
Before we start with OpenMP. . .

$ ssh -X login.scinet.utoronto.ca

$ ssh -X gpc01

$ qsub -X -I -l nodes=1:ppn=8,walltime=5:00:00,os=centos53develibA

to get a dedicated development node (ensure this works).

$ cp -r ~ljdursi/ppp ~/

$ source ~/ppp/setup

$ cd ~/ppp

$ cd util

$ make

$ cd ~/ppp/omp-intro

$ make mandel

$ mandel

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 67 / 140

Part V

Introduction to OpenMP

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 68 / 140

OpenMP
For shared memory systems.

Add parallelism to functioning
serial code.

http://openmp.org

Compiler, run-time environment
does a lot of work for us

Divides up work

But we have to tell it how to
use variables, where to run in
parallel, . . .

Mark parallel regions.

Works by adding compiler
directives to code.
Invisible to non-openmp
compilers.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 69 / 140

OpenMP
For shared memory systems.

Add parallelism to functioning
serial code.

http://openmp.org

Compiler, run-time environment
does a lot of work for us

Divides up work

But we have to tell it how to
use variables, where to run in
parallel, . . .

Mark parallel regions.

Works by adding compiler
directives to code.
Invisible to non-openmp
compilers.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 69 / 140

OpenMP basic operations

In code:

In C, you add lines starting with #pragma omp.
This parallelizes the subsequent code block.

In Fortran, you add lines starting with !$omp.
An !$omp end ... is needed to close the parallel region.

These lines are skipped (for C, sometimes with a warning) by
compilers that do not support OpenMP.

When compiling:

To turn on OpenMP support in gcc and gfortran, add the -fopenmp

flag to the compilation (and link!) commands.

When running:

The environment variable OMP NUM THREADS determines how many
threads will be started in an OpenMP parallel block.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 70 / 140

OpenMP example

C:
#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n", omp get thread num());

}

}

F90:
program omp hello world

use omp lib

implicit none

print *, ’At start of program’

!$omp parallel

print *, ’Hello world from thread ’, omp get thread num(), ’!’

!$omp end parallel

end program omp hello world

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 71 / 140

OpenMP example

$ gcc -std=c99 -O2 -o omp-hello-world omp-hello-world.c -fopenmp

or

$ gfortran -O2 -o omp-hello-world omp-hello-world.f90 -fopenmp

$ export OMP NUM THREADS=8

$./omp-hello-world

...

$ export OMP NUM THREADS=1

$./omp-hello-world

...

$ export OMP NUM THREADS=32

$./omp-hello-world

...

Let’s see what happens. . .

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 72 / 140

OpenMP example
$ gcc -o omp-hello-world omp-hello-world.c -fopenmp

$ export OMP NUM THREADS=8

$./omp-hello-world

At start of program

Hello, world, from thread 0!

Hello, world, from thread 6!

Hello, world, from thread 5!

Hello, world, from thread 4!

Hello, world, from thread 2!

Hello, world, from thread 1!

Hello, world, from thread 7!

Hello, world, from thread 3!

$ export OMP NUM THREADS=1

$./omp-hello-world

At start of program

Hello, world, from thread 0!

$ export OMP NUM THREADS=32

$./omp-hello-world

At start of program

Hello, world, from thread 11!

Hello, world, from thread 1!

Hello, world, from thread 16!

...SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 73 / 140

So what happened precisely?

OMP NUM THREADS threads
were launched.

Each prints “Hello, world . . . ”;

In seemingly random order.

Only one “At start of program”.

$ gcc -o omp-hello-world omp-hello-world.c -fopenmp

$ export OMP NUM THREADS=8

$./omp-hello-world

At start of program

Hello, world, from thread 0!

Hello, world, from thread 6!

Hello, world, from thread 5!

Hello, world, from thread 4!

Hello, world, from thread 2!

Hello, world, from thread 1!

Hello, world, from thread 7!

Hello, world, from thread 3!

$ export OMP NUM THREADS=1

$./omp-hello-world

At start of program

Hello, world, from thread 0!

$ export OMP NUM THREADS=32

$./omp-hello-world

At start of program

Hello, world, from thread 11!

Hello, world, from thread 1!

Hello, world, from thread 16!

...SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 74 / 140

So what happened precisely?

#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n", omp get thread num());

}

}

program omp hello world

use omp lib

implicit none

print *, ’At start of program’

!$omp parallel

print *, ’Hello world from thread ’, omp get thread num(), ’!’

!$omp end parallel

end program omp hello world

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 75 / 140

So what happened precisely?

#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n", omp get thread num());

}

}

program omp hello world

use omp lib

implicit none

print *, ’At start of program’

!$omp parallel

print *, ’Hello world from thread ’, omp get thread num(), ’!’

!$omp end parallel

end program omp hello world

Program starts normally (single thread)
@

@
@
@

@I

�
�

�
�

�	

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 75 / 140

So what happened precisely?

#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n", omp get thread num());

}

}

program omp hello world

use omp lib

implicit none

print *, ’At start of program’

!$omp parallel

print *, ’Hello world from thread ’, omp get thread num(), ’!’

!$omp end parallel

end program omp hello world

At start of parallel section, launching
OMP NUM THREADS threads,
Each executes the same code!

@
@I}

�
�

�
�
�	}

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 75 / 140

So what happened precisely?

#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n", omp get thread num());

}

}

program omp hello world

use omp lib

implicit none

print *, ’At start of program’

!$omp parallel

print *, ’Hello world from thread ’, omp get thread num(), ’!’

!$omp end parallel

end program omp hello world

At end of parallel section,
threads join back up,
Execution continues serially.

@
@I}

�
�

�
�
�	}

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 75 / 140

So what happened precisely?

#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n", omp get thread num());

}

}

program omp hello world

use omp lib

implicit none

print *, ’At start of program’

!$omp parallel

print *, ’Hello world from thread ’, omp get thread num(), ’!’

!$omp end parallel

end program omp hello world

Special function to find number
of current thread (first=0).

6

?

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 75 / 140

OpenMP functions (from omp.h/omp lib)

#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d of %d!\n",

omp get thread num(),

omp get num threads());

}

}

omp get num threads() called by all threads.
Let’s see if we can fix that. . .

