
PWC Python Course: Files, Execution, Objects

Ramses van Zon

SciNet HPC Consortium

December 1,2, and 11, 2014

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 1 / 82

File System: Concepts

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 2 / 82

Files and directories

Files contain your data

Files organized in
directories/folders

A directory is a file too

Path: sequence of folders to
get to a file

Tree:

Files:

FOLDER1/WORLD.TXT

FOLDER2/NOTE.TXT

FOLDER1/HELLO/...

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 3 / 82

Computer Data Storage

Media:

Memory

Disks

Flash (USB)

DVD

Tape

. . .
.

All media are essentially linear strings of bits:

In and of itself, this is useless. What do these bits mean?

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 4 / 82

File systems

Many non-volatile media use a file system

A file system is a way to give meaning to the string of bytes.

This entails storing data describing the meaning of the data:
metadata

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 5 / 82

Files

Storage media is often subdivided into files

Files have a name, a size and possibly other metadata

Let’s say that the metadata for the files is stored at the beginning of
the storage media, e.g.

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 6 / 82

Metadata

Describes file properties:

File name

Within the file system: location
on disk, size, etc.

File type
(extensions/magic identifiers)

Owner, group

Creation, access and
modification times

Read/write permissions
(user, group, world, other
access control)

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 7 / 82

Directories or Folders

So we have files now, but this can get unorganized quickly. Imagine
looking for the file ‘NOTE.TXT’ in a list of 10,000,000 files.

.
Directories

Like special files that contain a list of (metadata for) other files.

A directory can contain other directories, leading to a tree.

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 8 / 82

I/O Operations

What really happens if we open a file, write to it, etc.?

Opening a file:

1 Find the file in the directory
Or create a new entry in the directory

2 Check permissions on the file

3 Find the location of the file on disk

4 Initialize a file ‘handle’ and file ‘pointer’

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 9 / 82

I/O Operations

What really happens if we open a file, write to it, etc.?

Writing to a file:

1 Convert data to a stream of bytes.
2 Put those bytes in a buffer.
3 Update file pointer.
4 If buffer full: write to file

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 10 / 82

I/O Operations

What really happens if we open a file, write to it, etc.?

Reading from a file:

1 If data not in buffer: read data into a buffer
2 Read bytes from buffer into variable, performing any needed

conversion.
3 Update file pointer.

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 11 / 82

I/O Operations

What really happens if we open a file, write to it, etc.?

Closing a file:

1 Ensure buffers are flushed to disk
2 Update any metadata.
3 Release buffers associated with the file handle.

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 12 / 82

Minimizing IOPS

Disk I/O is usually the slowest part of a pipe line.

If manipulating data from files is most of what you do, try and
minimize iops.

Bad
Writing out a string byte-by-byte,
reopening the file each time

s = ’Hi world\n’
for c in s:

f = open(’hiworld.txt’,’a’)

f.write(c)

f.close()

Good
Writing out a string in one fell
swoop.

s = ’Hi world\n’

f = open(’hiworld.txt’,’w’)

f.write(s)

f.close()

Work in memory and reuse data if you can.

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 13 / 82

What’s in a file?
Text:

Seems attractive: you can just read it.

Must assign a bit pattern to each letter or symbol.

For numerical data, representation in base 10 must be computed.

Binary:

Usually: use same byte-representation on disk as the computer.

Can suffer from portability.

Some binary formats include info on the data, e.g.: hdf5. NetCDF.

Encoded:

Various non-native, binary looking formats, e.g. pickle.

Might be used to store non-trivial data structures.

Example: python’s pickle (later).
Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 14 / 82

Text format

ASCII Encoding: 7 bits =
character

128 possible, but only 95
printable characters

Uses 8-bit bytes: storage
efficiency 82% at best.

ASCII representation of floating
point numbers:

I Needs about 18 bytes vs 8
bytes in binary: inefficient

I Representation must be
computed: slow

I Non-exact representation

ASCII

integers characters

32 (space)

33-47 !"#$%&’()*+,-./“

48-57 0-9

58-64 :;<=>?@

65-90 A-Z

91-96 [\]^

97-122 a-z

123-126 {|}~

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 15 / 82

Text Encodings

ASCII: 7 bit encoding. For English.

Latin-1: 8 bit encoding. For western European Languages mostly.

