
Structuring Python Code

Jonathan Dursi

SciNet HPC Consortium

December 2, 2014

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 1 / 107

Structuring code: Functions, Classes, Modules,
Packages, Testing, and Python/Eclipse

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 2 / 107

Outline for Today:

Functions
I Python Functions
I Using Eclipse for Refactoring

Objects (Ramses)

Advanced Functions
I Functions as Objects
I Generators, Closures

Modules

Testing
I Unittest, Nose, Doctest

Packages

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 3 / 107

Part 1 - Functions

Defining Functions

Docstrings, help, and pydoc; Ex1

Scoping - LEGB

Parsing; Ex2

Recursion; Ex3

Keyword parameters

Functions as arguments; Ex4

Eclipse and refactoring

Testing parameters with asserts

Ex 5

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 4 / 107

Defining Functions

In an interactive python session (eclipse interpreter, or IDLE), let’s type in
the following.

def addition(x,y):
"""This function returns the sum of x and y"""
sumxy = x + y
return sumxy

print addition(3,5)

8

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 5 / 107

Defining Functions - Structure

Let’s look at a couple of things here:

def addition(x,y):
"""This function returns the sum of x and y"""
sumxy = x + y
return sumxy

print addition(3,5)

def keyword introduces the definition of a function.

Function is a code block, so:

Usual python indentation requirement
I Indentation as syntax is clearly and unquestionably a good thing, and I

will not hear otherwise.

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 6 / 107

Defining Functions - Variables

Let’s look at a couple more things:

def addition(x,y):
"""This function returns the sum of x and y"""
sumxy = x + y
return sumxy

print addition(3,5)

Introduction of variables in the usual pythonic way

return statement for returning values.

return statement is optional; if absent, function returns None.

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 7 / 107

Defining Functions - Docstrings and help

def addition(x,y):
"""This function returns the sum of x and y"""
sumxy = x + y
return sumxy

help(addition)

Help on function addition in module __main__:
##
addition(x, y)
This function returns the sum of x and y

String immediately following definition becomes the docstring for the
function; can be accessed with help() and other methods.

By convention, three quotes, so can easily be made multi-line.

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 8 / 107

Defining Functions - Docstrings and help

Help on function addition in module __main__:
##
addition(x, y)
This function returns the sum of x and y

Because of automatic documentation of the function’s signature,
particularly useful to give arguments descriptive names.

Helps explain their use, minimizes additional documentation you have
to write.

Python can’t “see” the return type of the function: explicitly
documenting what it returns in the docstring is usually necessary.

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 9 / 107

Defining Functions - Docstrings and help

def addition(x,y):
"""This function returns the sum of x and y"""
sumxy = x + y
return sumxy

help(addition)

Help on function addition in module __main__:
##
addition(x, y)
This function returns the sum of x and y

If you are unwilling to write even a single-line description of your
function for your colleagues, look deep inside yourself and ask yourself
why.

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 10 / 107

Arguments: pass by reference or by value?
The natural first question of any programmer who works with both C/C++
and Fortran code.

The answer is. . .

Well, let’s see.

def mutateInteger(i):
"""Takes an integer argument and doubles it."""
i = i * 2

def mutateListItem(l):
"""Takes an list argument and doubles second item."""
l[1] = l[1] * 2

def mutateList(l):
"""Takes an list argument replaces it."""
l = [1,2,3]

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 11 / 107

Arguments: it’s complicated.
def mutateInteger(i):

"""Takes an integer argument and doubles it."""
i = i * 2

def mutateListItem(l):
"""Takes an list argument and doubles second item."""
l[1] = l[1] * 2

def mutateList(l):
"""Takes an list argument replaces it."""
l = [1,2,3]

i = 1; print i,'->',; mutateInteger(i); print i;
l=[2,4,6]; print l,'->',; mutateListItem(l); print l;
l=[2,4,6]; print l,'->',; mutateList(l); print l;

1 -> 1
[2, 4, 6] -> [2, 8, 6]
[2, 4, 6] -> [2, 4, 6]

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 12 / 107

Arguments are “pass by assignment”

1 -> 1
[2, 4, 6] -> [2, 8, 6]
[2, 4, 6] -> [2, 4, 6]

Function dummy arguments are assigned as labels to the passed
arguments: another reference to the object.

If the object allows mutation, can change it. Can’t mutate tuples,
strings, primitive types.

Replacing it doesn’t work: just makes local dummy argument reference
a new, different, local, thing.

We’ll be able to understand this a little more after discussing objects in
python.

What happens if you pass mutateListItem() a tuple?

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 13 / 107

Multiple Return Values

Modifing function parameters is less necessary in python.

