
Introduction to GPU Computing Using CUDA

Spring 2014 Westgid Seminar Series

Scott Northrup
SciNet

www.scinethpc.ca

(Slides http://support.scinet.utoronto.ca/∼northrup/westgrid CUDA.pdf)

March 12, 2014

Outline

1 Heterogeneous Computing

2 GPGPU - Overview
Hardware
Software

3 Basic CUDA
Example: Addition
Example: Vector Addition

4 More CUDA Syntax & Features

5 Summary

Outline

1 Heterogeneous Computing

2 GPGPU - Overview
Hardware
Software

3 Basic CUDA
Example: Addition
Example: Vector Addition

4 More CUDA Syntax & Features

5 Summary

Heterogeneous Computing

What is it?

Use different compute device(s) concurrently in the same
computation.

Example: Leverage CPUs for general computing components
and use GPU’s for data parallel / FLOP intensive components.

Pros: Faster and cheaper ($/FLOP/Watt) computation

Cons: More complicated to program

Heterogeneous Computing

Terminology

GPGPU : General Purpose Graphics Processing Unit

HOST : CPU and its memory

DEVICE : Accelerator (GPU) and its memory

Outline

1 Heterogeneous Computing

2 GPGPU - Overview
Hardware
Software

3 Basic CUDA
Example: Addition
Example: Vector Addition

4 More CUDA Syntax & Features

5 Summary

GPU vs. CPUs

CPU
general purpose

task parallelism (diverse tasks)

maximize serial performance

large cache

multi-threaded (4-16)

some SIMD (SSE, AVX)

GPU
data parallelism (single task)

maximize throughput

small cache

super-threaded (500-2000+)

almost all SIMD

Speedup

What kind of speedup can I expect?

∼1 TFLOPs per GPU vs. ∼100 GFLOPs multi-core CPU

0x - 50x reported

Speedup depends on

problem structure

need many identical independent calculations
preferably sequential memory access

single vs. double precision (K20 3.52 TF SP vs 1.17 TF DP)

level of intimacy with hardware

time investment

Speedup

What kind of speedup can I expect?

∼1 TFLOPs per GPU vs. ∼100 GFLOPs multi-core CPU

0x - 50x reported

Speedup depends on

problem structure

need many identical independent calculations
preferably sequential memory access

single vs. double precision (K20 3.52 TF SP vs 1.17 TF DP)

level of intimacy with hardware

time investment

GPU Programming

GPGPU Languages

OpenGL, DirectX (Graphics only)

OpenCL (1.0, 1.1, 2.0) Open Standard

CUDA (NVIDIA proprietary)

OpenACC

OpenMP 4.0

CUDA
What is it?

Compute Unified Device Architecture

parallel computing platform and programming model created
by NVIDIA

Language Bindings

C/C++ nvcc compiler (works with gcc/intel)
Fortran (PGI compiler)
Others (pyCUDA,jCUDA, etc.)

CUDA Versions (V1.0 - 6.0)

Hardware Compute Capability (1.0 - 3.5)

Tesla M20*0 (Fermi) has CC 2.0
Tesla K20 (Kepler) has CC 3.5

Compute Canada Resources

GPU Systems

Westgrid: Parallel

60 nodes (3x NVIDIA M2070)

SharcNet: Monk

54 nodes (2x NVIDIA M2070)

SciNet: Gravity, ARC

49 nodes (2x NVIDIA M2090)
8 nodes (2x NVIDIA M2070)
1 node (1x NVIDIA K20)

CalcuQuebec: Guillimin

50 nodes (2x NVIDIA K20)

Outline

1 Heterogeneous Computing

2 GPGPU - Overview
Hardware
Software

3 Basic CUDA
Example: Addition
Example: Vector Addition

4 More CUDA Syntax & Features

5 Summary

CUDA Example: Addition

Device “Kernel” code
global void add(float *a, float *b, float *c) {

*c = *a + *b;

}

CUDA Syntax: Qualifiers

global indicates a function that runs on the DEVICE
called from the HOST

Used by the compiler, nvcc, to separate sort HOST and
DEVICE components

CUDA Example: Addition

Host Code: Components

Allocate Host/Device memory

Initialize Host Data

Copy Host Data to Device

Execute Kernel on Device

Copy Device Data back to Host

Output

Clean-up

CUDA Example: Addition

Host code: Memory Allocation

int main(void) {

float a, b, c; // host copies of a, b, c

float *da, *db, *dc; // device copies of a, b, c

int size = sizeof(float);