UTF-8: Variable-width encoding that can represent every character
in the Unicode character set.

Unicode: standard containing more than 110,000 characters.

Python can deal with these encodings:

-*- coding: utf-8 -*-

s = u"Comment ça va?"

print s.encode(’utf-8’)

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 16 / 82

Binary output

Output the numbers as they are stored in memory

Why bother: Fast and space-efficient.

Writing 128M doubles:

File system:

ASCII 173 s

binary 6 s

ramdisk

ASCII 174 s

binary 1 s

Not human readable.
But is that really so bad? If you have 100 million numbers in a file,
are you going to read them all?

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 17 / 82

Why you should not use raw binary data

Just dumping the memory is fast, but you loose the information on what it
meant. E.g.:

Dump a 2d array of 100x100 floating point numbers

Gives a file of 800,000 bytes.

If we give this to someone else, how do they know what it is?

I 2d array of 100x100 numbers

I array of 10,000 floating point numbers,

I string of 800,000 characters,

I . . . ?

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 18 / 82

Binary Formats

You could invent your own binary format, but it’s better to take an
existing standard: Saves you potential bugs, the burden of documentation
and/or maintaining an IO library, as one probably already exists.

Pickle: A python specific format. Portable for the same version.

NumPy: Has a binary format called npy or npz.

NetCDF: A self-describing format: contains not only data but names,
descriptions of arrays (scipy.io.netcdf).

Hdf5: Another standard, self-describing format (pytables)
Almost a filesystem in a file.

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 19 / 82

Some best practices concerning I/O

If your data is not text, do not save it as text.

Choose a binary format that is portable.

Minimize IOPS: write/read big chunks at a time, don’t seek more
than needed, try to reuse data or load more in memory.

Don’t create millions of files: unworkable and slows down directories.

Stick to letters, numbers, underscores and periods in filenames.

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 20 / 82

File System: Nuts and Bolts

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 21 / 82

Python modules/packages for files

built-in python file objects

os, os.path

shutil

pickle, shelve, json

zipfile, tarfile, . . .

csv, numpy, scipy.io.netcdf, pytables, . . .

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 22 / 82

Directories
Create:

>>> import os

>>> os.mkdir(’FOLDER’)

Change current directory:

>>> os.chdir(’FOLDER’)

>>> os.chdir(’..’)

Where am I?

>>> os.chdir(’FOLDER’)

>>> print os.getcwd()

C:\Users\rzon\FOLDER

On unix, this would say something like /home/rzon/FOLDER1.
Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 23 / 82

Backslash or forward slash?

Linux and Mac prefer the (forward) slash / to separate directories.

MS Windows prefers backslash \ for the same purpose. It also
separates file trees by file volume (C:, D:, . . .).

What to do if you want to write cross-platform code?

1 MS Windows will accept the forward slash as well, except on the
command-line, so you could use that in python code.

2 You can also use os.sep which is set to the operating system’s
preferred choice.

3 You can assemble and disassemble paths using os.path.join and
os.path.split.

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 24 / 82

Write to a text file

Writing

>>> import os

>>> f = open(os.path.join(’FOLDER1’,’WORLD.TXT’),’w’)

>>> s = "Hello\n"
>>> f.write(s)

>>> f.close()

Appending

>>> import os

>>> f = open(os.path.join(’FOLDER1’,’WORLD.TXT’),’a’)

>>> s = "World\n"
>>> f.write(s)

>>> f.close()

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 25 / 82

Read a text file
Read-Only

>>> import os

>>> f = open(os.path.join(’FOLDER1’,’WORLD.TXT’),’r’)

>>> s = f.readline()

>>> print s

Hello

>>> f.close()

Read/Write

>>> import os

>>> f = open(os.path.join(’FOLDER1’,’WORLD.TXT’),’r+’)

>>> f.seek(1)

>>> f.write(’i ’)

>>> f.seek(0)

>>> s = f.readline()

>>> print s

Hi lo

>>> f.close()

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 26 / 82

Glob

The glob package does only one thing: it finds all files or paths matching a
specific Unix-style regular expression pattern, and returns them in a list.

>>> import glob

>>> f = glob.glob(’*/*.TXT’)

>>> print f

[’FOLDER1\\NOTE.TXT’, ’FOLDER1\\WORLD.TXT’]
>>>

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 27 / 82

os.path

There are a number of useful file and directory-testing functions in os.path.

