
1

Quick-Reference Guide to Optimization with

Intel® Compilers version 12
For IA-32 processors and Intel® 64 processors

Application Performance

A Step-by-Step Approach to Application Tuning with Intel Compilers

Before you begin performance tuning, you may want to check correctness of your application by building it without

optimization using /Od (-O0). In this compiler version, all optimization levels assume support for the SSE2 instruction

set by default. To run on older IA-32 processors such as the Intel® Pentium® III processor, the option /arch:IA32

(Windows*) or –mia32 (Linux*) must be added.

1. Use the general optimization options (Windows /O1, /O2 or /O3; Linux and Mac OS* X -O1, -O2, or -O3) and

determine which one works best for your application by measuring performance with each. Most users

should start at /O2 (–O2) (default) before trying more advanced optimizations. Next, try /O3 (-O3) for loop-

intensive applications. These options are available for both Intel® and non-Intel microprocessors but they

may perform more optimizations for Intel microprocessors than they perform for non-Intel microprocessors.

2. Fine-tune performance to target IA-32 and Intel 64-based systems with processor-specific options.

Examples are /QxSSE4.2 (–xsse4.2) for the Intel® Core™ processor family, e.g. the Intel Core i7 processor, and

/arch:SSE3 (-msse3) for compatible, non-Intel processors that support at least the SSE3 instruction set.

Alternatively, you can use /QxHOST (-xhost) which will use the most advanced instruction set for the

processor on which you compiled. This option is available for both Intel® and non-Intel microprocessors but it

may perform more optimizations for Intel microprocessors than it performs for non-Intel microprocessors.

For a more extensive list of options that optimize for specific processors or instruction sets, see the table

“Recommended Processor-Specific Optimization Options” ‡.

3. Add interprocedural optimization (IPO), /Qipo (-ipo) and/or profile-guided optimization (PGO), /Qprof-gen and

/Qprof-use (-prof-gen and -prof-use), then measure performance again to determine whether your

application benefits from one or both of them.

4. Optimize your application for vector and parallel execution on multi-threaded, multi-core and multi-processor

systems using: advice from the new Guided Auto-Parallelism (GAP) feature, /Qguide (-guide); the Intel® Cilk™

Plus language extensions for C/C++; the parallel performance options /Qparallel (-parallel) or /Qopenmp (-

openmp); or by using the Intel® Performance Libraries included with the product. These optimization steps

are applicable to both Intel and non-Intel microprocessors, but may result in a greater performance gain on

Intel microprocessors than on non-Intel microprocessors.

5. Use Intel® VTune™ Amplifier XE to help you identify serial and parallel performance “hotspots” so that you

know which specific parts of your application could benefit from further tuning. Use Intel® Inspector XE to

reduce the time to market for threaded applications by diagnosing memory and threading errors and

speeding up the development process. These products cannot be used on non-Intel microprocessors.

Please consult the main product documentation for more details.

Intel® Software Development Products

2

General Optimization Options
These options are available for both Intel® and non-Intel microprocessors but they may result in more optimizations

for Intel microprocessors than for non-Intel microprocessors.

Windows* Linux*

Mac OS* X

Comment

/Od -O0 No optimization. Used during the early stages of application

development and debugging. Use a higher setting when the

application is working correctly.

/O1 -O1 Optimize for size. Omits optimizations that tend to increase object

size. Creates the smallest optimized code in most cases.

This option is useful in many large server/database applications

where memory paging due to larger code size is an issue.

/O2 -O2 Maximize speed. Default setting. Enables many optimizations,

including vectorization. Creates faster code than /O1 (-O1) in most

cases.

/O3 -O3
Enables /O2 (-O2) optimizations plus more aggressive loop and

memory-access optimizations, such as scalar replacement, loop

unrolling, code replication to eliminate branches, loop blocking to allow

more efficient use of cache and additional data prefetching.

The /O3 (-O3) option is particularly recommended for applications that

have loops that do many floating-point calculations or process large

data sets. These aggressive optimizations may occasionally slow

down other types of applications compared to /O2 (-O2).

/Qopt-report[:n] -opt-report [n] Generates an optimization report directed to stderr. n specifies the

level of detail, from 0 (no report) to 3 (maximum detail). Default is 2.
/Qopt-report-

phase:name

-opt-report-

phase=name

Optimization reports are generated for phase name. The option can

be used multiple times in the same compilation to get output from

multiple phases. Some commonly used name arguments are as

follows:

all – All possible optimization reports for all phases (default)

ipo_inl – Inlining report from the Interprocedural Optimizer

hlo – High Level Optimizer (includes loop and memory optimizations)

hpo – High Performance Optimizer (includes vectorizer and

parallelizer)

pgo – Profile Guided Optimizer

/Qopt-report-

help

-opt-report-

help

Displays all possible values of name for /Qopt-report-phase (-opt-

report-phase) above. No compilation is performed.