Commonly used to have function return several values.

Can easily return multiple values from a function using tuples, explicitly or
implicitly:

def minmeanmax(items):
"""Returns summary statistics of a sequence - min,mean,max."""
minval = min(items)
meanval= sum(items)/len(items)
maxval = max(items)
return (minval, meanval, maxval) # explicit

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 14 / 107

Multiple Return Values

def minmeanmax(items):
"""Returns summary statistics of a sequence - min,mean,max."""
minval = min(items)
meanval= sum(items)/len(items)
maxval = max(items)
return minval, meanval, maxval # implicit tuple

tup = minmeanmax(range(-50,51))
print tup
low, middle, high = minmeanmax(range(1,200))
print "low = ", low, "mid = ", middle, "hi = ", high

(-50, 0, 50)
low = 1 mid = 100 hi = 199

Tuple implicitly created from comma list of values, implicitly unpacked into
seperate variables after second function call.

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 15 / 107

Exercise - functions (5-10 min)

In eclipse, start a new file.

Define a function isSquare(n) which returns true or false depending
on whether or not n is a square.

Using isSquare(), write a function which returns the sum all the
square numbers from a up to but not including b.

(Bonus points: do same for all triangle numbers, T = n(n+1)
2 .)

Sum of squares in [1,100): 285
I [1, 4, 9, 16, 25, 36, 49, 64, 81]

Sum of squares in [1537,2089): 10855

Sum of triangles in [1,100): 455
I [1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91]

Sum of triangles in [1537,2089): 18040

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 16 / 107

Scoping

Python has fairly sensible scoping rules for functions that will be familiar to
most of us. Let’s go back to that IDLE session with addition:

def addition(x,y):
"""This function returns the sum of x and y"""
sumxy = x + y
return sumxy

print addition(3,5)
print sumxy

8
Traceback (most recent call last):
File "<string>", line 7, in <module>
NameError: name 'sumxy' is not defined

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 17 / 107

Scoping

8
Traceback (most recent call last):
File "<string>", line 7, in <module>
NameError: name 'sumxy' is not defined

Local variable sumxy does not exist outside the function
I (unlike other code blocks, like say if-blocks)

Important reason for functions, higher-level structures: encapsulation.
I Don’t “leak” state.

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 18 / 107

Scoping Rules: Local, Enclosing, Global,
Builtin

LEGB lookup priority:
I Local variables
I Enclosing blocks
I Global variables
I Builtin python functions/values.

sumxy was neither L,E,G, nor B.

Note that it is very, very easy to hide (shadow) other definitions,
including your own or python functions.

Python won’t warn you of this, but IDEs often will.

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 19 / 107

Global considered harmful

Global variables are, of course, evil, and we will speak no further of them
here.

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 20 / 107

Python and Parsing

Going back to our addition example, what do the following do?

print addition('Hello ','World!')

print addition(1.5, 3.7)

print addition(4, "World!")

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 21 / 107

Python and Parsing
def addition(x,y):

"""This function returns the sum of x and y"""
sumxy = x + y
return sumxy

print addition(3, 4)
print addition('Hello ','World!')
print addition(1.5, 3.7)
print addition(4, "World!")

7
Hello World!
5.2
Traceback (most recent call last):
File "<string>", line 9, in <module>
File "<string>", line 3, in addition
TypeError: unsupported operand type(s) for +: 'int' and 'str'

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 22 / 107

Python and Parsing
Python performs only the most cursory examination of code before
execution.

Means you can do a lot of neat things without writing much boilerplate

Means a lot of errors can’t possibly be caught until runtime
I Ticking timebombs in your code.

What does this do? (note typo, and print as function)

def printParity(n):
if n % 2 == 0:

print("Even!")
else:

prnit("Odd!")

printParity(6)
printParity(4)
printParity(5)

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 23 / 107

Python and Parsing

def printParity(n):
if n % 2 == 0:

print("Even!")
else:

prnit("Odd!")

printParity(6)
printParity(4)
printParity(5)

Even!
Even!
Traceback (most recent call last):
File "<string>", line 9, in <module>
File "<string>", line 5, in printParity
NameError: global name 'prnit' is not defined

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 24 / 107

Exercise - Broken Code (5 min)

Take a few minutes to come up with the most broken code (as scored by
either the obvious-wrongness of the code, or the spectacularity of the
resulting error messages) you can which will still run correctly in some cases.

Winner gets lasting fame, extra 2 minutes of coffee break.

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 25 / 107

Python and Parsing - Need to Test

JIT compiling represents a tradeoff: flexibility (ease to get working code
running) vs level of insight into the code.

