
Scatter.

or reconstruct a larger list on the client from local lists on the
engines: Gather.

This is quite simple in IPython.parallel:

In [28]: v.scatter(’a’, np.arange(16))

In [29]: v[’a’]

Out[29]:

[array([0, 1, 2, 3]),

array([4, 5, 6, 7]),

array([8, 9, 10, 11]),

array([12, 13, 14, 15])]

In [30]: v.gather(’a’)

Out[30]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15])]
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IPython Hands-on

For each month in 1988-2012, list airports with longest departure delay.
Output should look like this

1988 01 1389.0 [’LGA’]
1988 02 1320.0 [’TUS’, ’DCA’]

Re-use the python
function ”maxdelay”,
which is in the ipython
directory.

Run different months on
different IPython engines.

Also do a scaling test,
meaning determine how
long this takes use 2, 4, 6
and 8 cores.

from csv import reader

def maxdelay(file):

rd = reader(open(file,’rb’))

hd = rd.next()

dl = hd.index(’DEP DELAY’)

on = hd.index(’ORIGIN’)

ls = [[float(r[dl]), r[on]]

for r in rd if r[dl] != ’’]

dt = max(ls)[0]

ps = [r[1] for r in ls if r[0] == dt]

return dt, list(set(ps))
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