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 76 / 140

OpenMP functions (from omp.h/omp lib)

#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n",

omp get thread num());

}

printf("There were %d threads.\n", omp get num threads());

}

What do you think, will this work?

No:
Says 1 thread only!
Why?
Because that is true outside the parallel region!
Need to get the value from the parallel region somehow.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 77 / 140

OpenMP functions (from omp.h/omp lib)

#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n",

omp get thread num());

}

printf("There were %d threads.\n", omp get num threads());

}

What do you think, will this work?
No:
Says 1 thread only!

Why?
Because that is true outside the parallel region!
Need to get the value from the parallel region somehow.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 77 / 140

OpenMP functions (from omp.h/omp lib)

#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n",

omp get thread num());

}

printf("There were %d threads.\n", omp get num threads());

}

What do you think, will this work?
No:
Says 1 thread only!
Why?
Because that is true outside the parallel region!
Need to get the value from the parallel region somehow.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 77 / 140

Variables in OpenMP
Variables in parallel regions are a bit tricky.

#include <stdio.h>

#include <omp.h>

int main() {

int mythread, nthreads;

#pragma omp parallel default(none) shared(nthreads) private(mythread)

{

mythread = omp get thread num();

if (mythread == 0)

nthreads = omp get num threads();

}

printf("There were %d threads.\n", nthreads);

}

Program runs, lauches threads.

Each thread gets copy of mythread.

Only thread 0 writes to nthreads.

Good idea to declare mythread locally!

(avoids many bugs)

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 78 / 140

Variables in OpenMP
Variables in parallel regions are a bit tricky.

#include <stdio.h>

#include <omp.h>

int main() {

int mythread, nthreads;

#pragma omp parallel default(none) shared(nthreads) private(mythread)

{

mythread = omp get thread num();

if (mythread == 0)

nthreads = omp get num threads();

}

printf("There were %d threads.\n", nthreads);

}

Variable declarations�
����

How used in parallel region

?

Program runs, lauches threads.

Each thread gets copy of mythread.

Only thread 0 writes to nthreads.

Good idea to declare mythread locally!

(avoids many bugs)

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 78 / 140

Variables in OpenMP
Variables in parallel regions are a bit tricky.

#include <stdio.h>

#include <omp.h>

int main() {

int mythread, nthreads;

#pragma omp parallel default(none) shared(nthreads) private(mythread)

{

mythread = omp get thread num();

if (mythread == 0)

nthreads = omp get num threads();

}

printf("There were %d threads.\n", nthreads);

}

Variable declarations�
����

How used in parallel region

?

default(none) can save you hours of debugging!
shared: each thread sees it and can modify (be careful!).
Preserves value.
private: each thread gets it own copy, invisible for others
Initial and final value undefined!
(Advanced: firstprivate, lastprivate – copy in/out.)

Program runs, lauches threads.
Each thread gets copy of mythread.
Only thread 0 writes to nthreads.
Good idea to declare mythread locally!
(avoids many bugs)

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 78 / 140

Variables in OpenMP
Variables in parallel regions are a bit tricky.

#include <stdio.h>

#include <omp.h>

int main() {

int mythread, nthreads;

#pragma omp parallel default(none) shared(nthreads) private(mythread)

{

mythread = omp get thread num();

if (mythread == 0)

nthreads = omp get num threads();

}

printf("There were %d threads.\n", nthreads);

}

Program runs, lauches threads.

Each thread gets copy of mythread.

Only thread 0 writes to nthreads.

Good idea to declare mythread locally!

(avoids many bugs)

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 78 / 140

Variables in OpenMP
Variables in parallel regions are a bit tricky.

#include <stdio.h>

#include <omp.h>

int main() {

int mythread, nthreads;

#pragma omp parallel default(none) shared(nthreads) private(mythread)

{

mythread = omp get thread num();

if (mythread == 0)

nthreads = omp get num threads();

}

printf("There were %d threads.\n", nthreads);

}

Program runs, lauches threads.

Each thread gets copy of mythread.

Only thread 0 writes to nthreads.

Good idea to declare mythread locally!

(avoids many bugs)

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 78 / 140

Variables in OpenMP
Variables in parallel regions are a bit tricky.

#include <stdio.h>

#include <omp.h>

int main() {

int nthreads;

#pragma omp parallel default(none) shared(nthreads)

{

int mythread = omp get thread num();

if (mythread == 0)

nthreads = omp get num threads();

}

printf("There were %d threads.\n", nthreads);

}

Program runs, lauches threads.

Each thread gets copy of mythread.

Only thread 0 writes to nthreads.

Good idea to declare mythread locally!

(avoids many bugs)

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 78 / 140

Variables in OpenMP - Fortran version

program omp vars

use omp lib

implicit none

integer :: mythread, nthreads

!$omp parallel default(none) private(mythread) shared(nthreads)

mythread = omp get thread num()

if (mythread == 0) then

nthreads = omp get num threads()

endif

!$omp end parallel

print *,’Number of threads was ’, nthreads, ’.’

end program omp vars

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 79 / 140

Single Execution in OpenMP

#include <stdio.h>

#include <omp.h>

int main() {

int nthreads;

#pragma omp parallel default(none) shared(nthreads) {

int mythread = omp get thread num();

if (mythread == 0)

nthreads = omp get num threads();

}

printf("There were %d threads.\n", nthreads);

}

Do we care that it’s thread 0 in particular that updates nthreads?

Often, we just want the first thread to go through, do not care which
one.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 80 / 140

Single Execution in OpenMP
#include <stdio.h>

#include <omp.h>

int main() {

int nthreads;

#pragma omp parallel default(none) shared(nthreads)

#pragma omp single

nthreads = omp get num threads();

printf("There were %d threads.\n", nthreads);

}

program omp vars

use omp lib

implicit none

integer :: nthreads

!$omp parallel default(none) shared(nthreads)

!$omp single

nthreads = omp get num threads()

!$omp end single

!$omp end parallel

print *,’Number of threads was ’, nthreads, ’.’

end program omp vars

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 81 / 140

Loops in OpenMP

Take one of your openmp programs and add a loop.

