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Overview

 FPGAs and High-Performance Reconfigurable Computers

 What is ArchES-MPI?

 Programming model

 Message-Passing Engine

 Functionality

 Platforms

 Use cases

 Future Work
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High-Performance Reconfigurable 
Computer Model

 One or more interconnected 
Hosts

 One or more General 
Purpose Processors (X86)

 One or more FPGA Clusters

 One or more accelerators per 
FPGA
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FPGAs in High-Performance 
Computing

 FPGAs as accelerators => Co-processors to CPUs

 CRAY
 SGI
 SRC
 DRC
 Xtreme Data
 Convey
 ...

 The main obstacle has been the programming model!!
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Challenges

 Some FPGA programming models try to automatically:

 Extract parallelism 
 communication, 
 synchronization
 load balance
 algorithm itself

 Generate Hardware
 signal timing, 
 low-level structures: registers, logic gates & LUTs
 Physical placement of components
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FPGAs and MPI

Embedded 
Computing

low power
scarce resources

memory
logic

real-time requirements
low-end embedded 
processors
hardware-savy people

Super 
Computing

huge data sets
lots of memory
long running batch jobs
high-end processors
mostly software people
parallel processing 
programming models

At ArchES Computing, we know both worlds and we leverage that 
knowledge to create High-performance Systems 

MPI

FPGAs
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Why ArchES-MPI?

 Subset implementation of the MPI standard 

 API syntax and semantics
 Optimization of communications

 Widely used in the HPC world

 distributed memory machines
 Provides portability

 by adding layers of abstraction
 Isolates software from hardware changes

 Vast amount of documentation and examples available
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Why ArchES-MPI?

 Ease of use: reduce the number of APIs

 Inter-host communication (sockets, MPI)
 X86-FPGA communication (vendor-specific)
 X86-X86 Intra-host communication (pthreads, 

OpenMP)
 For embedded processors (custom)

 Use one single API: MPI

 ArchES-MPI is an implementation to achieve this



 9

What is ArchES-MPI?

Communicating processes 

R4

R1

R3

R2
R0

Sequential 
Application

MPI

 Parallelism is explicitly stated

 Get the parallel algorithm right!



 10

What is ArchES-MPI?

MPI

Communicating processes 
Computing Elements

R4

R1

R3

R2
R0

 Test and debug parallel implementation

Typical MPI cluster
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What is ArchES-MPI?

Hardware
Accelerator

ArchES-MPI

Communicating processes Computing Elements

R4

R1

R3

R2
R0

Hardware
Accelerator

 Gradually introduce accelerators, which are treated as peers to 
processors
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Software-Hardware partitioning

 MPI as a common abstraction (“Language”) between software 
and hardware experts

MPI MPI

Software guy

Hardware guy
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ArchES-MPI is software and hardware

 Adds software and hardware middle-ware layers

 Abstracts low-level communication details

 Makes applications more portable

Host-specific
Hardware

SW Application

Arches MPI 
Software

         Host-specific Hardware

HW Application

Arches MPI 
Hardware

X86 FPGA
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Message Passing Engine (MPE)

 The MPE provides the equivalent to MPI_Send 
and MPI_Recv to hardware engines

 The MPI FSM can be easily modeled from the 
MPI C code

main ( ) {

   …
   
   MPI_Recv()

   Compute()

   MPI_Send()
   …
}

MPE_Init

MPE_Recv

MPE_Send

MPE_Finalize

Wait User
Compute()

Pipeline

MPI
FSM

MPEMPI FSM

Data
FIFO

Command
FIFO

Status and Control signals (busy, done, enable, etc.)

Network
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MPI ring communication pattern 

void main (int argc, char **argv) {
        int x, my_rank, size; 
        MPI_Init(…);
        MPI_Comm_rank(…&my_rank);
        MPI_Comm_size(…, &size);
        if ( my_rank == 0 ) { 
            x = 1;
            MPI_Send(&x,1,MPI_INT,1,…);
            MPI_Recv(&x,1,MPI_INT,size-1,…);
        }
        else if (my_rank == size-1) {
            MPI_Recv(&x,1,MPI_INT,my_rank-1,…);
            x++;
            MPI_Send(&x,1,MPI_INT,0,…);
        } 
       else {
            MPI_Recv(&x,1,MPI_INT,my_rank-1,…);
            x++;
            MPI_Send(&x,1,MPI_INT,my_rank+1,…);
        }
       MPI_Finalize();
}