// Allocate space for device copies of a, b, c

cudaMalloc((void **)&da, size);

cudaMalloc((void **)&db, size);

cudaMalloc((void **)&dc, size);

. . .
}

CUDA Syntax: Memory Allocation

cudaMalloc allocates memory on DEVICE

cudaFree deallocates memory on DEVICE

CUDA Example: Addition

Host code: Data Movement
{

. . .
// Setup input values

a = 2.0; b = 7.0;

// Copy inputs to device

cudaMemcpy(da, &a, size, cudaMemcpyHostToDevice);

cudaMemcpy(db, &b, size, cudaMemcpyHostToDevice);

. . .
}

CUDA Syntax: Memory Transfers

cudaMemcpy copies memory

from DEVICE to HOST
from HOST to DEVICE

CUDA Example: Addition

Host code: kernel execution
{

. . .
// Launch add() kernel on GPU

add<<<1,1>>>(da, db, dc);

. . .
}

CUDA Syntax: kernel execution

<<<N,M>>> Triple brackets denote a call from HOST to
DEVICE

Come back to N , M values later

CUDA Example: Addition

Host code: Get Data, Output, Cleanup
{

. . .
// Copy result back to host

cudaMemcpy(&c, dc, size, cudaMemcpyDeviceToHost);

printf('' %2.0f + %2.0f = %2.0f '',a,b,c);

// Cleanup

cudaFree(da); cudaFree(db); cudaFree(dc);

return 0;

}

Compile and Run

$nvcc -arch=sm 20 hello.cu -o hello

$./hello

$2.0 + 7.0 =9.0

CUDA Basics: Review

Device “Kernel” code

global function qualifier

Host Code

Allocate Host/Device memory cudaMalloc(. . .)

Initialize Host Data

Copy Host Data to Device cudaMemcpy(. . .)

Execute Kernel on Device fn<<< N, M >>>(. . .)

Copy Device Data to Host cudaMemcpy(. . .)

Output

Clean-up cudaFree(. . .)

CUDA Parallelism: Threads, Blocks, Grids

Blocks & Threads

Threads: execution thread

Blocks: group of threads

Grids: set of blocks

built-in variables to define
threads position

threadIdx

blockIdx

blockDim

CUDA Parallelism: Threads, Blocks, Grids

Blocks & Threads

Threads operate in a
SIMD(ish) manner, each
execute the same instructions
in lockstep

Blocks are assigned to a GPU,
executing one “warp” at a
time (usually 32 threads)

Kernel execution
fn<<< blockspergrid, threadsperblock >>>(. . .)

CUDA Parallelism: Threads, Blocks, Grids

Blocks & Threads

Threads operate in a
SIMD(ish) manner, each
execute the same instructions
in lockstep

Blocks are assigned to a GPU,
executing one “warp” at a
time (usually 32 threads)

Kernel execution
fn<<< blockspergrid, threadsperblock >>>(. . .)

CUDA Example: Vector Addition

Host code: Allocate Memory

int main(void) {

int N=1024; //size of vector

float *a, *b, *c; // host copies of a, b, c

float *da, *db, *dc; // device copies of a, b, c

int size = N*sizeof(float);

// Allocate space for host copies of a, b, c

a = (float *)malloc (size);

b = (float *)malloc (size);

c = (float *)malloc (size);

// Allocate space for device copies of a, b, c

cudaMalloc((void **)&da, size);

cudaMalloc((void **)&db, size);

cudaMalloc((void **)&dc, size);

. . .
}

CUDA Example: Vector Addition

Host code: Initialize and Copy
{

. . .
// Setup input values

for (int i=0;i<N;i++){

a[i] = (float)i;

b[i] = 2.0*(float)i;

}

// Copy inputs to device

cudaMemcpy(da, a, size, cudaMemcpyHostToDevice);

cudaMemcpy(db, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU

add<<<1,N>>>(da, db, dc);

. . .
}

CUDA Example: Vector Addition

Host code: Get Data, Output, Cleanup
{

. . .
// Copy result back to host

cudaMemcpy(c, dc, size, cudaMemcpyDeviceToHost);

printf(``Hello World!, I can add on a GPU'');

for (int i=0;i<N;i++){

printf("%d %2.0f + %2.0f = %2.0f",i,a[i],b[i],c[i]);

}

// Cleanup

free(a); free(b); free(c);

cudaFree(da); cudaFree(db); cudaFree(dc);

return 0;

}

CUDA Threads

Kernel using just threads

global void add(float *a, float *b, float *c) {

c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];

}

Host code: kernel execution
. . .
// Launch add() kernel on GPU

// with 1 block and N threads

add<<<1,N>>>(da, db, dc);

. . .