#include <stdio.h>

#include <omp.h>

int main() {

int i, mythread;

#pragma omp parallel default(none) \

XXXXX(i) XXXX(mythread)

{

mythread = omp get thread num();

for (i=0; i<16; i++)

printf("Thread %d gets i=%d\n",

XXXXXXXmythread, i);

}

}

program omp loop

use omp lib

implicit none

integer :: i, mythread

!$omp parallel default(none) &

!$omp XXXX(i) XXXX(mythread)

mythread = omp get thread num()

do i=1,16

print *, ’thread ’, mythread, &

XXXXXXXX ’ gets i=’, i

enddo

!$omp end parallel

end program omp loop

What would you imagine this does when run with e.g.
OMP NUM THREADS=8?

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 82 / 140

Loops in OpenMP

Take one of your openmp programs and add a loop.

#include <stdio.h>

#include <omp.h>

int main() {

int i, mythread;

#pragma omp parallel default(none) \

XXXXX(i) XXXX(mythread)

{

mythread = omp get thread num();

for (i=0; i<16; i++)

printf("Thread %d gets i=%d\n",

XXXXXXXmythread, i);

}

}

program omp loop

use omp lib

implicit none

integer :: i, mythread

!$omp parallel default(none) &

!$omp XXXX(i) XXXX(mythread)

mythread = omp get thread num()

do i=1,16

print *, ’thread ’, mythread, &

XXXXXXXX ’ gets i=’, i

enddo

!$omp end parallel

end program omp loop

What would you imagine this does when run with e.g.
OMP NUM THREADS=8?

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 82 / 140

Loops in OpenMP

Take one of your openmp programs and add a loop.

#include <stdio.h>

#include <omp.h>

int main() {

int i, mythread;

#pragma omp parallel default(none) \

XXXXX(i) XXXX(mythread)

{

mythread = omp get thread num();

for (i=0; i<16; i++)

printf("Thread %d gets i=%d\n",

XXXXXXXmythread, i);

}

}

program omp loop

use omp lib

implicit none

integer :: i, mythread

!$omp parallel default(none) &

!$omp XXXX(i) XXXX(mythread)

mythread = omp get thread num()

do i=1,16

print *, ’thread ’, mythread, &

XXXXXXXX ’ gets i=’, i

enddo

!$omp end parallel

end program omp loop

What would you imagine this does when run with e.g.
OMP NUM THREADS=8?

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 82 / 140

Worksharing constructs in OpenMP

We don’t generally want tasks to do exactly the same thing.

Want to partition a problem into pieces, each thread works on a piece.

Most scientific programming full of work-heavy loops.

OpenMP has a worksharing construct: omp for (or omp do).

#include <stdio.h>

#include <omp.h>

int main() {

int i, mythread;

#pragma omp parallel default(none) XXXX(i) XXXX(mythread)

{

mythread = omp get thread num();

#pragma omp for

for (i=0; i<16; i++)

printf("Thread %d gets i=%d\n",mythread,i);

}

}

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 83 / 140

Worksharing constructs in OpenMP

We don’t generally want tasks to do exactly the same thing.

Want to partition a problem into pieces, each thread works on a piece.

Most scientific programming full of work-heavy loops.

OpenMP has a worksharing construct: omp for (or omp do).

#include <stdio.h>

#include <omp.h>

int main() {

int i, mythread;

#pragma omp parallel default(none) XXXX(i) XXXX(mythread)

{

mythread = omp get thread num();

#pragma omp for

for (i=0; i<16; i++)

printf("Thread %d gets i=%d\n",mythread,i);

}

}

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 83 / 140

Fortran version

program omp loop

use omp lib

implicit none

integer :: i, mythread

!$omp parallel default(none) XXXX(i) XXXX(mythread)

mythread = omp get thread num()

!$omp do

do i=1,16

print *, ’thread ’, mythread, ’ gets i=’, i

enddo

!$omp end do

!$omp end parallel

end program omp loop

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 84 / 140

Worksharing constructs in OpenMP

omp for/omp do construct
breaks up the iterations by
thread.

If doesn’t divide evenly, does
the best it can.

Allows easy breaking up of
work!

Advanced: can break up work
of arbitrary blocks of code with
omp task construct.

$./omp loop

thread 3 gets i= 6

thread 3 gets i= 7

thread 4 gets i= 8

thread 4 gets i= 9

thread 5 gets i= 10

thread 5 gets i= 11

thread 6 gets i= 12

thread 6 gets i= 13

thread 1 gets i= 2

thread 1 gets i= 3

thread 0 gets i= 0

thread 0 gets i= 1

thread 2 gets i= 4

thread 2 gets i= 5

thread 7 gets i= 14

thread 7 gets i= 15

$

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 85 / 140

Less trivial example: DAXPY

multiply a vector by a scalar,
add a vector.

(a X plus Y, in double
precision)

Implement this, first serially,
then with OpenMP

daxpy.c or daxpy.f90

make daxpy or make fdaxpy

z = ax + y

Warning

This is a common linear algebra construct that you really shouldn’t
implement yourself. Various so-called BLAS implementations will do a
much better job than you. But good for illustration.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 86 / 140

#include <stdio.h>

#include "pca utils.h"

void daxpy(int n, double a, double *x, double *y, double *z) {

for (int i=0; i<n; i++) {

x[i] = (double)i*(double)i;

y[i] = ((double)i+1.)*((double)i-1.);

}

for (int i=0; i<n; i++)

z[i] += a * x[i] + y[i];

}

int main() {

int n=1e7;

double *x = vector(n);

double *y = vector(n);

double *z = vector(n);

double a = 5./3.;

pca time tt;

tick(&tt);

daxpy(n,a,x,y,z);

tock(&tt);

free(z);

free(y);

free(x);

}

HANDS-ON: Try OpenMPing. . .

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 87 / 140

#include <stdio.h>

#include "pca utils.h"

void daxpy(int n, double a, double *x, double *y, double *z) {

for (int i=0; i<n; i++) {

x[i] = (double)i*(double)i;

y[i] = ((double)i+1.)*((double)i-1.);

}

for (int i=0; i<n; i++)

z[i] += a * x[i] + y[i];

}

int main() {

int n=1e7;

double *x = vector(n);

double *y = vector(n);

double *z = vector(n);

double a = 5./3.;

pca time tt;

tick(&tt);

daxpy(n,a,x,y,z);

tock(&tt);

free(z);

free(y);

free(x);

}

Utilities for this course; double is
a numerical type which can be set
to single or double precision

HH
H
HH

H
HH

H
HH

HY

HANDS-ON: Try OpenMPing. . .