This isn’t a problem, necessarily, but it means you need some other tool
than a compiler to make sure all code makes sense.

Various testing frameworks exist which can help with this - will see some
this afternoon.

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 26 / 107

Asserting parameter validity
Even without a test suite, the beginning of a function is an excellent
place to check parameters being passed in are valid.

Fail as early as possible, makes the underlying mistake easier to find.

Can use the rather blunt instrument of an assertion:

def additionAssert(x,y):
"""This function returns the sum of x and y"""
assert type(x) == type(y)
sumxy = x + y
return sumxy

print additionAssert(4, "World!")

Traceback (most recent call last):
File "<string>", line 7, in <module>
File "<string>", line 3, in additionAssert
AssertionError

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 27 / 107

Asserting parameter validity

Or, less drastically and more pythonically, raise an exception:

def additionException(x,y):
"""This function returns the sum of x and y"""
if not type(x) == type(y):

raise ValueError("Mismatched types")
sumxy = x + y
return sumxy

print additionException(4, "World!")

Traceback (most recent call last):
File "<string>", line 8, in <module>
File "<string>", line 4, in additionException
ValueError: Mismatched types

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 28 / 107

Recursion

Recursion is handled in python by applying recursion.

Python won’t automatically optimize out tail recursion, so be careful, but
can still be useful.

Legally-mandated Fibonacci sequence example:

def fibonacci(n):
if n < 3:

return 1
else:

return fibonacci(n-1) + fibonacci(n-2)

print fibonacci(7)

13

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 29 / 107

Exercise - Recursion (5-10 min)

Pick one of the following:

Define a function which recursively determines if a word is a
palindrome.

I One character words are necessarily palindromes.

Fast exponentiation: basepow in as few multiplications as possible.
I For even pow, calculate basepow/2, multiply it by itself.
I For odd pow, calculate base · basepow−1.

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 30 / 107

Keyword parameters
Let’s consider another way of calling our exponentiation function:

def fastExponentiation(base, power):
if power == 0:

return 1
if power % 2 == 1:

return base * fastExponentiation(base, power-1)
else:

halfpow = fastExponentiation(base,power/2)
return halfpow*halfpow

print fastExponentiation(2,12)
print fastExponentiation(power=12, base=2)

4096
4096

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 31 / 107

Keyword parameters
We aren’t restricted to passing in arguments in order they are listed in
function; we can pass in arguments in any order, as long as we specify them.

Can also define optional parameters with default parameters:

import math

def myLogarithm(x, base=10):
"""Calculates the logarithm of x, with the given base.

base: defaults to 10."""
return math.log(x) / math.log(base)

print myLogarithm(100)
print myLogarithm(16,2)
print myLogarithm(16,base=4)

2.0
4.0
2.0

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 32 / 107

Keyword parameters

Optional or keyword-specified arguments have to come last. Why?

def myLogarithm(x, base=10):
"""Calculates the logarithm of x, with the given base.

base: defaults to 10."""
return math.log(x) / math.log(base)

print myLogarithm(100)
print myLogarithm(16,2)

Does help(myLogarithm) tell me the default values of parameters?

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 33 / 107

Keyword parameters

Note: be very careful about using something mutable as a default argument,
and then mutating it.

def appendTo(item, to=[]):
to.append(item)
return to

print appendTo(1)
print appendTo(2, [2])
print appendTo(3)

[1]
[2, 2]
[1, 3]

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 34 / 107

Functions as arguments

Functions, once created, are things that you can assign to variables, etc:

def addition(x,y):
return x+y

print addition(2,3)

sumThemUp = addition
print sumThemUp(2,3)

5
5

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 35 / 107

Functions as arguments
And that means that they’re easy to pass into functions as arguments

def addition(x,y):
return x+y

def subtraction(x,y):
return x-y

def applyAction(x,y,f):
return f(x,y)

print applyAction(5,2,addition)
print applyAction(5,2,subtraction)

7
3

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 36 / 107

Exercise - Simple Quadrature (10-15
minutes)

Write a simple numerical integrator function:
I Takes a starting and ending value
I And a function y = f(x)
I and an optional number of steps

and outputs a simple trapezoid-rule approximation to the integral,

∫ b

a
f (x)dx ≈

N∑
i=1

h
f (xi+1) + f (xi)

2

h =
b − a

N
; xi = a + (i − 1)h

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 37 / 107

Eclipse refactoring

Eclipse, as with most IDEs, makes it very straightforward to pull functions
out of code.

Whenever you see repeated code, it is a sign that some refactoring needs to
happen to re-use that repeated code.

Happens all the time when doing scripting, extending scripts.

