
MPI as a programming model for
High-Performance Reconfigurable Computers

ArchES Computing

Manuel Saldaña

SciNet SNUG – October 12, 2011
Toronto, Canada

 2

Overview

 FPGAs and High-Performance Reconfigurable Computers

 What is ArchES-MPI?

 Programming model

 Message-Passing Engine

 Functionality

 Platforms

 Use cases

 Future Work

 3

High-Performance Reconfigurable
Computer Model

 One or more interconnected
Hosts

 One or more General
Purpose Processors (X86)

 One or more FPGA Clusters

 One or more accelerators per
FPGA

 4

FPGAs in High-Performance
Computing

 FPGAs as accelerators => Co-processors to CPUs

 CRAY
 SGI
 SRC
 DRC
 Xtreme Data
 Convey
 ...

 The main obstacle has been the programming model!!

 5

Challenges

 Some FPGA programming models try to automatically:

 Extract parallelism
 communication,
 synchronization
 load balance
 algorithm itself

 Generate Hardware
 signal timing,
 low-level structures: registers, logic gates & LUTs
 Physical placement of components

 6

FPGAs and MPI

Embedded
Computing

low power
scarce resources

memory
logic

real-time requirements
low-end embedded
processors
hardware-savy people

Super
Computing

huge data sets
lots of memory
long running batch jobs
high-end processors
mostly software people
parallel processing
programming models

At ArchES Computing, we know both worlds and we leverage that
knowledge to create High-performance Systems

MPI

FPGAs

 7

Why ArchES-MPI?

 Subset implementation of the MPI standard

 API syntax and semantics
 Optimization of communications

 Widely used in the HPC world

 distributed memory machines
 Provides portability

 by adding layers of abstraction
 Isolates software from hardware changes

 Vast amount of documentation and examples available

 8

Why ArchES-MPI?

 Ease of use: reduce the number of APIs

 Inter-host communication (sockets, MPI)
 X86-FPGA communication (vendor-specific)
 X86-X86 Intra-host communication (pthreads,

OpenMP)
 For embedded processors (custom)

 Use one single API: MPI

 ArchES-MPI is an implementation to achieve this

 9

What is ArchES-MPI?

Communicating processes

R4

R1

R3

R2
R0

Sequential
Application

MPI

 Parallelism is explicitly stated

 Get the parallel algorithm right!

 10

What is ArchES-MPI?

MPI

Communicating processes
Computing Elements

R4

R1

R3

R2
R0

 Test and debug parallel implementation

Typical MPI cluster

 11

What is ArchES-MPI?

Hardware
Accelerator

ArchES-MPI

Communicating processes Computing Elements

R4

R1

R3

R2
R0

Hardware
Accelerator

 Gradually introduce accelerators, which are treated as peers to
processors

 12

Software-Hardware partitioning

 MPI as a common abstraction (“Language”) between software
and hardware experts

MPI MPI

Software guy

Hardware guy

 13

ArchES-MPI is software and hardware

 Adds software and hardware middle-ware layers

 Abstracts low-level communication details

 Makes applications more portable

Host-specific
Hardware

SW Application

Arches MPI
Software

 Host-specific Hardware

HW Application

Arches MPI
Hardware

X86 FPGA

 14

Message Passing Engine (MPE)

 The MPE provides the equivalent to MPI_Send
and MPI_Recv to hardware engines

 The MPI FSM can be easily modeled from the
MPI C code

main () {

 …

 MPI_Recv()

 Compute()

 MPI_Send()
 …
}

MPE_Init

MPE_Recv

MPE_Send

MPE_Finalize

Wait User
Compute()

Pipeline

MPI
FSM

MPEMPI FSM

Data
FIFO

Command
FIFO

Status and Control signals (busy, done, enable, etc.)

Network

 15

MPI ring communication pattern

void main (int argc, char **argv) {
 int x, my_rank, size;
 MPI_Init(…);
 MPI_Comm_rank(…&my_rank);
 MPI_Comm_size(…, &size);
 if (my_rank == 0) {
 x = 1;
 MPI_Send(&x,1,MPI_INT,1,…);
 MPI_Recv(&x,1,MPI_INT,size-1,…);
 }
 else if (my_rank == size-1) {
 MPI_Recv(&x,1,MPI_INT,my_rank-1,…);
 x++;
 MPI_Send(&x,1,MPI_INT,0,…);
 }
 else {
 MPI_Recv(&x,1,MPI_INT,my_rank-1,…);
 x++;
 MPI_Send(&x,1,MPI_INT,my_rank+1,…);
 }
 MPI_Finalize();
}