CUDA Blocks

Kernel using just blocks

global void add(float *a, float *b, float *c) {

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

Host code: kernel execution
. . .
// Launch add() kernel on GPU

// with N blocks, 1 thread each

add<<<N,1>>>(da, db, dc);

. . .

CUDA Blocks & Threads

Indexing with Blocks and Threads

Use built-in variables to define unique position

threadIdx : thread ID (within a block)
blockIdx : block ID
blockDim : threads per block

CUDA Blocks & Threads

kernel using blocks

global void add(float *a, float *b, float *c, int n) {

int index = threadIdx.x + blockIdx.x * blockDim.x;

if(index < n);

c[index] = a[index] + b[index];

}

Host code: kernel execution
. . .
int TB=128; //threads per block

// Launch add() kernel on GPU

add<<<N/TB,TB>>>(da, db, dc,N);

. . .

Outline

1 Heterogeneous Computing

2 GPGPU - Overview
Hardware
Software

3 Basic CUDA
Example: Addition
Example: Vector Addition

4 More CUDA Syntax & Features

5 Summary

More CUDA Syntax

Qualifiers

Functions

global : Device kernels called from host
host : Host only (default)
device : Device only called from device

Data

shared : Memory shared within a block
constant : Special memory for constants (cached)

Control

syncthreads(): thread barrier within a block

More details

Grids and Blocks can be 1D, 2D, or 3D (type dim3)

Error Handling: cudaError t cudaGetLastError(void)

Device Management: cudaGetDeviceProperties(. . .)

More CUDA Syntax

Qualifiers

Functions

global : Device kernels called from host
host : Host only (default)
device : Device only called from device

Data

shared : Memory shared within a block
constant : Special memory for constants (cached)

Control

syncthreads(): thread barrier within a block

More details

Grids and Blocks can be 1D, 2D, or 3D (type dim3)

Error Handling: cudaError t cudaGetLastError(void)

Device Management: cudaGetDeviceProperties(. . .)

CUDA Kernels

Kernel Limitations

No recursion in host , allowed in device for CC > 2.0

No variable argument lists

No dynamic memory allocation

No function pointers

No static variables inside kernels

Performance Tips

Exploit parallelism

Avoid branches in device code

Avoid memory transfers between Device and Host

GPU memory

high bandwidth/high latency
can hide latency with lots of threads
access patterns matter (coalesced)

CUDA Kernels

Kernel Limitations

No recursion in host , allowed in device for CC > 2.0

No variable argument lists

No dynamic memory allocation

No function pointers

No static variables inside kernels

Performance Tips

Exploit parallelism

Avoid branches in device code

Avoid memory transfers between Device and Host

GPU memory

high bandwidth/high latency
can hide latency with lots of threads
access patterns matter (coalesced)

CUDA Libraries & Applications

Libraries

CUBLAS

CULA

CUSPARSE

CUFFT

https://developer.nvidia.com/gpu-accelerated-libraries

Applications

GROMACS, NAMD, LAMMPS, AMBER, CHARMM

WRF, GEOS-5

Fluent 15.0, ANSYS, Abaqus

Matlab, Mathematica

http://www.nvidia.com/object/gpu-applications.html

CUDA Libraries & Applications

Libraries

CUBLAS

CULA

CUSPARSE

CUFFT

https://developer.nvidia.com/gpu-accelerated-libraries

Applications

GROMACS, NAMD, LAMMPS, AMBER, CHARMM

WRF, GEOS-5

Fluent 15.0, ANSYS, Abaqus

Matlab, Mathematica

http://www.nvidia.com/object/gpu-applications.html

Outline

1 Heterogeneous Computing

2 GPGPU - Overview
Hardware
Software

3 Basic CUDA
Example: Addition
Example: Vector Addition

4 More CUDA Syntax & Features

5 Summary

Intro to CUDA

Summary

Hetergeneous Computing

CUDA Basics

global , cudaMemcpy(. . .),
fn<<<blocks,threads per block>>>(. . .)
blocks, threads
indexing (threadIdx.x, blockIdx.x , blockDim.x)
Limitations
Performance

CUDA Libraries and Applications

https://developer.nvidia.com/cuda

	Heterogeneous Computing
	GPGPU - Overview
	Hardware
	Software

	Basic CUDA
	Example: Addition
	Example: Vector Addition

	More CUDA Syntax & Features
	Summary