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 38 / 107

Eclipse refactoring

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 39 / 107

Eclipse refactoring

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 40 / 107

Eclipse refactoring

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 41 / 107

Eclipse refactoring

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 42 / 107

Exercise - refactor a script (15-30 min)

Python is a great language to use to script to glue together a bunch of
steps in a pipeline. But a linear script can grow and take on new tasks and
eventually become an unreadable mess.

Such an unreadable mess awaits you in script/runscript.py (along with
the “programs” it runs, runthermalsimulation.py and
runturbulentsimulation.py.)

Using eclipse, refactor this mess into something maintainable and useful.
There’s a lot that can potentially be done here.

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 43 / 107

Advanced Functions

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 44 / 107

Outline

Revisiting argument passing

The *args in **kwargs fall mainly on the blargs

Functions as Objects

Higher level functions: Map/Reduce/Filter

Lambdas; Ex 1

Generators

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 45 / 107

More on argument passing

Every argument is an object

*args and **kwargs

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 46 / 107

More on argument passing

Everything is an object

This includes ints, floats, . . .

“Passing by assignment”: local function argument becomes label for
incoming object.

I Some classes have methods for mutating the content of an object (eg,
lists, dicts).

I Some don’t (eg, strings, tuples, primitive types).

May or may not be able to modify arguments.

Either way, can’t simply replace them - just change what local label
points to.

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 47 / 107

*args and **kwargs

What does the following do?

def printArgsKwargs(firstarg, *args, **kwargs):
print 'firstarg: ', firstarg
print 'args: ', args
print 'kwargs: ', kwargs

printArgsKwargs(1,'two',3.0,greeting='Hello',greetee='World')

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 48 / 107

*args and **kwargs

def printArgsKwargs(firstarg, *args, **kwargs):
print 'firstarg: ', firstarg
print 'args: ', args
print 'kwargs: ', kwargs

printArgsKwargs(1,'two',3.0,greeting='Hello',greetee='World')

firstarg: 1
args: ('two', 3.0)
kwargs: {'greeting': 'Hello', 'greetee': 'World'}

args: tuple of all (remaining) positional arguments.

kwargs: dictionary of all (remaining) keyword arguments

The relevant syntax here is * and **; args and kwargs could be
anything (but convention is args and kwargs).

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 49 / 107

*args and **kwargs

These are very useful in two cases in particular:

You don’t know how many arguments you’ll have

def mySum(*args):
return sum(args)

print mySum(1,2,7,18.3,-5)
print mySum(3,8,6)

23.3
17

(But are you sure you don’t just want to use a list?)

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 50 / 107

*args and **kwargs

These are very useful in two cases in particular:

You’re writing a wrapper to other functions and you want to pass
arguments through without explicitly handling them all:

import subprocess

def getDirectory(extension, **kwargs):
output = subprocess.check_output(['dir','*'+extension],

shell=True,**kwargs)
return output

print getDirectory('.py')
print getDirectory('',cwd='..')

Note ‘unpacking’ the dictionary. . .

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 51 / 107

*args and **kwargs

The * or ** syntax can be used to unpack a tuple or a dictionary in an
argument list:

def printArgsKwargs(firstarg, *args, **kwargs):
print 'firstarg: ', firstarg
print 'args: ', args
print 'kwargs: ', kwargs

t = (1,'two',3.0)
printArgsKwargs(*t, greeting='Hello',greetee='World')

firstarg: 1
args: ('two', 3.0)
kwargs: {'greeting': 'Hello', 'greetee': 'World'}

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 52 / 107

Functions as Objects
Everything is an object - including functions.

That’s why it’s so easy to pass functions as arguments.

Let’s take our favourite function, or any you have to hand:

def addition(x,y):
"""This function returns the sum of x and y"""
sumxy = x + y
return sumxy

print dir(addition)
print addition.__doc__
print addition.func_name

['__call__', '__class__', '__closure__', '__code__', '__defaults__', '__delattr__', '__dict__', '__doc__', '__format__', '__get__', '__getattribute__', '__globals__', '__hash__', '__init__', '__module__', '__name__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'func_closure', 'func_code', 'func_defaults', 'func_dict', 'func_doc', 'func_globals', 'func_name']
This function returns the sum of x and y
addition

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 53 / 107

Functions as Objects

Doc strings can be accessed programatically via function.__doc__

Function name can be accessed programatically via
function.func_name

__call__ is an alias to the function method itself

Other attributes can be seen by interactively typing dir(function)

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 54 / 107

Higher level functions - map, etc.

Being able to pass in various functions to various routines is very handy.