>>> print f

[’FOLDER1/NOTE.TXT’, ’FOLDER1/WORLD.TXT’]

>>> import os

>>> print os.path.isfile(f[0])

True

>>> print os.path.isdir(f[1])

False

>>> print os.path.abspath(f[1])

’C:\Users\rzon\FOLDER1\WORLD.TXT’
>>> print os.path.expanduser(’~’)

’C:\Users\rzon’

If you’re looking for a directory-testing function, it’s likely in os.path.

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 28 / 82

Example: Copy files

Text file

>>> f = open("file1.txt","r")

>>> g = open("file2.txt","w")

>>> for line in f:

>>> g.write(line)

>>> f.close()

>>> g.close()

Binary file

>>> f = open("file1.bin","rb")

>>> g = open("file2.bin","wb")

>>> chunk = f.read()

>>> g.write(chunk)

>>> f.close()

>>> g.close()

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 29 / 82

Shutil file/directory management

Do we really have to open a file read it line by line, write it, and close
the file just to copy a file in python?

In the command shell, you’d do that with a simple cp or copy
command.

In Python, you get shell-like functionality from the shutil package.

>>> import shutil

>>> shutil.copyfile(’file1.txt’,’file2.txt’)

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 30 / 82

Main shutil functions
copyfile

Copy content of one file to another file.

copymode

Copy permissions of a file or directory to another.

copystat

Copy permissions and time-stamps of a file or directory to another.

copy, copy2
Copy content and permissions (and time-stamps, for copy2).

move

Move a file or directory to another place in the file tree.

copytree

Recursively copy a directory.

rmtree

Recursively remove a directory.

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 31 / 82

Catching errors: exceptions

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 32 / 82

Exceptions

Even scripts written by the best programmers will occasionally fail
due to unexpected circumstances.

This is particularly true when dealing with IO, as the files could be in
the wrong place, renamed, etc., without the script knowing.

Python has a mechanism to catch errors and recover from that
gracefully if possible.

This mechanism is called ‘exceptions’

I exceptions are ‘thrown’ by a function when an error occurs

I exceptions can be caught by the piece of your python code that called
that function

I there are different kinds of exceptions, and your code could be setup
such that it catches only particular types of exceptions

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 33 / 82

Example

(from https://docs.python.org/2/tutorial/errors.html)

>>> while True:

... try:

... x = int(raw_input("Please enter a number: "))

... break

... except ValueError:

... print "Oops! That was no valid number. Try again..."

...

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 34 / 82

A more involved example

(from https://docs.python.org/2/tutorial/errors.html)

>>> import sys

>>> try:

>>> f = open(’myfile.txt’)

>>> s = f.readline()

>>> i = int(s.strip())

>>> except IOError as e:

>>> print "I/O error({0}): {1}".format(e.errno, e.strerror)

>>> except ValueError:

>>> print "Could not convert data to an integer."

>>> except:

>>> print "Unexpected error:", sys.exc_info()[0]

>>> raise

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 35 / 82

Output formats

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 36 / 82

Pickle

Base64 encoding using readable ASCII

Portable for the same version of python.

In the pickle module.

Flexible, can serialize any structure.

>>> import pickle,os,numpy

>>> a = numpy.zeros((1000,1000))

>>> f = open(’a.pickle’,’wb’)

>>> pickle.dump(a,f)

>>> f.close()

>>> print os.path.getsize(’a.pickle’)

32000196

>>> g = open(’a.pickle’,’rb’)

>>> b = pickle.load(g)

>>> g.close()

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 37 / 82

Shelve

You can pickle multiple variables in one file, but you must retrieve
them sequentially.

shelve allows to store multiple variables in one file, indexed by name,
so you can retreive just the variable you want.