/Qopt-report-

routine:string

-opt-report-

routine=string

Generates reports only for functions or subroutines whose names

contain string. By default, reports are generated for all functions and

subroutines.

3

Parallel Performance
Options that use OpenMP* or auto-parallelization are available for both Intel®and non-Intel microprocessors, but

these options may result in additional optimizations on Intel microprocessors that do not occur on non-Intel

microprocessors.

Windows* Linux*

Mac OS* X

Comment

/Qopenmp -openmp Causes multi-threaded code to be generated when OpenMP

directives are present. May require an increased stack size.

/Qparallel -parallel The auto-parallelizer detects simply structured loops that may be

safely executed in parallel, including loops implied by Intel® Cilk™ Plus

array notation, and automatically generates multi-threaded code for

these loops.

/Qpar-report[:n]

-par-report[n]

Controls the auto-parallelizer’s diagnostic level. n specifies the level

of detail, from 0 (no report) to 3 (maximum detail). Default is 0.

/Qpar-

threshold[:n]

-par-threshold[n] Sets a threshold for the auto-parallelization of loops based on the

likelihood of a performance benefit. n=0 to 100, default 100.

0 – Parallelize loops regardless of computation work volume.

100 – Parallelize loops only if a performance benefit is highly likely

Must be used in conjunction with /Qparallel (-parallel).

/Qguide[:n]

-guide[=n]

Guided Auto-Parallelization. Causes the compiler to suggest ways to

help loops to vectorize or auto-parallelize, without producing any

objects or executables. Auto-parallelization advice is given only if

the option –parallel (Linux or Mac OS X) or /Qparallel (Windows) is

also specified.

n is an optional value from 1 to 4 specifying increasing levels of

guidance to be provided, level 4 being the most advanced and

aggressive. If n is omitted, the default is 4.

/Qopt-matmul[-]

-[no-]opt-matmul

This option enables [disables] a compiler-generated Matrix Multiply

(matmul) library call by identifying matrix multiplication loop nests, if

any, and replacing them with a matmul library call for improved

performance. This option is enabled by default if options /O3 (-O3)

and /Qparallel (-parallel) are specified. This option has no effect

unless option /O2 (-O2) or higher is set.

/Qcilk-serialize

-cilk-serialize

This option causes serialization of code containing Intel® Cilk Plus

language extensions. This means that the compiler will run such

code as a serial C/C++ program. This option forces inclusion of a

special header file (cilk_stubs.h) that includes preprocessor macros

that make the Intel Cilk Plus keywords invisible to the compiler. This

serialization and all Intel Cilk Plus keywords are fully described in

the "Using Intel Cilk Plus” section of the user and reference guide.

/Qcoarray:shared -coarray=shared Enables coarrays from the Fortran 2008 standard on shared

memory systems (Fortran only). See the compiler reference guide

for more options and detail. This option is available for both Intel and

non-Intel microprocessors but it may result in more optimizations for

Intel microprocessors than for non-Intel microprocessors.

4

Recommended Processor-Specific Optimization Options‡

Windows* Linux*

Mac OS* X

Comment

/Qxtarget

-xtarget

Generates specialized code for any Intel® processor that supports the

instruction set specified by target. The executable will not run on non-Intel

processors or on Intel processors that support only lower instruction sets.

Possible values of target, from highest to lowest instruction set:

AVX, SSE4.2, SSE4.1, SSSE3, SSE3, SSE2

Note: On Mac OS X, options SSE3 and SSE2 are not supported.

This option enables additional optimizations that are not enabled by the /arch

or –m options.

/arch:target -mtarget Generates specialized code for any Intel processor or compatible, non-Intel

processor that supports the instruction set specified by target. Running the

executable on an Intel processor or compatible, non-Intel processor that does

not support the specified instruction set may result in a run-time error.

Possible values of target : SSE4.1, SSSE3, SSE3, SSE2, IA32

Note: Option IA32 generates non-specialized, generic x86/x87 code. It is

supported on IA-32 architecture only. On Mac OS X, options SSE3, SSE2 and

IA32 are not supported.

/QxHOST -xhost Generates instruction sets up to the highest that is supported by the

compilation host. On Intel processors, this corresponds to the most suitable

/Qx (-x) option; on compatible, non-Intel processors, this corresponds to the

most suitable of the /arch (-m) options IA32, SSE2 or SSE3. This option may

result in additional optimizations for Intel microprocessors that are not

performed for non-Intel microprocessors.‡

/Qaxtarget

-axtarget May generate specialized code for any Intel® processor that supports the

instruction set specified by target, while also generating a default code path.