Sort is a classic example: sort by various criteria. Absolute values?

data = range(-10,10,2)
print sorted(a, key=abs)

Traceback (most recent call last):
File "<string>", line 2, in <module>
NameError: name 'a' is not defined

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 55 / 107

Higher level functions - map, etc.

Higher level functions allow us to control the application of our functions.

map(f,sequence): applies x -> f(x) to each element in the
sequence, return the transformed sequence back.

reduce(f,sequence): combines the sequence to one item, repeatedly
applying partial, next -> f(partial, next) to sequence
left to right

filter(f,sequence): generates a new sequence consisting only of
sequence items where f(item) == True.

All of the above can be done with loops: but applying directly over a list is
faster, and fewer lines of code.

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 56 / 107

map

Let’s try converting a list of angles in degrees to the sine of the angles:

import math
def sinDegree(x):

return math.sin(math.pi*x/180.)

a = range(0,91,30)
print a
print map(sinDegree, a)

[0, 30, 60, 90]
[0.0, 0.49999999999999994, 0.8660254037844386, 1.0]

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 57 / 107

reduce
Reduce walks the sequence left to right, combining the running total so far
with the next item and updating the total.

a = [1, 3, -7, 16, 0, 5, 2]

def mySum(a,b):
return a+b

def myProd(a,b):
return a*b

print reduce(min, a)
print reduce(mySum, a)
print reduce(myProd, a)

-7
20
0

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 58 / 107

filter

Filter pulls out those items in the sequence from which the function passes
something that can be interpreted as True.

import math

def isSquare(n):
m = int(math.sqrt(n))
return m*m == n

print filter(isSquare, range(100))
print sum(filter(isSquare, range(100)))

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
285

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 59 / 107

Lambdas
Sometimes, (eg, interactively) it is a pain to have to define a function for
map/filter/reduce that you’ll never use again.

Lambdas are “anonymous” functions that can be defined in place for a
particular purpose.

Eg, that product function:

a = [1, 3, -7, 16, 5, 2]

def myProd(x,y):
return x*y

print reduce(myProd, a)
print reduce(lambda x,y:x*y, a)

-3360
-3360

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 60 / 107

Lambdas

The syntax of lambda is:

lambda arg1,arg2,... : value_to_return

Note that this only works for simple expressions - no if statements,
multi-line expressions.

Can use it wherever a function would go (map, filter, sorted, reduce, . . .)

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 61 / 107

Lambdas

If you like, you can use

f = lambda x,y:x*x+y

as the pleasingly and pointlessly cryptic equivalent of

def f(x,y):
return x*x + y

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 62 / 107

Lambdas (but operator)
Many of the lambdas that you might want to put in to a filter/map/etc
function are already defined in the operator module:

import operator

inventory = [('Lemon',2),('Orange',7),('Pear',3),('Bananas',0),('Pineapple',8)]
print map(lambda x:x[0] , inventory)
print map(operator.itemgetter(0), inventory)

a = [1, 3, -7, 16, 5, 2]
print reduce(lambda x,y:x*y, a)
print reduce(operator.mul, a)

['Lemon', 'Orange', 'Pear', 'Bananas', 'Pineapple']
['Lemon', 'Orange', 'Pear', 'Bananas', 'Pineapple']
-3360
-3360

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 63 / 107

Lambdas (but colleagues)

Lambdas are cool for interactive use, but they’re definitely harder to read
than the equivalent def’ed function - not least of which because you can
document those.

Think of your colleagues – including yourself, two months later.

Suggested approach for using lambdas:

Write a lambda.

Write a comment, explaining the lambda.

Pick out the most important word in the comment.

Write a def’ed function, named that important word.

Delete the lambda.

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 64 / 107

Exercise - map reduce; word count (20-30
min)
In the file mapreduce.py, there is the outline of some code to do
wordcounts of a text.

Fill it in so it works:

Write a function to map over the word list to strip out punctuation,
convert to lowercase.

Write a function to filter out words that are empty after we’ve stripped
out punctuation.

Write a function to reduce the wordlist to the dictionary of counts.

Note: there’s a trick to doing the reduce. . .

Bonus points: (free extra mug of coffee) - write a more concise way of
outputting the most-often-occuring word and/or deal with ties.

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 65 / 107

Generators

Because functions are objects, they can have various methods and
functionalities.

In particular, it’s quite easy to make an iterable from a function; instead of
returning a value, we yield it:

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 66 / 107

Generators
import math

def squares(start,end):
n = start
while n < end:

m = int(math.sqrt(n))
if m*m == n:

yield n
n = n + 1

def sumSquares(start, end):
sumsq = 0
for square in squares(start,end):

sumsq = sumsq + square
return sumsq

print sumSquares(0,100)

285

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 67 / 107

Generators

Or even just (since sum takes an iterable):

import math

def squares(start,end):
n = start
while n < end:

m = int(math.sqrt(n))
if m*m == n:

yield n
n = n + 1

print sum(squares(0,100))

285

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 68 / 107

Generators

What’s the point?