>>> import shelve,numpy

>>> a = numpy.zeros((1000,1000))

>>> b = {’b’:’bb’,’c’:’cc’}
>>> f = shelve.open(’b_and_c’)

>>> f[’a’] = a

>>> f[’b’] = b

>>> f.close()

>>> g = shelve.open(’b_and_c’)

>>> readb = g[’b’]

>>> g.close()

>>> print readb[’b’]

’bb’

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 38 / 82

Numpy input/output

save(FILE,ARR) save a numpy array to a .npy file

savez(FILE,NAME1=ARR1,NAME2=ARR2) save several numpy arrays to an
uncompressed zip file with extension .npz

savez compressed(FILE,NAME1=ARR1,NAME2=ARR2) save several
numpy arrays to a compressed zip file with extension .npz

load(FILE) load numpy array(s) from .npy (.npz) file. If FILE is an .npz,
a dictionary with keys equal to the names supplied to savez
is returned.

savetxt(FILE,ARR,delimiter=CH) save numpy array as text, separated
by character CH (thus it can create comma separated files)

genfromtxt(FILE,ARR,delimiter=CH) loads numpy array from text
file, separated by character CH (thus it can create comma
separated files). Options exist to e.g. skip headers.

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 39 / 82

CSV Format

Comma Separated Values

Common format for
import/export

Human readable

.

Sample csv file (data.csv):

3,4,5

4,3,2

5,6,7

.

Reading using the csv module

>>> import csv

>>> f = open(’data.csv’,’r’)

>>> s = csv.reader(f)

>>> a = [row for row in s]

>>> print a

[[’3’, ’4’, ’5’], [’4’, ’3’, ’2’],

[’5’, ’6’, ’7’]]

. . . and the numpy module

>>> import numpy as np

>>> a = np.genfromtxt(’data.csv’,

... delimiter=’,’)

>>> print a

[[3. 4. 5.]

[4. 3. 2.]

[5. 6. 7.]]

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 40 / 82

CSV Format

Comma Separated Values

Common format for
import/export

Human readable

.

Sample csv file (data.csv):

3,4,5

4,3,2

5,6,7

.

Reading using the csv module

>>> import csv

>>> f = open(’data.csv’,’r’)

>>> s = csv.reader(f)

>>> a = [row for row in s]

>>> print a

[[’3’, ’4’, ’5’], [’4’, ’3’, ’2’],

[’5’, ’6’, ’7’]]

. . . and the numpy module

>>> import numpy as np

>>> a = np.genfromtxt(’data.csv’,

... delimiter=’,’)

>>> print a

[[3. 4. 5.]

[4. 3. 2.]

[5. 6. 7.]]

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 40 / 82

CSV Format

Comma Separated Values

Common format for
import/export

Human readable

.

Sample csv file (data.csv):

3,4,5

4,3,2

5,6,7

.

Reading using the csv module

>>> import csv

>>> f = open(’data.csv’,’r’)

>>> s = csv.reader(f)

>>> a = [row for row in s]

>>> print a

[[’3’, ’4’, ’5’], [’4’, ’3’, ’2’],

[’5’, ’6’, ’7’]]

. . . and the numpy module

>>> import numpy as np

>>> a = np.genfromtxt(’data.csv’,

... delimiter=’,’)

>>> print a

[[3. 4. 5.]

[4. 3. 2.]

[5. 6. 7.]]

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 40 / 82

Json
JSON (JavaScript Object Notation) is a lightweight data-interchange
format

Human readable

Reading

>>> import json

>>> f = open("data.json","r")

>>> b = json.load(f)

>>> f.close()

>>> print b

[[3, 4, 5], [4, 3, 2]]

data.json

[[3.4.5],

[4,3,2]]

Writing

>>> import json

>>> f = open("newdata.json","w")

>>> b = [[3, 4, 5], [4, 3, 2]]

>>> json.dump(b,f)

>>> f.close()

.

newdata.json

[[3.4.5], [4,3,2]]

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 41 / 82

File Manipulation Exercise

Create a bunch of comma separate value files using the following code:

>>> import numpy

>>> for i in xrange(20):

... a=i*numpy.arange(500)

... a.shape=(100,5)

... numpy.savetxt(’a%02d.csv’%i, a, delimiter=’,’, fmt=’%.6f’)

Now create python script that:

1 Finds all .csv files in a directory (pretend not to know the filenames)

2 The script should move the csv files to a new directory ‘csv files’.

3 It should also convert each file to a numpy array and stores these as
‘.npy’ files in a directory ‘npy files’.

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 42 / 82

External executable manipulation

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 43 / 82

Local execution: Subprocess
You want to call an executable from within your python script

Often, you’d want to give it some input and capture the output

The subprocess module is designed for this purpose.

This module defines Popen, call, check output, . . .