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 87 / 140

#include <stdio.h>

#include "pca utils.h"

void daxpy(int n, double a, double *x, double *y, double *z) {

for (int i=0; i<n; i++) {

x[i] = (double)i*(double)i;

y[i] = ((double)i+1.)*((double)i-1.);

}

for (int i=0; i<n; i++)

z[i] += a * x[i] + y[i];

}

int main() {

int n=1e7;

double *x = vector(n);

double *y = vector(n);

double *z = vector(n);

double a = 5./3.;

pca time tt;

tick(&tt);

daxpy(n,a,x,y,z);

tock(&tt);

free(z);

free(y);

free(x);

}

Fill arrays with calculated values.�

HANDS-ON: Try OpenMPing. . .

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 87 / 140

#include <stdio.h>

#include "pca utils.h"

void daxpy(int n, double a, double *x, double *y, double *z) {

for (int i=0; i<n; i++) {

x[i] = (double)i*(double)i;

y[i] = ((double)i+1.)*((double)i-1.);

}

for (int i=0; i<n; i++)

z[i] += a * x[i] + y[i];

}

int main() {

int n=1e7;

double *x = vector(n);

double *y = vector(n);

double *z = vector(n);

double a = 5./3.;

pca time tt;

tick(&tt);

daxpy(n,a,x,y,z);

tock(&tt);

free(z);

free(y);

free(x);

}

Do calculation.������)

HANDS-ON: Try OpenMPing. . .

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 87 / 140

#include <stdio.h>

#include "pca utils.h"

void daxpy(int n, double a, double *x, double *y, double *z) {

for (int i=0; i<n; i++) {

x[i] = (double)i*(double)i;

y[i] = ((double)i+1.)*((double)i-1.);

}

for (int i=0; i<n; i++)

z[i] += a * x[i] + y[i];

}

int main() {

int n=1e7;

double *x = vector(n);

double *y = vector(n);

double *z = vector(n);

double a = 5./3.;

pca time tt;

tick(&tt);

daxpy(n,a,x,y,z);

tock(&tt);

free(z);

free(y);

free(x);

}

Driver (setup, call, timing).�

HANDS-ON: Try OpenMPing. . .

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 87 / 140

#include <stdio.h>

#include "pca utils.h"

void daxpy(int n, double a, double *x, double *y, double *z) {

for (int i=0; i<n; i++) {

x[i] = (double)i*(double)i;

y[i] = ((double)i+1.)*((double)i-1.);

}

for (int i=0; i<n; i++)

z[i] += a * x[i] + y[i];

}

int main() {

int n=1e7;

double *x = vector(n);

double *y = vector(n);

double *z = vector(n);

double a = 5./3.;

pca time tt;

tick(&tt);

daxpy(n,a,x,y,z);

tock(&tt);

free(z);

free(y);

free(x);

}

HANDS-ON: Try OpenMPing. . .

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 87 / 140

HANDS-ON 1:
Parallelize daxpy with OpenMP.
Also do the scaling analysis!

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 88 / 140

void daxpy(int n, double a, double *x, double *y, double *z) {

#pragma omp parallel default(none) shared(n,x,y,a,z) private(i)

{

#pragma omp for

for (int i=0; i<n; i++) {

x[i] = (double)i*(double)i;

y[i] = ((double)i+1.)*((double)i-1.);

}

#pragma omp for

for (int i=0; i<n; i++)

z[i] += a * x[i] + y[i];
}

}

!$omp parallel default(none) private(i) shared(a,x,b,y,z)

!$omp do

do i=1,n

x(i) = (i)*(i)

y(i) = (i+1.)*(i-1.)

enddo

!$omp do

do i=1,n

z(i) = a*x(i) + y(i)

enddo

!$omp end parallel

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 89 / 140

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 90 / 140

void daxpy(int n, double a, double *x, double *y, double *z) {

#pragma omp parallel default(none) shared(n,x,y,a,z) private(i)

{

#pragma omp for

for (int i=0; i<n; i++) {

x[i] = (double)i*(double)i;

y[i] = ((double)i+1.)*((double)i-1.);

}

#pragma omp for

for (int i=0; i<n; i++)

z[i] += a * x[i] + y[i];
}

}

!$omp parallel default(none) private(i) shared(n,a,x,y,z)

!$omp do

do i=1,n

x(i) = (i)*(i)

y(i) = (i+1.)*(i-1.)

enddo

!$omp do

do i=1,n

z(i) = a*x(i) + y(i)

enddo

!$omp end parallel

�
��

6

Why is this safe?
Everyone is modifying x,y,z!

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 91 / 140

Dot Product

Dot product of two vectors

Implement this, first serially,
then with OpenMP

ndot.c or ndot.f90

make ndot or make ndotf

Tells time, answer, correct
answer.

n = ~x ·~y

=
∑

i

xi yi

$./ndot

Dot product is 3.3333e+20

(vs 3.3333e+20) for n=10000000.

Took 4.9254e-02 seconds.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 92 / 140

Dot Product - serial
#include <stdio.h>

#include "pca utils.h"

double ndot(int n, double *x, double *y){

double tot=0;

for (int i=0; i<n; i++)

tot += x[i] * y[i];

return tot;

}

int main() {

int n=1e7;

double *x = vector(n), *y = vector(n);

for (int i=0; i<n; i++)

x[i] = y[i] = i;

double nn=n-1;

double ans=nn*(nn+1)*(2*nn+1)/6.0;

pca time tt;

tick(&tt);

double dot=ndot(n,x,y);

printf("Dot product is %14.4e (vs %14.4e) for n=%d. Took %12.4e secs.\n",

dot, ans, n, tocksilent(&tt));

}

$ make ndot $./ndot

Dot product is 3.3333e+20

(vs 3.3333e+20) for n=10000000.