MPI Size = 5 ranks

R0

R1

R2

R3

R4



 16

Supported MPI Functions

Point-to-Point

Blocking
MPI_Send

MPI_Recv

Non-Blocking
MPI_Isend

MPI_Irecv

MPI_Wait/MPI_Test

One-side-communications

MPI_Alloc_mem
MPI_Put/MPI_Get

Collective Operations

MPI_Barrier
MPI_Bcast
MPI_Gather/MPI_Scatter
MPI_Reduce
MPI_Allreduce

Miscellaneous
MPI_Init
MPI_Finalize
MPI_Comm_Rank
MPI_Comm_Size
MPI_Wtime



 17

ArchES-MPI Framework

ArchES-MPI

Co-Simulation
(Rapid prototyping and 
development)
    

Profiling
(Performance analysis,
e.g. Jumpshot)

MPI-to-HDL
(easier for sw developers)

Libraries and applications
(Third-party development,
e.g., Xilinx, UT Austin, UofT)

Partial Reconfiguration
(dynamic MPI process creation and
Generic platforms)

NoC infrastructure and 
Portability
(e.g. FSB, QPI, PCIe, &
Hardware support for 
Broadcast and Reduce )
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Profiling with Jumpshot
(Daniel Nunes @ UofT)

• Well-known tool

• Extracts MPI protocol 
   states from the MPE

• Profile just like 
in Software

• Works only for 
embedded processors 
and hardware engines
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FSB-based platform

Xilinx FPGA

Nallatech 
FSB-Module

Intel S7000FC4UR server system 

ArchES software 
and infrastructure  brings 
this  machine to life!
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FSB-based platform

FSB

FSB FSB

MEM

FSB

MEM

Socket
0

Socket
2

Socket
1

Socket
3

Sys Mem

Sys Mem

Quad
Xeon

System Mem

8.5 GB/s @ 1066 MHz

72.5 GB/s

 Up to 15 FPGAs can be placed in the server divided across 3 stacks

 Very tight coupling between all FPGAs, system CPU and system memory
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Use case (1/3)

Rename
RS

Br ALU

Decode
Fetch

dTLB

L2

L1

iTLB L1

ROB

Timing Model

Instructions executed, sent to TM

Functional
Model

 Nallatech FSB FPGA 
Accelerated platform

 Follows a typical co-
processor model

 MPI Point-to-Point and MPI 
one-side operations

University of Texas at Austin: FAST, A Processor Architecture Simulator
“Unlike physical world, computers grow in complexity faster than they get faster”
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Use case (2/3)

University of Toronto: A Multi-FPGA Architecture for Stochastic 
Restricted Boltzmann Machines (Neural Networks)

 BEE2 and BEE3 platforms

 145X Speedup compared to single CPU
3.13 billion connection-updates-per-
second

 Embedded PowerPC processor

 DataFlow communication requirements
Simultaneous message reception  
from different sources
Full-duplex
Overlap communication and 
computation
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Use case (3/3)

The Hospital for Sick Children (Structural Biology and Biochemistry at 
UofT) – Molecular Dynamics
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Bond 
Engine

Visualizer

Output

Scheduler

Input

MPI::Send(&msg, size, dest 
…);

MPI::Send(&msg, size, dest 
…);

Atom
ManagerAtom

ManagerAtom
Manager

Bond 
Engine

Long range
Electrostatic

s
Engine

Long range
Electrostatic

s
Engine

Long range
Electrostatic

s
Engine

Atom
Manager

Short 
range

Nonbond
Engine

Short 
range

Nonbond
Engine

Short 
range

Nonbond
Engine

Short 
range

Nonbond
Engine

Short 
range

Nonbond
Engine

Short 
range

Nonbond
Engine

 MPMD – A Mix of different SW processes and 
different HW accelerators
 Software for processors is plain MPI on C++
 Nallatech FSB FPGA Accelerated Platform
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Future directions

 QPI Modules

 PCIe Gen2-X8 or better

 Zynq devices (2 ARM cores + FPGA fabric)

 Embedded, Scientific and Data Centre applications will drive 
future developments



 25

Questions?

Thank you!

ArchES Computing

msaldana@archescomputing.com
www.archescomputing.com

mailto:msaldana@archescomputing.com
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