Example:

>>> from subprocess import Popen, PIPE, STDOUT

>>> c = ’dir’

>>> p = Popen([c],shell=True)

>>> e = p.wait()

Volume in drive C is Windows

Volume Serial Number is CE24-9C37

Directory of C:\Users\rzon

30/11/2014 10:32 PM <DIR> .

30/11/2014 10:32 PM <DIR> ..

30/11/2014 10:05 PM <DIR> FOLDER1

30/11/2014 10:21 PM <DIR> FOLDER2

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 44 / 82

Details of module subprocess
subprocess.Popen(..) ‘spawns’ a background process

The calling script should ensure this process finishes!

Command is not implicitly run through a shell.

Specifying command as a list reduces ambiguity (spaces).

Example:

>>> from subprocess import Popen, PIPE, STDOUT

>>> c = ’dir’

>>> p = Popen([c],shell=True)

>>> e = p.wait()

Volume in drive C is Windows

Volume Serial Number is CE24-9C37

Directory of C:\Users\rzon

30/11/2014 10:32 PM <DIR> .

30/11/2014 10:32 PM <DIR> ..

30/11/2014 10:05 PM <DIR> FOLDER1

30/11/2014 10:21 PM <DIR> FOLDER2

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 45 / 82

Interacting through input and output

The process you’ve spawned may

receive text input from the command line (standard in),

produces text output that you want to capture (standard out)

then you can use stdin, stdout and stderr arguments to tell Popen
how to treat the input and or output streams:

1 taken from a file
2 taken from the same input/output as the parent process
3 should be new, independent input/output streams: PIPEs

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 46 / 82

How to call Popen

Syntax with some of the more common arguments:

p = Popen(cmd, stdin=None, stdout=None, stderr=None, shell=False)

cmd: The command to execute is specified as a list. The first element
is the executable, the rest are the arguments.

stdin: When given a file-like object, redirects input from this object.
When set to ‘None’, shares input from the parent python process.
When set to subprocess.PIPE, creates a new independent stream.

stdout: Similar as for stdin, but for output.

stderr: Similar as for stdout, but for error messages. You can
combine stdout and stderr by setting stderr=subprocess.OUTPUT.

shell: If True, the command gets executed through a new shell. Do
not use unless your command is a shell command.

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 47 / 82

Pipes

With PIPEs, you can send and receive text from the sub-process.

You get a file-like handle to the input, output and error streams of the
sub-process with

>>> outputObject = p.stdout

>>> errorOutput = p.stderr

>>> inputObject = p.stdin

You can also pipe together several subprocesses, such that the output of
one becomes the input of the other (“piping”), by setting the stdin=

argument of one Popen to the .stdout property of another.

Warning:

Because of output buffering, simultaneously using stdin to steer the
process and stdout to monitor that same process is near impossible.

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 48 / 82

Example of capturing output
>>> from subprocess import Popen, PIPE

>>> cmd = ’dir’

>>> p = Popen([cmd],stdout=PIPE,shell=True)

>>> for line in p.stdout:

... print line.strip()

>>> e = p.wait()

...

30/11/2014 10:05 PM <DIR> FOLDER1

30/11/2014 10:21 PM <DIR> FOLDER2

There’s an easier way, using communicate:

>>> from subprocess import Popen, PIPE

>>> cmd = ’dir’

>>> p = Popen([cmd],stdout=PIPE,shell=True)

>>> print p.communicate()[0]

...

30/11/2014 10:05 PM <DIR> FOLDER1

30/11/2014 10:21 PM <DIR> FOLDER2

Now the wait is implicit -> blocking!

communicate returns a tuple for (stdout,stderr).

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 49 / 82

Example of redirecting input
>>> from subprocess import Popen, PIPE

>>> open(’readandwrite.py’,’w’).write(’print raw_input()\n’)
>>> cmd = ’python’

>>> arg = ’readandwrite.py’

>>> out = open(’output.txt’,’w’)

>>> p = Popen([cmd,arg],stdout=out,stdin=PIPE)

>>> p.stdin.write(’hello\n’)
>>> e = p.wait()

>>> out.close()

>>> for s in open(’output.txt’,’r’): print s

hello

Again, communicate can simplify this:

>>> cmd = ’python’

>>> arg = ’readandwrite.py’

>>> p = Popen([cmd,arg],stdout=PIPE,stdin=PIPE)

>>> print p.communicate(’hello\n’)[0]
hello

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 50 / 82

Call: Run command, get result

subprocess.call(...) combines Popen and wait:

>>> from subprocess import call

>>> call([’dir’],shell=True)

...