Possible values of target : AVX, SSE4.2, SSE4.1, SSSE3, SSE3, SSE2

Multiple values, separated by commas, may be used to tune for additional

Intel processors in the same executable, e.g. /QaxSSE4.2,SSE3. The default

code path will run on any Intel or compatible, non-Intel processor that

supports at least SSE2, but may be modified by using in addition a /Qx (-x) or

/arch (-m) switch.

For example, to generate a specialized code path optimized for the Intel Core™

processor family and a default code path optimized for Intel processors or

compatible, non-Intel processors that support at least SSE3, use /QaxSSE4.2

/arch:SSE3 (-axsse4.2 –msse3 on Linux).

At runtime, the application automatically detects whether it is running on an

Intel processor, and if so, selects the most appropriate code path. If an Intel

processor is not detected, the default code path is selected.

Note: On Mac OS X, options sse3 and sse2 are not supported.

This option may result in additional optimizations for Intel microprocessors

that are not performed for non-Intel microprocessors.‡

Please see the online article “Intel® compiler options for SSE generation and processor-specific optimizations” to view

the latest recommendations for processor-specific optimization options. These options are described in greater detail

in the Intel Compiler User and Reference Guides.

http://www.intel.com/support/performancetools/sb/CS-009787.htm

5

Interprocedural Optimization (IPO) and Profile-Guided Optimization (PGO) Options

Windows* Linux*

Mac OS* X

Comment

/Qip -ip Single file interprocedural optimizations, including selective

inlining, within the current source file.

/Qipo[n] -ipo[n] Permits inlining and other interprocedural optimizations among

multiple source files. The optional argument n controls the

maximum number of link-time compilations (or number of object

files) spawned. Default for n is 0 (the compiler chooses).

Caution: This option can in some cases significantly increase

compile time and code size.

/Qipo-jobs[n] -ipo-jobs[n] Specifies the number of commands (jobs) to be executed

simultaneously during the link phase of Interprocedural

Optimization (IPO). The default is 1 job.

/Ob2 -finline-functions

-finline-level=2

This option enables function inlining within the current source file

at the compiler’s discretion. This option is enabled by default at

/O2 and /O3 (-O2 and –O3).

Caution: For large files, this option may sometimes significantly

increase compile time and code size. It can be disabled by /Ob0 (-

fno-inline-functions on Linux and Mac OS X).

/Qinline-factor:n -finline-factor=n This option scales the total and maximum sizes of functions that

can be inlined. The default value of n is 100, i.e., 100% or a scale

factor of one.

/Qprof-gen -prof-gen Instruments a program for profile generation.

/Qprof-use -prof-use Enables the use of profiling information during optimization.

/Qprof-dir dir -prof-dir dir Specifies a directory for the profiling output files, *.dyn and *.dpi.

/Qprofile-

functions

-profile-functions Instruments functions so that a profile of execution time spent in

each function may be generated.

/Qprofile-loops -profile-loops Instruments functions to generate a profile of each loop or loop

nest. See “Profile Function or Loop Execution Time” in the main

compiler documentation for additional detail and how to view

profiles.

6

Floating-Point Arithmetic Options

Windows* Linux*

Mac OS* X

Comment

/fp:name -fp-model name May enhance the consistency of floating point results by

restricting certain optimizations. Possible values of

name:

fast=[1|2] – Allows more aggressive optimizations at a

slight cost in accuracy or consistency. (fast=1 is the

default) . This may include some additional optimizations

that are performed on Intel microprocessors but not on

non-Intel microprocessors.

precise – Allows only value-safe optimizations on

floating point code.

double/extended/source – Intermediate results are

computed in double, extended or source precision.

Implies precise unless overridden.

The double and extended options are not available for

the Intel® Fortran compiler.

except – Enforces floating point exception semantics.

strict – enables both the precise and except options and

does not assume the default floating-point environment.

Recommendation: /fp:precise /fp:source (-fp-model

precise –fp-model source) is the recommended form for

the majority of situations where enhanced floating point

consistency and reproducibility are needed.

/Qftz[-] -ftz[-] When the main program or dll main is compiled with this

option, denormals resulting from SSE instructions at run

time are flushed to zero for the whole program (dll). The

default is on except at /Od (-O0).

/Qimf-precision:name -fimf-precision:name This option defines the accuracy for math library

functions. The default is OFF (compiler uses default

heuristics). Possible values of name are high, medium

and low. Reduced precision may lead to increased

performance and vice versa. Many routines in the math

library are more highly optimized for Intel

microprocessors than for non-Intel microprocessors.