Many very nice tools for applying functions to/over lists.

Allows you to write nice simple code that looks like it’s handling lists:
I Without ever explicitly generating the list.
I “Lazy” evaluation.

Maybe the list is huge, and would take a lot of memory.

Maybe calculating each item in the list is super expensive (processing a
large file) and you don’t know ahead of time how many files you’ll need
to go through to get the answer.

This allows you to “hide” iteration inside code that looks like you’re
just doing list manipulations - sum, filter, etc.

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 69 / 107

itertools
The itertools module has a group of very handy functions for creating
iterators out of other sequences, again without ever explicitly storing or
generating the whole sequence:

product

import itertools

a = [1,2,3]
b = [4,5]
for i in itertools.product(a,b):

print i

(1, 4)
(1, 5)
(2, 4)
(2, 5)
(3, 4)
(3, 5)

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 70 / 107

itertools
The itertools module has a group of very handy functions for creating
iterators out of other sequences, again without ever explicitly storing or
generating the whole sequence:

permutations/combinations

import itertools

a = [1,2,3]
for i in itertools.permutations(a):

print i

(1, 2, 3)
(1, 3, 2)
(2, 1, 3)
(2, 3, 1)
(3, 1, 2)
(3, 2, 1)

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 71 / 107

Modules: Bundling Code and Data

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 72 / 107

Outline

We’re already module-writing experts

__main__

Command line arguments - sys.argv, argparse

Module contents

Module docstreams

pydoc

Bytecode compilation

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 73 / 107

Psst - we have been creating modules this
whole time

Let’s take one of the existing files we have, and try running the functions
inside:

import minmeanmax

(-50, 0, 50)
low = 1 mid = 100 hi = 199

minmeanmax.minmeanmax([1,2,3])

(1, 3, 5)

Can access the functions exactly as through system modules. Can also use
from ... import ..., etc.

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 74 / 107

Importing

When a module is imported, the source is read in and parsed (unless
bytecode compiled - more later) and executed.

That’s how the functions come to be declared, etc.

And that’s why importing minmeanmax resulted in immediate output.

But in many cases we may want to have some lines of code that run and
use the declared functions – not as initialization, but as a test, or to
demonstrate their use.

We want it both ways – importing the file as a module should not run that
test/demo code, but running it standalone should.

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 75 / 107

__main__

We can test if the context in which this file is being read in is the main
program (eg, we’re running it standalone) or if it is being pulled in as an
imported module:

def minmeanmax(items):
"""Returns summary statistics of a sequence - min,mean,max."""
minval = min(items)
meanval= sum(items)/len(items)
maxval = max(items)
return (minval, meanval, maxval)

if __name__ == "__main__":
tup = minmeanmax(range(-50,51))
print tup
low, middle, high = minmeanmax(range(1,200))
print "low = ", low, "mid = ", middle, "hi = ", high

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 76 / 107

__main__

Running the code above from the command line, eg

C:\...> python minmeanmax.py

or from within eclipse will now produce output as before; importing it as a
module will not.

We can further customize running the program directly from the
commandline by taking and interpreting command-line arguments, using
(eg) system modules sys, or argparse.

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 77 / 107

sys.argv

Command line arguments can be seen via sys.argv, as in C.

(There’s no argc; why?)

import sys

print sys.argv

C:..> python foo.py a b c
['foo.py', 'a', 'b', 'c']

as with C, the program name is in argv[0], and the rest follows.

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 78 / 107

sys.argv
Let’s try using that with minmeanmax:

import sys

def minmeanmax(items):
"""Returns summary statistics of a sequence - min,mean,max."""
minval = min(items)
meanval= sum(items)/len(items)
maxval = max(items)
return (minval, meanval, maxval)

if __name__ == "__main__":
numargs = map(float, sys.argv[1:])
low, mean, high = minmeanmax(numargs)
print "low = ", low, "mid = ", mean, "hi = ", high

C:..> python minmeanmax.py 1 -7 13. 8.2 0 15
low = -7.0 mid = 5.03333333333 hi = 15.0