Took 4.9254e-02 secs.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 93 / 140

Dot Product - serial
#include <stdio.h>

#include "pca utils.h"

double ndot(int n, double *x, double *y){

double tot=0;

for (int i=0; i<n; i++)

tot += x[i] * y[i];

return tot;

}

int main() {

int n=1e7;

double *x = vector(n), *y = vector(n);

for (int i=0; i<n; i++)

x[i] = y[i] = i;

double nn=n-1;

double ans=nn*(nn+1)*(2*nn+1)/6.0;

pca time tt;

tick(&tt);

double dot=ndot(n,x,y);

printf("Dot product is %14.4e (vs %14.4e) for n=%d. Took %12.4e secs.\n",

dot, ans, n, tocksilent(&tt));

}

$ make ndot $./ndot

Dot product is 3.3333e+20

(vs 3.3333e+20) for n=10000000.

Took 4.9254e-02 secs.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 93 / 140

Towards A Parallel Dot Product

We could clearly parallelize the loop.

We need the sum from everybody.

We could make tot shared, then all threads can add to it.

double ndot(int n, double *x, double *y){

double tot=0;

#pragma omp parallel for default(none) shared(tot,n,x,y)

for (int i=0; i<n; i++)

tot += x[i] * y[i];

return tot;

}

$ make omp ndot race

$ export OMP NUM THREADS=8

$./omp ndot race

Dot product is 1.1290e+20

(vs 3.3333e+20) for n=10000000.

Took 5.2628e-02 secs.

Not only is the answer wrong, it was slower to compute!

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 94 / 140

Race Condition - why it’s wrong

Classical parallel bug.

Multiple writers to some shared
resource.

Can be very subtle, and only
appear intermittently.

Your program can have a bug
but not display any symptoms
for small runs!

Primarily a problem with shared
memory.

tot = 0
Thread 0: Thread 1:

add 1 add 2

read tot(=0)
into register

reg = reg+1 read tot(=0)
into register

store reg(=1) reg=reg+2
into tot

store reg(=2)
into tot

tot = 2

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 95 / 140

Race Condition - why it’s slow

Multiple cores repeatedly trying
to read, access, store same
variable in memory.

Not (such) a problem for
constants (read only); but a big
problem for writing.

Sections of arrays – better.

~ ~

~

~

n n

n

n

tot- �
?

6

� -

6

?

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 96 / 140

OpenMP critical construct

Defines a critical region.

Only one thread can be
operating within this region at
a time.

Keeps modifications to shared
resources saffe.

#pragma omp critical

!$omp critical

!$omp end critical

double ndot(int n, double *x, double

*y){

double tot=0;

#pragma omp parallel for \

default(none) shared(tot,n,x,y)

for (int i=0; i<n; i++)

#pragma omp critical

tot += x[i] * y[i];

return tot;

}

$ make omp ndot critical

$ export OMP NUM THREADS=8

$./omp ndot critical

Dot product is 3.3333e+20

(vs 3.3333e+20) for n=10000000.

Took 5.1377e+00 secs.

Correct, but 100x slower than serial version!

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 97 / 140

OpenMP atomic construct

Most hardware has support for
atomic instructions (indivisible
so cannot get interrupted)

Small subset, but
load/add/stor usually one.

Not as general as critical

Much lower overhead.

#pragma omp atomic

!$omp atomic

double ndot(int n, double *x, double

*y){

double tot=0;

#pragma omp parallel for \

default(none) shared(tot,n,x,y)

for (int i=0; i<n; i++)

#pragma omp atomic

tot += x[i] * y[i];

return tot;

}

$ make omp ndot atomic $ export

OMP NUM THREADS=8

$./omp ndot atomic

Dot product is 3.3333e+20

(vs 3.3333e+20) for n=10000000.

Took 8.5156e-01 secs.

Correct, and better – only 16x slower than serial.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 98 / 140

How should we fix the slowdown?

Local sums.

Each processor sums its local
values (107/P additions).

And then sums to tot (only P
additions with critical or
atomic. . .

HANDS-ON: Try it!

n = ~x ·~y

=
∑

i

xi yi

=
∑

p

(∑
i

xi yi

)

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 99 / 140

HANDS-ON 2:
Parallelize ndot with partial sums.
copy one of the omp ndot.c’s (or fomp ndot.c’s) to omp ndot local.c (or
fomp ndot local.f90).

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 100 / 140

Local variables
tot = 0;

#pragma omp parallel shared(x,y,n,tot)

{

int mytot = 0;

#pragma omp for

for (int i=0; i<n; i++)

mytot += x[i]*y[i];

#pragma omp atomic

tot += mytot;

}

ndot = 0.

!$omp parallel shared(x,y,n,ndot) &

!$omp private(i,mytot)

mytot = 0.

!$omp do

do i=1,n

mytot = mytot + x(i)*y(i)

enddo

!$omp atomic

ndot = ndot + mytot

!$omp end parallel

$ export OMP NUM THREADS=8

$./omp ndot local

Dot product is 3.3333e+20

(vs 3.3333e+20) for n=10000000.

Took 1.7902-02 seconds.

Now we’re talking! 2.77x faster.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 101 / 140

OpenMP Reduction Operations

This is such a common
operation, this is something
built into OpenMP to handle it.

“Reduction” variables - like
shared or private.

Can support several types of
operations: - + * . . .

omp ndot reduction.c,
fomp ndot reduction.f90

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 102 / 140

OpenMP Reduction Operations

tot = 0;

#pragma omp parallel \

shared(x,y,n) reduction(+:tot)

{

#pragma omp for

for (int i=0; i<n; i++)

tot += x[i]*y[i];

}

ndot = 0.

!$omp parallel shared(x,y,n) &

!$omp private(i) reduction(+:ndot)

!$omp do

do i=1,n

ndot = ndot + x(i)*y(i)

enddo

!$omp end parallel

$ export OMP NUM THREADS=8

$./omp ndot local

Dot product is 3.3333e+20

(vs 3.3333e+20) for n=10000000.

Took 1.8134-02 seconds.

Same speed, simpler code!

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 103 / 140

OpenMP Reduction Operations

tot = 0;

#pragma omp parallel for \

shared(x,y,n) reduction(+:tot)

for (int i=0; i<n; i++)

tot += x[i]*y[i];

ndot = 0.

!$omp parallel do shared(x,y,n) &

!$omp private(i) reduction(+:ndot)

do i=1,n

ndot = ndot + x(i)*y(i)

enddo

!$omp end parallel

$ export OMP NUM THREADS=8

$./omp ndot local

Dot product is 3.3333e+20

(vs 3.3333e+20) for n=10000000.