MPI Size = 5 ranks

R0

R1

R2

R3

R4

 16

Supported MPI Functions

Point-to-Point

Blocking
MPI_Send

MPI_Recv

Non-Blocking
MPI_Isend

MPI_Irecv

MPI_Wait/MPI_Test

One-side-communications

MPI_Alloc_mem
MPI_Put/MPI_Get

Collective Operations

MPI_Barrier
MPI_Bcast
MPI_Gather/MPI_Scatter
MPI_Reduce
MPI_Allreduce

Miscellaneous
MPI_Init
MPI_Finalize
MPI_Comm_Rank
MPI_Comm_Size
MPI_Wtime

 17

ArchES-MPI Framework

ArchES-MPI

Co-Simulation
(Rapid prototyping and
development)

Profiling
(Performance analysis,
e.g. Jumpshot)

MPI-to-HDL
(easier for sw developers)

Libraries and applications
(Third-party development,
e.g., Xilinx, UT Austin, UofT)

Partial Reconfiguration
(dynamic MPI process creation and
Generic platforms)

NoC infrastructure and
Portability
(e.g. FSB, QPI, PCIe, &
Hardware support for
Broadcast and Reduce)

 18

Profiling with Jumpshot
(Daniel Nunes @ UofT)

• Well-known tool

• Extracts MPI protocol
 states from the MPE

• Profile just like
in Software

• Works only for
embedded processors
and hardware engines

 19

FSB-based platform

Xilinx FPGA

Nallatech
FSB-Module

Intel S7000FC4UR server system

ArchES software
and infrastructure brings
this machine to life!

 20

FSB-based platform

FSB

FSB FSB

MEM

FSB

MEM

Socket
0

Socket
2

Socket
1

Socket
3

Sys Mem

Sys Mem

Quad
Xeon

System Mem

8.5 GB/s @ 1066 MHz

72.5 GB/s

 Up to 15 FPGAs can be placed in the server divided across 3 stacks

 Very tight coupling between all FPGAs, system CPU and system memory

 21

Use case (1/3)

Rename
RS

Br ALU

Decode
Fetch

dTLB

L2

L1

iTLB L1

ROB

Timing Model

Instructions executed, sent to TM

Functional
Model

 Nallatech FSB FPGA
Accelerated platform

 Follows a typical co-
processor model

 MPI Point-to-Point and MPI
one-side operations

University of Texas at Austin: FAST, A Processor Architecture Simulator
“Unlike physical world, computers grow in complexity faster than they get faster”

 22

Use case (2/3)

University of Toronto: A Multi-FPGA Architecture for Stochastic
Restricted Boltzmann Machines (Neural Networks)

 BEE2 and BEE3 platforms

 145X Speedup compared to single CPU
3.13 billion connection-updates-per-
second

 Embedded PowerPC processor

 DataFlow communication requirements
Simultaneous message reception
from different sources
Full-duplex
Overlap communication and
computation

 23

Use case (3/3)

The Hospital for Sick Children (Structural Biology and Biochemistry at
UofT) – Molecular Dynamics

U b=∑
i

k i  ri−r 0i 
2

U=
1
2
∑
n

τ∑
i=1

N

∑
j=1

N qi q j

∣r ijn∣

V  r =4ε[ σ
r 

12

− σ
r 

6

]
U a=∑

i
k iθ i−θ0i 

2

U t=∑
i {k i [1cos  niφi−γi ] , ni≠0

ki  0i−γi 
2
, n=0

O(n2)

O(n)

Bond
Engine

Visualizer

Output

Scheduler

Input

MPI::Send(&msg, size, dest
…);

MPI::Send(&msg, size, dest
…);

Atom
ManagerAtom

ManagerAtom
Manager

Bond
Engine

Long range
Electrostatic

s
Engine

Long range
Electrostatic

s
Engine

Long range
Electrostatic

s
Engine

Atom
Manager

Short
range

Nonbond
Engine

Short
range

Nonbond
Engine

Short
range

Nonbond
Engine

Short
range

Nonbond
Engine

Short
range

Nonbond
Engine

Short
range

Nonbond
Engine

 MPMD – A Mix of different SW processes and
different HW accelerators
 Software for processors is plain MPI on C++
 Nallatech FSB FPGA Accelerated Platform

 24

Future directions

 QPI Modules

 PCIe Gen2-X8 or better

 Zynq devices (2 ARM cores + FPGA fabric)

 Embedded, Scientific and Data Centre applications will drive
future developments

 25

Questions?

Thank you!

ArchES Computing

msaldana@archescomputing.com
www.archescomputing.com

mailto:msaldana@archescomputing.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