30/11/2014 10:05 PM <DIR> FOLDER1

30/11/2014 10:21 PM <DIR> FOLDER2

Variant that grabs output:

>>> from subprocess import check_output

>>> s = check_output([’dir’],shell=True)

>>> print s

...

30/11/2014 10:05 PM <DIR> FOLDER1

30/11/2014 10:21 PM <DIR> FOLDER2

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 51 / 82

Remote Execution

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 52 / 82

SSH

Suppose we want our command to run on another server

Ssh can run external commands.

Ssh stands for secure shell. It allows you to login to another server
based on passwords or secure keys. Traffic is encrypted.

We could use the ssh command in combination with subprocess.Popen

>>> import subprocess, time

>>> p = subprocess.Popen([’ssh’, ’login.scinet.utoronto.ca’,’ls’])

>>> print "Waiting",

>>> while p.poll() is None:

>>> print "o",

>>> time.sleep(0.1)

>>> print "Done"

Waiting o o o o FOLDER1 FOLDER2

o Done

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 53 / 82

Ssh with Paramiko

Using Paramiko is often a better approach.

Paramiko is a python implementation of SSH.

It even works if ssh is not installed!

import paramiko

ssh = paramiko.SSHClient()

ssh.set_missing_host_key_policy(

paramiko.AutoAddPolicy())

ssh.connect(’142.150.188.52’,

username=’rzon’,

password=’thisisntit’)

c = "ls"

rin,rout,rerr=ssh.exec_command(c)

print rout.readlines()

["FOLDER1\n", "FOLDER2\n"]

Open a paramiko SSH Client

Set the missing key policy to
“auto”, so we can connect to
new servers

Connect through an IP address

.

execute the ‘ls’ command

read the output

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 54 / 82

Getting the IP address from a hostname

This functionality is not provided by paramiko, but we can use ‘socket’ for
this.

>>> import socket

>>> print socket.gethostbyname(’login.scinet.utoronto.ca’)

142.150.188.52

FYI: socket is a module that allows processes, local or remote, to talk
with one another through ports. This can be more convenient than sending
data over stdin and stdout. For lack of time, we will not cover this today.

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 55 / 82

Ssh background process with Paramiko

As with subprocess, paramiko launches the command asynchronously.

This allows you to do other stuff while you wait.

It might seem you would have to parse stdout to see when it is done,
but there’s the channel.closed property to help you with that.

>>> import time

>>> rin,rout,rerr=ssh.exec_command("sleep 10; ls")

>>> while not rout.channel.closed:

... print "o",

... time.sleep(1)

o o o o o o o o o o

>>> print rout.readlines()

[u"FOLDER1\n", u"FOLDER2\n"]

Expecting a lot of output? You will need to readline it continuously, to
avoid buffer overflow and stallling the remote process.

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 56 / 82

File transfer

Is also possible with paramiko. Just a small example:

>>> import paramiko

>>> ssh = paramiko.SSHClient()

>>> ssh.set_missing_host_key_policy(

>>> paramiko.AutoAddPolicy())

>>> ssh.connect(’142.150.188.52’,

>>> username=’rzon’,

>>> password=’thisisntit’)

>>> ftp=ssh.open_sftp()

>>> ftp.put(’localinput.csv’,’remoteinput.csv’)

>>> #some remote command goes here, presumably

>>> ftp.get(’remoteoutput.npy’,’localoutput.npy’)

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 57 / 82

Exercise

Write a script that does one of the csv-to-numpy conversions remotely.
Use ip address 127.0.0.1, which means it just runs on your local machine.

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 58 / 82

Debugging and Profiling

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 59 / 82

Debugging

So you’re logging, catching exceptions, doing good resource management.
Still the script doesn’t work. What to do?

.
Debugging

This is the process of systematically finding errors in your code.

You could add a bunch of print statements, but this tends to be
rather unproductive, as it gets you in a cycle of adding more and
more print statements, that later have to be removed.

Within eclipse, there is a ‘Debug’ mode. It allows you to step through
your code line by line, and inspect variable values.