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 79 / 107

argpargse
Let’s take a look at the file arguments.py:

import argparse

if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("ngrid", help="size of grid", type=int)
parser.add_argument("pbgd", help="background pressure", type=float)
parser.add_argument("Re", help="Reynolds Number", type=float)
parser.add_argument("outfile", help="output file name prefix", type=str)
parser.add_argument("-t", "--turbmodel", help="turbulence model", type=int, choices=[1,2,3], default=1)
parser.add_argument("-f", "--velfalloff", help="velocity falloff", type=float, default=2.)
parser.add_argument("-x", "--minx", help="lower x limit of grid", type=float, default=-10.)
parser.add_argument("-X", "--maxX", help="upper X limit of grid", type=float, default=+10.)
parser.add_argument("-v", "--verbose", help="increase output verbosity", action="store_true")

args = parser.parse_args()
print args

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 80 / 107

argpargse
Let’s take a look at the file arguments.py:

import argparse

if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(...)
...

args = parser.parse_args()
print args

Basic workflow:

Create an argument parser,

Add arguments (“-h/–help” is built in),

Parse the arguments, return the results.
Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 81 / 107

argparse

parser.add_argument("ngrid",
help="size of grid", type=int)

parser.add_argument("pbgd",
help="background pressure", type=float)

parser.add_argument("outfile",
help="output file name prefix", type=str)

Can add positional, required arguments

Give them types, conversion is done for you

Give them help strings - will show up in --help output.

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 82 / 107

argparse

parser.add_argument("-t", "--turbmodel",
help="turbulence model", type=int, choices=[1,2,3], default=1)

parser.add_argument("-f", "--velfalloff",
help="velocity falloff", type=float, default=2.)

parser.add_argument("-v", "--verbose",
help="increase output verbosity", action="store_true")

Can add optional arguments, specified by flags

-t 2 or --turbmodel 2 or --turbmodel=2

Can have default values

Can have restricted set of valid values

Can just be flags; if present, true otherwise false.

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 83 / 107

Referencing module contents

Python namespaces, as you’ve seen, can be hierarchical.

import [modulename] brings those objects in to the current environment,
under the [modulename] namespace.

Some large packages (eg, numpy, scipy, matplotlib) have many levels of
namespace.

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 84 / 107

Shortcircuiting namespaces

You can shortcircuit some of this namespace hierarchy, by, for instance:

from sys import argv

you can save yourself the horror of occasionally typing an additional “sys.”
by putting argv directly in the current namespace. More recklessly, you
could do

from sys import *

which will put everything in sys in your namespace. Which is fine, because
you know absolutely everything in that package and know there could be no
possible collisions with names you are using in your program, right?

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 85 / 107

Shortcircuiting namespaces

Medically speaking, two seconds typing the occasional additional sys.:

Increases strength and dexterity in your fingers,

Is mild areobic activity which builds cardiovascular strength,

Demonstrates a prudent and professional approach to rules and order.

whereas using from [module] import * repeatedly

Causes increased difficulty sleeping,

Raises blood pressure dangerously high when spending hours debugging
namespace issues,

Often associated with personality types who just want to watch the
world burn.

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 86 / 107

Module contents with dir

Once a module is loaded, you can view its contents with dir. This will
show:

Functions

Data
I Module-global mutable data is of course evil (evil!)
I “constants” can be very useful: e.g., __version__ = 1.0.3, local

constants, etc
I docstrings

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 87 / 107

Viewing module documentation with pydoc

You can view all of the functions, attributes, and doc strings of a module
from the commandline with pydoc:

C:\...> python -m pydoc .\minmeanmax.py

Gives you a Unix-like “manual page” for the module; can also generate
HTML.

Writing one or two lines of documentation for each function makes that
information available through code inspection, help(), and pydoc.

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 88 / 107

Modules have docstrings, too!

Adding a docstring at the beginning of a module will show up in the same
places as for a function: help, pydoc, the code itself, etc.

As with function docstrings, highly recommended.

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 89 / 107

Reloading while developing

Python is smart enough not to import a module again once it’s been
imported.

Re-initialization could break earlier state

Also, just slow.

But sometimes you’d like to force a re-import. Say, you have an interactive
session open doing testing on module code while you’re developing a
module.

You can effect a partial re-import of the module via:
reload([modulename])

There a number of cases where this will not do everything you want, but for
sufficiently simple modules will usually work.

Safest is to exit and restart interactive session.

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 90 / 107

Bytecode compilation

Those .pyc files you’ve been seeing as you run examples are byte-code
“compiled” (really, only slightly more than pre-parsed) source code.

Python will refer to those .pyc files if they are newer than the .py file - saves
parsing.

If you’re distributing a large module, you can pre-compile it from the
command line, as:

C:\...> python -c py_compile .\minmeanmax.py

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 91 / 107

Bytecode compilation

This will not speed up the execution of your code at all.

It can, however, greatly speed initial startup of the code for large modules -
no parsing.

Compiling with -O will strip out asserts, etc.

