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Why Parallel Programming?

Faster
There’s a limit to how fast one
computer can compute.

Bigger
There’s a limit to how much
memory, disk, etc., can be put
on one computer.

More
We want to do the same thing
that was done on one computer,
but thousands of times.

So use more computers!
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Why is it necessary?
Big Data: Modern experiments and observations yield vastly more
data to be processed than in the past.

Big Science: As more computing resources become available
(SciNet), the bar for cutting edge simulations is raised.

New Science: which before could not even be done, now becomes
reachable.

However:

Advances in clock speeds, bigger and faster memory and disks have
been lagging as compared to ten years ago. We can no longer “just
wait a year” and get a better computer.

So more computing resources here means: more cores running
concurrently.

Even most laptops now have 2 or more cpus.

So parallel computing is necessary.
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Wait, what about Moore’s Law?

(source: Transistor Count and Moore’s Law - 2008.svg, by Wgsimon, wikipedia)
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Wait, what about Moore’s Law?

Moore’s Law:

. . . describes a long-term trend in the history of computing
hardware. The number of transistors that can be placed
inexpensively on an integrated circuit doubles approximately
every two years.

(source: Moore’s law, wikipedia)

But. . .

Moore’s Law didn’t promise us increasing clock speed.

We’ve gotten more transistors but it’s getting hard to push
clock-speed up. Power density is the limiting factor.

So we’ve gotten more cores at a fixed clock speed.
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Concurrency

All these cores need
something to do.

We need to find parts of the
program that can done
independently, and therefore
on different cores
concurrently.

We would like there to be
many such parts.

Ideally, the order of execution
should not matter either.

However, data dependencies
limit concurrency.

(source: http://flickr.com/photos/splorp)
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Parameter study: best case scenario

Suppose the aim is to get
results from a model as a
parameter varies.

We can run the serial
program on each processor
at the same time.

Thus we get ’more’ done.

µ = 1

Answer

µ = 2

Answer

µ = 3

Answer

µ = 4

Answer
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Throughput
How many tasks can you do per unit time?

throughput = H =
N

T

N is the number of tasks, T is the total time.

Maximizing H means that you can do as much as possible.

Independent tasks: using P processors increases H by a factor of P .

Answer

T = NT1

H = 1/T1

Answer Answer Answer Answer

T = NT1/P

H = P/T1
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Scaling — Throughput
How a given problem’s throughput scales as processor number
increases is called “strong scaling”.
In this case, linear scaling:

H ∝ P
This is perfect scaling.
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Scaling — Speedup
Speedup: how much faster the problem is solved as processor number
increases.
This is measured by the serial time divided by the parallel time

S =
Tserial

T (P )
For embarrassingly parallel applications, S ∝ P : Linear speed up.
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Non-ideal cases

Say we want to integrate
some tabulated
experimental data.

Integration can be split up,
so different regions are
summed by each processor.

Non-ideal:
I We first need to get data

to each processor.
I At the end we need to

bring together all the
sums: ‘reduction’.

Partition data

R1 R2 R3 R4

Reduction

Answer
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Non-ideal cases

Partition data

R1 R2 R3 R4

Reduction

Answer

Parallel overhead

Serial portion

Parallel region

Perfectly parallel
(for large N)

Suppose non-parallel part is constant: Ts
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Amdahl’s law
Speed-up (without parallel overhead): S =

Tserial

T (P )
=
NT1 + Ts

NT1

P
+ Ts

or, calling f = Ts/(Ts +NT1) the serial fraction,

S =
1

f + (1− f)/P
P →∞−→

1

f
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The serial part dominates asymptotically. The speed-up is limited,
no matter what size of P . f = 5% above.
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Scaling efficiency

Speed-up compared to ideal factor P :

Efficiency =
S

P

This will invariably fall off for larger P , except for embarrassingly parallel
problems.

Efficiency ∼
1

fP

P →∞−→ 0

You cannot get 100% efficiency in any non-trivial problem.

All you can aim for here is to make the efficiency as least low as possible.
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Less-ideal case of Amdahl’s law
We assumed that the non-parallel
part is constant. But it will in fact
increase with P , from the sum of
the results of all the processors

Ts ≈ PT1

Serial fraction is now a function
of P :

f(P ) ∼
P

N

Amdahl:

S(P ) =
1

f(P ) + [1− f(P )]/P

Example: N = 100, T1 = 1s. . .
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Trying to beat Amdahl’s law I

Scale up!
The larger N , the smaller the
serial fraction:

f(P ) =
P

N

S =
1

f + (1− f)/P  0
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Weak scaling: increase the problem size while increasing P :

Timeweak(P ) = Time(N = n× P, P )

Good weak scaling means the time approaches a constant for large P .
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Trying to beat Amdahl’s law I, continued

Weak scaling

Tweak(P ) = T(N = n×P, P )

In theory we should approach a
constant for large P .

Not quite, but a significant
improvement over before.
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Really not that bad, and other other
algorithms can do better.
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Trying to beat Amdahl’s law II

Partition data

R1 R2 R3 R4

Reduction

Answer

Parallel overhead

Serial portion

Parallel region

Perfectly parallel
(for large N)
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Trying to beat Amdahl’s law II
Partition data

R1 R2 R3 R4

Answer

Parallel overhead

Serial portion

∝ log2 P

Parallel region

Perfectly parallel
(for large N)

Erik Spence (SciNet HPC Consortium) Intro to Parallel Programming 11 March 2014 19 / 24



Trying to beat Amdahl’s law II, continued

Serial fraction is now a different
function of P :

f(P ) =
log2 P

N

Amdahl:

S(P ) =
1

f(P ) + [1− f(P )]/P

Example: N = 100, T1 = 1s. . .
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Synchronization

Most problems are not
purely concurrent.

Some level of
synchronization or exchange
of information is needed
between tasks.

While synchronizing,
nothing else happens:
increases Amdahl’s f .

And the synchronizations
themselves are costly.

R1 R2 R3 R4

Synchronization

R1 R2 R3 R4

Synchronization

R1 R2 R3 R4

Synchronization
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Load balancing

The division of calculations
among the processors may
not be equal.

Some processors could
already be done, while
others are still going.

Effectively using fewer than
P processors: reduced
efficiency.

The aim is for
load-balanced algorithms.

R1 R2 R3 R4

Synchronization

R1 R2 R3 R4

Synchronization

R1 R2 R3 R4

Synchronization
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Locality
So far we have neglected communication costs.

But communication costs are more expensive than computation!

To minimize communication-to-computation ratio:
* Keep the data where it is needed.
* Make sure as little data as possible is to be communicated.
* Make shared data as local to the correct processors as possible.

Local data means lower need for syncs, or smaller-scale syncs.

Local syncs can alleviate load balancing issues.

incorrect correct
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Take home message

The big lesson here: Parallel algorithm design is about finding as much
concurrency as possible, and arranging it in a way that maximizes locality.
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