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 60 / 82

Debugging Python in Eclipse

Demonstration

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 61 / 82

Profiling

Okay, so our script works but it is very slow, or runs out of memory.

Profiling is not integrated in eclipse, so we’ll need some auxiliary
modules.

Two very common bottlenecks are:

I Performance issues

I Memory problems

These two are separately addresses by the following modules

I line profiler

I memory profiler

There are also the standard python profilers Profile and cProfile,
but these consider the cost of whole functions, not lines.

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 62 / 82

line profiler

Use line profiler to know, line-by-line, where your script spends its
time.

As with debugging, you usually do this on a smaller but representative
came.

First thing to do is to have your code by in a single function (we’ll
look at functions more tomorrow)

You also need to include modify your script slightly:

I decorate your function with @profile

I run your script on the command line with ‘kernprof -l -v
SCRIPTNAME’

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 63 / 82

line profiler script instrumentation

Script before:

a=""

a+="lines of\n"
a+="python code\n"
print a

Script after:

#file: profileme.py

@profile

def profilewrapper():

a=""

a+="lines of\n"
a+="python code\n"
print a

profilewrapper()

Run at the command line:

kernprof -l -v profileme.py

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 64 / 82

Output

lines of

python code

Wrote profile results to profileme.py.lprof

Timer unit: 1e-06 s

Total time: 0.000193 s

File: profileme.py

Function: profilewrapper at line 1

Line # Hits Time Per Hit % Time Line Contents

==

2 @profile

3 def profilewrapper():

4 1 13 13.0 5.3 a=""

5 1 5 5.0 2.0 a+="lines of\n"
6 1 3 3.0 1.2 a+="python code\n"
7 1 225 225.0 91.5 print a

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 65 / 82

memory profiler

This module/utility monitors the python memory usages and its
changes throughout the run.

Good for catching memory leaks and unexpectedly large memory
usage.

Needs same instrumentation as line profiler.

On Windows, requires the psutil module.

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 66 / 82

memory profiler details
Your decorated script is usable by memory profiler.

You run your script through the profiler with the command

python -m memory_profiler profileme.py

Output

lines of

python code

Filename: profileme.py

Line # Mem usage Increment Line Contents

==

2 9.621 MiB 0.000 MiB @profile

3 def profilewrapper():

4 9.625 MiB 0.004 MiB a=""

5 9.625 MiB 0.000 MiB a+="lines of\n"
6 9.625 MiB 0.000 MiB a+="python code\n"
7 9.629 MiB 0.004 MiB print aRamses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 67 / 82

Objects

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 68 / 82

Objects

Functional programming: data and the functions that can act on that
data, are defined separatedly.

Object oriented programming, the functions belong to the data
structure.

Better consistency, modularity, and reusability of your code.

Implementation in python using the class construct.

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 69 / 82

Classes in Python

Classes are used to group together data and code, accessing them
with the . operator.

One could also do this with modules. But there can be only one
instance of a module, and many instances of a class.

Inheritance: multiple base classes, derived class can override any
methods of its base class or classes, and method can call a base class
method with the same name.

Objects can contain arbitrary amounts and kinds of data.

As everything in Python, classes are dynamic: created at runtime, and
can be modified further after creation.

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 70 / 82

Classes as collections of variables

class Apple:

type = "Delicious"

colour = "Green"

apple1 = Apple()

apple2 = Apple()

Apple.colour = "Golden"

print apple1.colour

Outputs: Golden

.
apple1 and apple2 share colour

(class variable): tricky.

class Apple: pass

apple1 = Apple()

apple1.type = "Delicious"

apple1.colour = "Green"

apple2 = Apple()

apple2.type = "Delicious"

apple2.colour = "Golden"

print apple1.colour

Outputs: Green

.
This works, but now we have to
assign each member.
Anything more workable requires
writing a constructor.

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 71 / 82

Initializing objects with constructors

Collection of variables

Same def keyword to define
methods.

Constructor name is init

class Apple:

def __init__(self):

self.type="Delicious"

self.colour="Green"

apple1 = Apple()

apple2 = Apple()

print apple1.colour

Outputs Green

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 72 / 82

Class syntax in Python

Methods take a first argument
that is an instance of the class

This argument is explicit self
in definition but implicit in
calls.

In methods, refer to member
fields as self.field.