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 92 / 107

Exercise: Refactor into modules (10-15
min)

Continue your refactoring of the runscript program:

Extract routines into one or more modules, which are then imported by
the script

Don’t forget module docstrings, __version__ attributes, anything else
you find useful

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 93 / 107

Packages and __init__.py

Modules are single files of code, data.

It doesn’t take long before functionality exceeds what can be sensibly
managed within one file.

A python package is a directory which contains:

(Presumably) Modules

(Possibly) Other packages

A special module, __init__.py which:
I Identifies the directory as a package
I Contains initialization code that is run at import time.
I Special variable all which lists modules to load

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 94 / 107

Testing

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 95 / 107

The importance of Testing

All code that is under development and isn’t actively tested is broken in
important but unknown ways.

Code that is actively tested is broken in fewer and better known ways.

And the same difficult bugs don’t reoccur, because they’re tested for.

These are all properties well worth having, and so code should really be
tested.

Python has several test frameworks which make it very easy to write, run,
and maintain test cases.

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 96 / 107

Testing

We’ll start to take a look at differential.py:

"""Differential operators on uniform grid."""

def dfdx(f, dx):
"""Takes as input a series of values and a grid spacing.

Returns the 2nd-order central 1st difference, 1-sided at endpts."""
l = len(f)
y = l*[0]
for i in range(1,l-2):

y[i] = (f[i+1]-f[i-1])/dx
y[0] = (f[1]-f[0])/dx
y[-1] = (f[-2]-f[-1])/dx
return y

#....

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 97 / 107

Testing

But let’s start looking at a simpler example, simpletest.py:

"""Let's make sure we can square numbers."""

def square(n):
return n*n

and look at unittest for testing it.

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 98 / 107

unittest

Unittest is a built-in python module for:

Creating and tearing down any “fixtures” needed for testing

Creating test cases to test the code

Arranging those test cases into test suites

Running those test suites.

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 99 / 107

unittest

Unittest is a built-in python module for:

Creating and tearing down any “fixtures” needed for testing

Creating test cases to test the code

Arranging those test cases into test suites

Running those test suites.

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 100 / 107

unittest

import unittest
import simpletest

class TestSquare(unittest.TestCase):
def test_four(self):

self.assertEqual(16, simpletest.square(4))

def test_negative_one(self):
self.assertEqual(1, simpletest.square(-1))

def test_negative_two(self):
self.assertAlmostEqual(4, simpletest.square(-2),

places=4)

if __name__ == '__main__':
unittest.main()

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 101 / 107

unittest

C:..> python testsq.py -v
test_four (__main__.TestSquare) ... ok
test_negative_one (__main__.TestSquare) ... ok
test_negative_two (__main__.TestSquare) ... ok

--
Ran 3 tests in 0.000s

OK

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 102 / 107

unittest

A couple things to note:

Use otherwise unreasonably long function names for tests - that’s the
information you get if a test passes or fails.

Tests can go in the module itself — often very handy — but don’t
need to.

Tests are declared by subclassing a unittest.Testcase class.

There are command line options - you can pull out individual tests to
run, discover tests in a directory to run, etc.

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 103 / 107

unittest

self.assertEqual(16, simpletest.square(4))
self.assertEqual(1, simpletest.square(-1))
self.assertAlmostEqual(4, simpletest.square(-2),

places=4)

Tests fail with asserts if quantites are not equal.

Also “almost equal” - very handy for numerical computation.
I define number of decimal places (not sig. figs.) must agree to.
I absolute, not relative error
I But can always calculate relative error, compare to zero.

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 104 / 107

unittest

Can also test to ensure that the routine fails in the way we expect.
I assertRaises: check to see that it raises an exception
I How should square fail, and when?

Can do comparison (assertLessEqual)

Compare data structures (assertListEqual, assertTupleEqual,
etc)

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 105 / 107

unittest

Can set up and tear down big data structures (or servers, or..) we’ll
use for several tests.

setUp, tearDown methods.

Let’s start testing the differential operator module.

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 106 / 107

Exercise (20 min)

Pick your favourite routine we’ve written (say, the integrator), make it a
proper module, and write a series of testcases for it.

Make sure it gets the right answer in a variety of cases which span
important functionality.

If it has corner cases, make sure they are tested.

Make sure it fails as expected under different circumstances.
I What happens when it gets invalid inputs?

Jonathan Dursi (SciNet HPC Consortium) Structuring Python Code December 2, 2014 107 / 107

	Structuring code: Functions, Classes, Modules, Packages, Testing, and Python/Eclipse
	Advanced Functions
	Modules: Bundling Code and Data
	Testing

