# High-Performance Scientific Computing: Introduction to Parallel Programming

Erik Spence

SciNet HPC Consortium

11 March 2014



Erik Spence (SciNet HPC Consortium)

11 March 2014 1 / 24

# Why Parallel Programming?



#### • Faster

There's a limit to how fast one computer can compute.

#### Bigger

There's a limit to how much memory, disk, *etc.*, can be put on one computer.

#### More

We want to do the same thing that was done on one computer, but *thousands of times*.

• So use more computers!



## Why is it necessary?

- **Big Data:** Modern experiments and observations yield vastly more data to be processed than in the past.
- **Big Science:** As more computing resources become available (SciNet), the bar for cutting edge simulations is raised.
- New Science: which before could not even be done, now becomes reachable.

However:

- Advances in clock speeds, bigger and faster memory and disks have been lagging as compared to ten years ago. We can no longer "just wait a year" and get a better computer.
- So more computing resources here means: more cores running *concurrently*.
- Even most laptops now have 2 or more cpus.
- So parallel computing is necessary.



#### Wait, what about Moore's Law?





(source: Transistor Count and Moore's Law - 2008.svg, by Wgsimon, wikipedia)

#### Wait, what about Moore's Law?

Moore's Law:

... describes a long-term trend in the history of computing hardware. The number of transistors that can be placed inexpensively on an integrated circuit doubles approximately every two years.

(source: Moore's law, wikipedia)

But...

- Moore's Law didn't promise us increasing clock speed.
- We've gotten more transistors but it's getting hard to push clock-speed up. Power density is the limiting factor.
- So we've gotten more cores at a fixed clock speed.



# Concurrency

- All these cores need something to do.
- We need to find parts of the program that can done independently, and therefore on different cores concurrently.
- We would like there to be many such parts.
- Ideally, the order of execution should not matter either.
- However, data dependencies limit concurrency.



(source: http://flickr.com/photos/splorp)



#### Parameter study: best case scenario

- Suppose the aim is to get results from a model as a parameter varies.
- We can run the serial program on each processor at the same time.
- Thus we get 'more' done.





# Throughput

• How many tasks can you do per unit time?

throughput 
$$= H = \frac{N}{T}$$

N is the number of tasks, T is the total time.

- Maximizing H means that you can do as much as possible.
- Independent tasks: using P processors increases H by a factor of P.



# Scaling — Throughput

- How a given problem's throughput scales as processor number increases is called "strong scaling".
- In this case, linear scaling:



 $H\propto P$ 

• This is perfect scaling.

# Scaling — Speedup

- Speedup: how much faster the problem is solved as processor number increases.
- This is measured by the serial time divided by the parallel time

$$S = rac{T_{ ext{serial}}}{T(P)}$$

• For embarrassingly parallel applications,  $S \propto P$ : Linear speed up.





## Non-ideal cases

- Say we want to integrate some tabulated experimental data.
- Integration can be split up, so different regions are summed by each processor.
- Non-ideal:
  - We first need to get data to each processor.
  - At the end we need to bring together all the sums: 'reduction'.



## Non-ideal cases



### Amdahl's law

Speed-up (without parallel overhead):  $S = \frac{T_{\text{serial}}}{T(P)} = \frac{NT_1 + T_s}{\frac{NT_1}{P} + T_s}$ or, calling  $f = T_s/(T_s + NT_1)$  the serial fraction,



The serial part dominates asymptotically. The speed-up is limited, since no matter what size of P. f = 5% above.

Erik Spence (SciNet HPC Consortium)

Intro to Parallel Programming

# **Scaling efficiency**

Speed-up compared to ideal factor *P*:

$$\text{Efficiency} = \frac{S}{P}$$

This will invariably fall off for larger P, except for embarrassingly parallel problems.

Efficiency 
$$\sim \frac{1}{fP} \stackrel{P \to \infty}{\longrightarrow} 0$$

You cannot get 100% efficiency in any non-trivial problem.

All you can aim for here is to make the efficiency as least low as possible.



### Less-ideal case of Amdahl's law

We assumed that the non-parallel part is constant. But it will in fact increase with P, from the sum of the results of all the processors

 $T_s \approx PT_1$ 

Serial fraction is now a function of P:

$$f(P) \sim rac{P}{N}$$

Amdahl:

$$S(P) = \frac{1}{f(P) + [1 - f(P)]/P}$$

Example: N = 100,  $T_1 = 1s...$ 



## Trying to beat Amdahl's law I



Weak scaling: increase the problem size while increasing *P*:

$$\operatorname{Time_{weak}}(P) = \operatorname{Time}(N = n \times P, P)$$

Good weak scaling means the time approaches a constant for large P.

## Trying to beat Amdahl's law I, continued

Weak scaling

$$T_{\text{weak}}(P) = T(N = n \times P, P)$$

In theory we should approach a constant for large P.

Not quite, but a significant improvement over before.



Really not that bad, and other other algorithms can do better.



### Trying to beat Amdahl's law II



#### Trying to beat Amdahl's law II



## Trying to beat Amdahl's law II, continued



# Synchronization

- Most problems are not purely concurrent.
- Some level of synchronization or exchange of information is needed between tasks.
- While synchronizing, nothing else happens: increases Amdahl's *f*.
- And the synchronizations themselves are costly.



# Load balancing

- The division of calculations among the processors may not be equal.
- Some processors could already be done, while others are still going.
- Effectively using fewer than P processors: reduced efficiency.
- The aim is for load-balanced algorithms.



# Locality

- So far we have neglected communication costs.
- But communication costs are more expensive than computation!
- To minimize communication-to-computation ratio:
  - \* Keep the data where it is needed.
  - \* Make sure as little data as possible is to be communicated.
  - \* Make shared data as local to the correct processors as possible.
- Local data means lower need for syncs, or smaller-scale syncs.
- Local syncs can alleviate load balancing issues.





Erik Spence (SciNet HPC Consortium)

#### Take home message

The big lesson here: Parallel algorithm design is about finding as much concurrency as possible, and arranging it in a way that maximizes locality.