Took 1.8928e-02 seconds.

Same speed, simpler code!

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 104 / 140

Performance

We threw in 8 cores, got a factor of 3 speedup. Why?

Often we are limited not by CPU power but by how quickly we can
feed CPUs.

For this problem, we had 107 long vectors, with 2 numbers 8 bytes
long flowing through in 0.036 seconds.

Combined bandwidth from main memory was 4.3 GB/s. Not far off of
what we could hope for on this architecture.

One of the keys to good OpenMP performance is using data when we
have it in cache. Complicated functions: easy. Low work-per-element
(dot product, FFT): hard.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 105 / 140

Load Balancing in OpenMP

So far every iteration of the loop had the same amount of work.

Not always the case

Sometimes cannot predict beforehand how unbalanced the problem is

OpenMP has work sharing construct that allow you do statically or
dynamically balance the load.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 106 / 140

Example - Mandelbrot Set

Mandelbrot set simple example
of non-balanced problem.

Defined as complex points a
where |b∞| finite, with b0 = 0
and bn+1 = b2

n + a.
If |bn| > 2, point diverges.

Calculation:
I pick some nmax
I iterate for each point a, see if

crosses 2.
I Plot n or nmax as colour.

Outside of set, points diverge
quickly (2-3 steps).
Inside, we have to do lots of
work (1000s steps).

make mandel; ./mandel

Lots of work

Little work
�
�	

6

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 107 / 140

First OpenMP Mandelbrot Set

Default work sharing breaks N
iterations into

∑
N/nthreads

contiguous chunks and assigns
them to threads.

But now threads 7,6,5 will be
done and sitting idle while
threads 3 and 4 work alone. . .

Inefficient use of resources.

Serial 0.63s

Nthreads=8 0.29s

Speedup 2.2x

Efficiency 27%

0 1 2 3 4 5 6 7

800x800 pix; N/nthreads ∼ 100x800

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 108 / 140

First OpenMP Mandelbrot Set

Default work sharing breaks N
iterations into

∑
N/nthreads

contiguous chunks and assigns
them to threads.

But now threads 7,6,5 will be
done and sitting idle while
threads 3 and 4 work alone. . .

Inefficient use of resources.

Serial 0.63s

Nthreads=8 0.29s

Speedup 2.2x

Efficiency 27%

0 1 2 3 4 5 6 7

800x800 pix; N/nthreads ∼ 100x800

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 108 / 140

Second Try OpenMP Mandelbrot Set

Can change the chunk size
different from ∼ N/nthreads

In this case, more columns –
work distributed a bit better.

Now, for instance, chunk size
50, and thread 7 gets both a
big work chunk and a little one:

#pragma omp for schedule(static,50)

or
!$omp do schedule(static,50)

Serial 0.63s

Nthreads=8 0.15s

Speedup 4.2x

Efficiency 52%

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

800x800 pix; each threads: 50x800

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 109 / 140

Second Try OpenMP Mandelbrot Set

Can change the chunk size
different from ∼ N/nthreads

In this case, more columns –
work distributed a bit better.

Now, for instance, chunk size
50, and thread 7 gets both a
big work chunk and a little one:

#pragma omp for schedule(static,50)

or
!$omp do schedule(static,50)

Serial 0.63s

Nthreads=8 0.15s

Speedup 4.2x

Efficiency 52%

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

800x800 pix; each threads: 50x800

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 109 / 140

Third Try: Schedule dynamic

Break up into many pieces and
hand them to threads when
they are ready.

Dynamic scheduling.

Increases overhead, decreases
idling threads.

Can also choose chunk size.

#pragma omp for schedule(dynamic)

or
!$omp do schedule(dynamic)

Serial 0.63s

Nthreads=8 0.10s

Speedup 6.3x

Efficiency 79%

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 110 / 140

Third Try: Schedule dynamic

Break up into many pieces and
hand them to threads when
they are ready.

Dynamic scheduling.

Increases overhead, decreases
idling threads.

Can also choose chunk size.

#pragma omp for schedule(dynamic)

or
!$omp do schedule(dynamic)

Serial 0.63s

Nthreads=8 0.10s

Speedup 6.3x

Efficiency 79%

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 110 / 140

Tuning

schedule(static) (default) or schedule(dynamic) are good starting
points.

To get best performance in badly imbalanced problems, may have to
play with chuck size; depends on your problem and on hardware.

(static,4) (dynamic,16)

0.084s 0.099s

7/6x 6.4x

95% 79%

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 111 / 140

Two level loops

In scientific code, we usually have
nested loopes were all the work is.

Almost without exception, want the
loop on the outside-most loop.
Why?

#pragma omp for schedule(static,4)

for (int i=0;i<npix;i++)

for (int j=0;j<npix;j++){

double

x=((double)i)/((double)npix);

double

y=((double)j)/((double)npix);

double complex a=x+I*y;

mymap[i][j]=how many iter real(a,maxiter);

}

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 112 / 140

Summary so far

Start a parallel region:
#pragma omp parallel shared() private() default()

Parallelize a loop:
#pragma omp for schedule(static/dynamic, chunk)

Mark off a region only one thread can be in at a time:
#pragma omp critical

Safely update a single memory location:
#pragma omp atomic

In a parallel region, have only one process do something:
#pragma omp single

See: http://openmp.org/wp/openmp-specifications/ for more info.
Strongly encouraged - many good sample programs.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 113 / 140

Summary So Far II

Style Points

If a variable is a private temporary variable inside a parallel region, try
declaring it inside the region.
Makes parallel region easier to specify, and can prevent bugs.

OpenMP supports reduction and initialization clauses. These are
never necessary to use, but are convenient and can streamline code.

You have seen how to find out how many threads exist, etc. However,
in none of our examples did we use that info.
If you think you need to know how many threads you have, you may
well be doing something wrong (with some notable exceptions such as
complex reduction). Using locally declared variables, and critical
regions most likely will do everything you need.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 114 / 140

A Few More Directives

#pragma omp ordered - execute the loop in the order it would have
run serially. Useful if you want ordered output in a parallel region.
Never useful for performance.