/Qimf-arch-

consistency:true

-fimf-arch-consistency=true

Ensures that math library functions produce consistent

results across different Intel or compatible, non-Intel

processors of the same architecture. May decrease run-

time performance. The default is ”false” (off).

/Qprec-div[-] -[no-]prec-div Improves [reduces] precision of floating point divides.

This may slightly degrade [improve] performance.

/Qprec-sqrt[-] -[no-]prec-sqrt Improves [reduces] precision of square root

computations. This may slightly degrade [improve]

performance.

7

Fine-Tuning (All Processors)

Windows* Linux*

Mac OS* X

Comment

/Qunroll[n] -unroll[n] Sets the maximum number of times to unroll loops. /Qunroll0 (-unroll0)

disables loop unrolling. The default is /Qunroll (-unroll), which uses

default heuristics.

/Qopt-prefetch:n -opt-prefetch=n Controls the level of software prefetching. n is an optional value

between 0 (no prefetching) and 4 (aggressive prefetching), with a

default value of 2 when high level optimization is enabled. Warning:

excessive prefetching may result in resource conflicts that degrade

performance.

/Qopt-block-

factor:n

-opt-block-

factor=n

Specifies preferred loop blocking factor n, the number of loop iterations

in a block, overriding default heuristics. Loop blocking is enabled at /O3

(–O3) and is designed to increase the reuse of data in cache.

/Qopt-streaming-

stores:mode

-opt-streaming-

stores mode

Specifies whether streaming stores may be generated. Values for

mode:

always Encourages the compiler to generate streaming stores that

bypass cache, assuming application is memory bound with little data

reuse

never Disables generation of streaming stores

auto Default compiler heuristics for streaming store generation

/Qrestrict[-] -[no]restrict Enables [disables] pointer disambiguation with the restrict keyword. Off

by default. (C/C++ only)

/Oa -fno-alias Assumes no aliasing in the program. Off by default.

/Ow -fno-fnalias Assumes no aliasing within functions. Off by default.

/Qalias-args[-] -fargument-

[no]alias

Implies function arguments may be aliased [are not aliased]. On by

default. (C/C++ only). –fargument-noalias often helps the compiler to

vectorize loops involving function array arguments.

/Qopt-class-

analysis[-]

-[no-]opt-class-

analysis

C++ class hierarchy information is used to analyze and resolve C++

virtual function calls at compile time. If a C++ application contains non-

standard C++ constructs, such as pointer down-casting, it may result in

different behavior. Default is off, but it is turned on by default with the

/Qipo (Windows) or –ipo (Linux and Mac OS X) compiler option, enabling

improved C++ optimization. (C++ only)

 -f[no-]exceptions -f-exceptions, default for C++, enables exception handling table

generation

-fno-exceptions, default for C or Fortran, may result in smaller code. For

C++, it causes exception specifications to be parsed but ignored. Any

use of exception handling constructs (such as try blocks and throw

statements) will produce an error if any function in the call chain has

been compiled with -fno-exceptions.

/Qvec-threshold:n -vec-threshold n Sets a threshold n for the vectorization of loops based on the

probability of performance gain. 0 ≤ n ≤ 100, default n=100.

0 – Vectorize loops regardless of amount of computational work.

100 – Vectorize loops only if a performance benefit is almost certain

/Qvec-report:n

-vec-report n

Controls the vectorizer’s diagnostic levels. n specifies the level of detail,

from 0 (no report) to 3 (maximum detail). Default is 0.

8

Debug Options

Windows* Linux*

Mac OS* X

Comment

/Zi -g Generates debug information for use with any of the common

platform debuggers. Turns off /O2 (-O2) and makes /Od (-O0) the

default unless /O2 (-O2) (or another O option) is specified.

/debug[:keyword] -debug [keyword] keyword

none No debugging information is generated (default)

full (or all) produces debugging information for full symbolic

 debugging of unoptimized code. Same as –g (/Zi),

 or as –debug (/debug) with no keyword.

 extended produces additional information for improved symbolic

 debugging of optimized code (Linux and Mac OS X

 only) Debug symbols will generally increase the size of

 object modules and may slightly degrade performance

 of optimized code. Implies also –debug full.

parallel generates additional symbols and instrumentation for

 debugging threaded code. Does not imply –debug full.

‡ Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for

optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3,

and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability,

functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel

microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel

microprocessors. Please refer to the applicable product User and Reference Guides for more

information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

For product and purchase information, visit the Intel® Software Development

Products site at:

www.intel.com/software/products/compilers

Intel, the Intel logo, Pentium, Intel VTune, Intel Core and Intel Cilk are trademarks of Intel Corporation in the U.S. and other countries.
* Other names and brands may be claimed as the property of others.

© 2010, Intel Corporation. All rights reserved.