No separation
interface/implementation

class Apple:

def __init__(self):

self.type="Delicious"

self.colour="Green"

def describe(self):

print self.type,

self.colour

apple1 = Apple()

apple2 = Apple()

print apple1.colour

[Green]

apple1.describe()

[Delicious Green]

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 73 / 82

More special methods

del

A kind of destructor.

str

Converts object to a string for output. Used by print. Intended to
be readable by users.

repr

Returns a string representation for the object. Used by python (e.g.,
if you just type the name of an object). Intended to be
understandable by developers.

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 74 / 82

Example: Particle

class Particle(object):

def __init__(self,m,x0,v0):

self.t = 0.0

self.m = m

self.x = x0

self.v = v0

def timeStep(self,dt):

self.t += dt

self.x += dt*self.v

def __str__(self):

return str(self.t)+" "+str(self.x)+" "+str(self.v)

p = Particle(2.0,0.0,-1.0)

while p.t <= 10.0:

p.timeStep(0.1)

print p

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 75 / 82

Inheritance in Python

A class can de derived from another class

This means that class variables and methods are carried over to the
new class.

Put classes to derive from between parenthesis in the definition.

class NamedParticle(Particle):

def __init__(self,m,x,v,name):

Particle.__init__(self,m,x,v)

self.name = name

def __str__(self):

return self.name+": "+Particle.__str__(self)

t = NamedParticle(1.0,2.0,-1.0,"Al")

print t

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 76 / 82

New-style classes

Two types of classes in Python:

I Old style

I New style: must derive (ultimately) from ‘object’ class

New style allows for operator overloading, properties, and better
multiple inheritance.

class Particle(object):

#...

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 77 / 82

Accessing derived data with properties

Suppose we have a function that computes the kinetic enery of a particle:

def kineticEnergy(particle):

return 0.5*particle.p**2/particle.m

This definition assumes that particle stores the momentum of the
particle. This is not the case for object of the Particle class, which stores
the velocity. So it would appear that we’ll need to rewrite this function,
using that momentum is mass times velocity.

However, using properties, one has a syntax to access the momentum as
if it were a member variable, but which really calls a getter or setter
function.

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 78 / 82

Derived property example

The momentum property is derived from the velocity variable:

class PParticle(Particle):

#...

def pget(self):

return self.m*self.v

def pset(self,p):

self.v = p/self.m

p = property(pget,pset)

We can then use p as if it were an object variable.

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 79 / 82

Slightly better example

Often one uses properties to enforce a validation on allowed values.

For instance:

class Particle(object):

c = 3.0e8

def vget(self):

return self._v

def vset(self,v):

if (v<=self.c):

self._v=v

else:

raise ValueError("Can’t go faster than light!")

v=property(vget,vset)

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 80 / 82

Overloading operators

If you define you own object,
you may want to define whatit
means to e.g. add or multiply
these objects.

In Python you can overload an
operator by defining a member
function that is equivalent to
the operator.

For instance, the member
function that is equivalent to
addition is add

>>> class pricedItem(object):

... def __init__(self,item,price):

... self.item = item

... self.price = price

... def __add__(self,b):

... item2=self.item+"+"+b.item

... price2=self.price+b.price

... a=pricedItem(item2,price2)

... return a

...

>>> a = pricedItem("Apple", 1.0)

>>> b = pricedItem("Pear", 0.5)

>>> c = a+b

>>> print c.item, c.price

Apple+Pear 1.5

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 81 / 82

Operators
Operation Notation Functional equivalent

Addition a + b a. add (b)

Subtraction a - b a. sub (b)

Multiplication a * b a. mul (b)

Power a ** b a. pow (b)

Division a / b a. truediv (b)

Floor Division a // b a. floordiv (b)

Remainder a % b a. mod (b)

Left Shift a << b a. lshift (b)

Right Shift a >> b a. rshift (b)

AND a & b a. and (b)

OR a | b a. or (b)

XOR a ^ b a. xor (b)

NOT ~a a. invert ()

% -- coding: utf-8 --

Ramses van Zon (SciNet HPC Consortium)PWC Python Course: Files, Execution, ObjectsDecember 1,2, and 11, 2014 82 / 82

	File System: Concepts
	File System: Nuts and Bolts
	Catching errors: exceptions
	Output formats
	External executable manipulation
	Remote Execution
	Debugging and Profiling
	Objects