#pragma omp master - a block that only the master thread
(thread 0) executes. Usually, #pragma omp single is better.

#pragma omp sections - execute a list of things in parallel. In
OpenMP 3, task directive (later in lecture) is more powerful

#pragma omp for collapse(n): nested loops scheduled as one big loop.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 115 / 140

A bit more on variables

We had :
I #pragma omp . . . shared(), private(), and reduction.

Want private variable to get value from the serial part?
Use firstprivate():

#include <stdio.h>

int main() {

int n = 0;

#pragma omp parallel firstprivate(n)

{

#pragma omp for

for (int i=0;i<100;i++)

n++;

printf("My n=%\n",n);

}

}

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 116 / 140

A bit more on variables

Private variables are destroyed after parallel region. What if you want
the result of a private variable to be preserved?
lastprivate():

#include <stdio.h>

int main() {

int n;

#pragma omp parallel for lastprivate(n)

for (int i=0;i<100;i++)

if (i>70) n=i;

printf("Last n was %\",n);

}

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 117 / 140

Memory Access — a seemingly unrelated intermezzo

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 118 / 140

Memory Access

Processors work on local bits of memory in their cache.

Cache is small and fast. Main memory is big, but slow.

There is a large latency in getting things from main memory — often
hundreds of clock cycles. The fewer times we access main memory,
the faster we will go.

Computers bring in chunks of memory at a time. If you access data in
contiguous memory chunks, much of it may already be in cache.
Always try to do this - serial or parallel.

C - last index is rapidly varying. Fortran first index.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 119 / 140

Memory layout

a

n

-a[0]

a[1]

a[2]

a[3]

a[4]

a[5]

m︷ ︸︸ ︷
-

-

-

-

-

-

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 120 / 140

Memory Access

Memory access is important for serial programs, but can become
particularly important in OpenMP

There is typically a limited bandwidth to main memory. If it has to be
shared 2, 4, or 8 ways, it becomes especially critical to access it
sensibly.

Note on shared variables in OpenMP: If you aren’t changing them,
the compiler can copy the shared variable to local cache and no
performance hit. Modifying shared variables is expensive - we have
already seen this with the dot product.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 121 / 140

Example - Matrix Multiplication

Example

Linear algebra a classic example.

Matrix multiplication: C = A ∗ B, or c[i][j] =
∑

a[i][k] ∗ b[k][j].

Different implementations can take 10-100x longer than optimal.
Slowness entirely due to memory access.

The more you do with stuff youve pulled from main memory, the
faster youll run.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 122 / 140

Slow Matrix Multiplication

void matmult slowest(double **a,

double **b, double **c, int n) {

for (int i=0;i<n;i++)

for (int j=0;j<n;j++) {

c[i][j]=0;

for (int k=0;k<n;k++)

c[i][j]=a[i][k]*b[k][j];

}

}

int main() {

pca time tt;

int n=500;

double **a=matrix(n,n);

double **b=matrix(n,n);

double **c=matrix(n,n);

fill random matrix(a,n);

tick(&tt);

matmult slowest(a,b,c,n);

printf("Time to multiply %dx%d ma-

trices with slow multiplication is

%f\",n,n,tocksilet(&tt));

printf("Sum of elements is

%e\n",matrix sum(c,n));

}

$./matmult slow

Time to multiply 1000 x 1000 matrices with slow multiplication is 12.4637

Sum of elements is 2.4997e+08

$

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 123 / 140

Slow Matrix Multiplication

What happened? For every element in C, we had to pull a fast
direction from A, but a slow direction from B.

Could change the order of the loops, making B fast, but then A would
be slow.

We pulled a slow vector for each element in C, for a total of n2 slow
column pulls.

Could make the transpose of B, then we would always pull from the
fast columns. Only have to do n slow pulls this way.

Drawback: must make a copy of B. If B is large, can take lots of
memory.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 124 / 140

Transpose Multiplication

void matmult transport(double **x, double **b, double **c, int n) {

double **bt=matrix(n,n);

matrix transpose(b,bt,n);

for (int i=0;i<n;i++)

for (int j=0;j<n;j++) {

c[i][j]=0;

for (int k=0;k<n;k++)

c[i][j]=a[i][k]*bt[j][k];

}

}

$./matmul transporse

Time to multiply 1000 x 1000 matrices with transpose multiplication is 8.8756

Sum of elements is 2.4997e+08

$

About 40% faster than slow version.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 125 / 140

Blocks

Multiplication was still kind of slow. Why?

For every column of C we calculate, we have to process all of B, for a
total of n times. That’s a lot of memory throughput.

Recall cij = aik ∗ bkj. Nowhere have we said that cij, ajk, and bkj are
scalars. They could be blocks of the matrices. If we treat them as
blocks, then we’ll have to go to main memory less often.

Say blocks are 20x20. Then I have to pull all of B each time I process
a column of blocks. Or a total of n/20 times. Much less stress on
system memory.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 126 / 140

void matmult block(double **a, double

**b, double **c, int n, int bs) {

for (int i=0;i<n;i++)

for (int j=0;j<n;j++)

c[i][j]=0;

int nb=n/bs;

assert(nb*bs==n);

double**myblock 1=matrix(bs,bs);

double**myblock 2=matrix(bs,bs);

double**myblock 3=matrix(bs,bs);

for (int ib=0;ib<nb;ib++)

for (int jb=0;jb<nb;jb++)

for (int kb=0;kb<nb;kb++) {

int ii=ib*bs;

int jj=jb*bs;

int kk=kb*bs;

// Pull blocks from A and B out

for (int i=0;i<bs;i++)

for (int j=0;j<bs;j++) {

myblock 1[i][j]=a[i+ii][j+kk];

myblock 2[i][j]=b[j+kk][i+jj];

}

// Do the block multiplication

for (int i=0;i<bs;i++)

for (int j=0;j<bs;j++) {

myblock 3[i][j]=0;

for (int k=0;k<bs;k++)

myblock 3[i][j]+=myblock 1[i][k]*myblock 2[j][k];

}

//Accumulate the product into c

for (int i=0;i<bs;i++)

for (int j=0;j<bs;j++)

c[i+ii][j+jj]+=myblock 3[i][j];

}

free matrix(myblock 1);

free matrix(myblock 2);

free matrix(myblock 3);

}

void matmult block(double **a, double

**b, double **c, int n, int bs) {

for (int i=0;i<n;i++)

for (int j=0;j<n;j++)

c[i][j]=0;

int nb=n/bs;

assert(nb*bs==n);

double**myblock 1=matrix(bs,bs);

double**myblock 2=matrix(bs,bs);

double**myblock 3=matrix(bs,bs);

for (int ib=0;ib<nb;ib++)

for (int jb=0;jb<nb;jb++)

for (int kb=0;kb<nb;kb++) {

int ii=ib*bs;

int jj=jb*bs;

int kk=kb*bs;

// Pull blocks from A and B out

for (int i=0;i<bs;i++)

for (int j=0;j<bs;j++) {

myblock 1[i][j]=a[i+ii][j+kk];

myblock 2[i][j]=b[j+kk][i+jj];

}

//Do the block multiplication

for (int i=0;i<bs;i++)

for (int j=0;j<bs;j++) {

myblock 3[i][j]=0;

for (int k=0;k<bs;k++)

myblock 3[i][j]+=

myblock 1[i][k]

*myblock 2[j][k];

}

//Accumulate the product into c

for (int i=0;i<bs;i++)

for (int j=0;j<bs;j++)

c[i+ii][j+jj]+=myblock 3[i][j];

}

free matrix(myblock 1);

free matrix(myblock 2);

free matrix(myblock 3);

}

$./matmul block

Time to multiply 1000 x 1000 matrices

with block multiplication is 9.5774

Sum of elements is 2.4997e+08

$

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 127 / 140

Blocks Debrief

Well, managed to do better in memory, calculation time was similar
(slightly larger actually).

You may gather that writing a fast, parallel matrix multiplier isn’t
easy. You are right.

People have spent a long time optimizing matrix multiplication, and
gotten to 80-90% of theoretical max, using block-based algorithms
(look up goto blas)

Important corollary: Think you need to code something? Don’t! See
if someone else has done it. For core routines, they have, and better
than you will ever do it.

For the same problem, Goto runs in 0.1972 – 50x faster.
(module load gotoblas)

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 128 / 140

Big Lesson #5

Make sure serial performance is good before worrying about parallel!

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 129 / 140

End of intermezzo on memory access

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 130 / 140

HANDS-ON 3:
OpenMP-Parallelize Matrix Multiplications.
Consider both the blocked and the non-blocked versions.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 131 / 140

Conditional OpenMP

There is always overhead associated with starting threads, splitting
work, etc. Also, some jobs parallelize better than others.

Sometimes, overhead takes longer than 1 thread would need to do a
job - e.g. very small matrix multiplies.

OpenMP supports conditional parallelization. Add if(condition) to
parallel region beginning. So, for small tasks, overhead low, while
large tasks remain parallel.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 132 / 140

Conditional OpenMP in Action

#include <stdio.h>

#include <omp.h>

int main(int argc, char *argv[]) {

int n = atoi(argv[1]);

#pragma omp parallel if (n>10)

#pragma omp single

printf("have %d threads with

n=%d\n", omp get num threads(),n);

}

$./conditional if 12

have 8 threads with n=12

$./conditional if 9

have 1 threads with n=9

$

First, pull an integer from the com-
mand line. Check to see if it’s big-
ger than a number (in this case,
10). If so, start a parallel region.
Otherwise, execute serially.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 133 / 140

Controlling # of Threads

Sometimes you might want more or fewer threads. May even want to
change while running.

Example - IBM P6 cluster. Matrix multiply runs fast with twice as
many program threads as physical cores (hyperthreading). However,
matrix factorizations run slower with more threads.

omp set num threads(int) sets or changes the number of threads
during runtime.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 134 / 140

omp set num threads() in action

#include "stdio.h"

#include "omp.h"

int main(int argc,char *argv[]){

//find # of physical cores

//this is an openmp library routine.

int max threads=omp get num procs();

int n=atoi(argv[1]);

//set # threads equal to input

//assuming it’s less than max threads

if (n<max threads)

omp set num threads(n);

else

omp set num threads(max threads);

#pragma omp parallel

#pragma omp single

printf("Running with %d threads for

n=%d.\n", omp get num threads(),n)

}

We have changed the # of threads
during the program. We could
always change the number later on
in the same code, if we so desired.
Note the use of
omp get num procs(), a library call
to detect the physical number of
available processors.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 135 / 140

Non-loop construct

OpenMP supports non-loop parallelism as well:

Sections:
#pragma omp parallel

{

#pragma omp sections

{

#pragma omp section

{

something to do

}

#pragma omp section

{

something to do at the same

time

}

}

}

More flexible: tasks

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 136 / 140

Tasks

OpenMP 3.0 supports the #pragma omp task directive.

A task is a job assigned to a thread. Powerful way of parallelizing
non-loop problems.

Tasks should help omp/mpi hybrid codes - one task can do
communications, rest of threads keep working.

Like all omp, tasks must be called from parallel region.

Raises complication of nested parallelism (what happens if a parallel
loop called from parallel loop?).

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 137 / 140

Tasks: test task.c

#include <stdio.h>

#include <omp.h>

int main(){

#pragma omp parallel

#pragma omp single

{

printf("hello");

#pragma omp task

{

printf("hello 1 from

%d.",omp get thread num());

}

#pragma omp task

printf("hello 2 from

%d.",omp get thread num());

}

}

Often want to start tasks from as if
from serial region. Must be in
parallel for tasks to spawn, so
#pragma omp parallel followed by
#pragma omp single very useful.
What would happen w/out
#pragma omp single?

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 138 / 140

Beauty of Tasks
Some problems naturally fit into tasks that are otherwise hard to
parallelize.
Example (from standard): parallel tree processing.
Each node has left, right pointers, process each sub- pointer with a
task.
Look how short the parallel tree is!
Works for a variety of non-array structure (linked lists, etc.)

How would you do this problem with-
out tasks?

struct node {

struct node *left;

struct node *right;

};

extern void process(struct node*);

void traverse(struct node* p) {

if (p->left)

#pragma omp task firstprivate(p)

traverse(p->left);

if (p->right)

#pragma omp task firstprivate(p)

traverse(p->right);

process(p);

}
SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 139 / 140

