
PWC Python Course - Introduction to Python

Erik Spence

SciNet HPC Consortium

1 December 2014

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 1 / 75

Welcome to Python!

The slides for this class can be found here:

http://wiki.scinethpc.ca/wiki/index.php/PWC Python

Feel free to download them and follow along.

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 2 / 75

Welcome to Python!

This morning’s class will cover the following topics:

Getting started with Python in Eclipse.

Basic Python data types.

Compound data types.

Loops, conditionals.

Iterators.

The goal of this morning’s material is to get everyone up to speed on basic
Python programming.

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 3 / 75

About Python

Some trivia about Python.

Python combines functional and syntactic aspects of the languages
ABC, C, Modula-3, SETL, Lisp, Haskell, Icon, Perl.

Python is a high-level, interpreted language.

Python supports many programming paradigms (procedural,
object-oriented, functional, imperative).

Python variables are dynamic, meaning they merely labels for a typed
value in memory. They are easily re-assigned to refer to some other
memory location.

Python has automatic memory management, and garbage collection.

Python is case sensitive.

Python 3.X is not back-compatible with Python 2.X.

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 4 / 75

Using Python with Eclipse

The first time you open Eclipse, it may look like this.

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 5 / 75

Using Python with Eclipse

We need to open a console view.

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 6 / 75

Using Python with Eclipse

We then open up a PyDev Console.

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 7 / 75

Using Python with Eclipse

We now have a Python interpreter prompt.

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 8 / 75

Using the Python interactive interpreter

The interactive Python interpreter allows you to:

type commands directly into the Python interpreter, to see how they
behave, determine the correct syntax and confirm functionality.

allows rapid code development, since you can quickly test coding
ideas, and determine modes of failure.

We’ll be solely using the interactive Python interpreter for most
of the morning.

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 9 / 75

Python data types

Python has several standard data types:

Numbers

Strings

Booleans

Container types

I Lists

I Sets

I Tuples

I Dictionaries

During this presentation, we are going to cover these data types,
as well as iterators.

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 10 / 75

Integers in Python
Python offers two default types of integers:

“plain integers”:

I All integers are plain by default unless they are too big.

I These are implemented using long integers in C. This gives them,
depending on the system, at least 32 bits of range.

I The maximum value can be found by checking the sys.maxint value.

>>> import sys
>>> print sys.maxint
2147483647
>>> a = 10
>>> type(a)
int
>>> int(10.0)
10

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 11 / 75

Integers in Python, continued

Python offers two default types of integers:

“long integers”:

I Have infinite range.

I Are invoked using the long(something) function, or by placing an “L”
after the number.

>>> a = 10
>>> b = 10L
>>> b
10L
>>> type(b)
long
>>> c = long(a)
>>> type(c)
long

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 12 / 75

Floats in Python
Python offers two types of floating point numbers:

“floating point numbers”:

I Based on the C double type.

I You can specify the exponent by putting “e” in your number.

I Information about floats on your system can be found in sys.float info.

>>> import sys
>>> print sys.float_info
sys.float_info(max=1.7976931348623157e+308, max_exp=1024,
max_10_exp=308, min=2.2250738585072014e-308, min_exp=-1021,
min_10_exp=-307, dig=15, mant_dig=53,
epsilon=2.220446049250313e-16, radix=2, rounds=1)
>>>
>>> a = 4.5e245
>>> a
4.5e+245

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 13 / 75

Floats in Python, continued

Python offers two types of floating point numbers:

“complex numbers”:

I Have a real and imaginary part, both of which are floats.

I Use z.real and z.imag to access individual parts.

>>> a = complex(1.,3.0)
>>> print a
(1+3j)
>>>
>>> b = 1.0 + 2.j
>>> print b.imag
2.0
>>> complex(10.0)
(10+0j)

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 14 / 75

Booleans

Python supports standard boolean variables and operations.

>>> bool(1)
True
>>> bool(0)
False
>>> bool(3)
True
>>> True + 1
2
>>> False + 1
1
>>>

>>> a = True
>>> a and False
False
>>> not a
False
>>> a or False
True
>>> a & True
True
>>> a | True
True

Strictly speaking, Booleans are a sub-type of plain integers.

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 15 / 75

Booleans, bitwise operations

Python contains the usual bitwise operations.

Operation Result

x | y bitwise OR of x and y

x ˆ y bitwise XOR of x and y

x & y bitwise AND of x and y

x << n x shifted left by n bits

x >> n x shifted right by n bits

˜x x bitwise inverted

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 16 / 75

String manipulation

Strings are delimited by single or double quotation marks (’ or ”):

>>> word = "Hello World"
>>> word
’Hello World’
>>> print word
Hello World

The end-of-line character: \n

>>> "line 1\nline 2"
’line 1 \nline 2’
>>> print "line 1\nline 2"
line 1
line 2

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 17 / 75

String manipulation, finding characters

Strings come with a number of useful commands built-in:

>>> print word
Hello World
>>> print word.count(’l’)
3
>>> print word.find("W")
1
>>> print word.index("Wo")
1

The difference between ‘find’ and ‘index’ is when the letters are not found
in the string.

What happens when trying to find the position of a letter appearing
several times within a string?

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 18 / 75

String manipulation, indexing

Selecting characters from within a string:

>>> len(word)
11
>>> print word[6]
W
>>> print word[6:7]
W

Some notes about indexing in
Python:

Like C++, the first index is 0.

Read “2:4” as “from the
beginning of the second
element, to the beginning of
the fourth element”. 0 1 2 3 4 5 6

a b c d e f

2:4

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 19 / 75

String manipulation, indexing continued

Selecting characters from within a string:

>>> print word[:7]
Hello W
>>> print word[7:]
orld
>>> print word[-3:]
rld
>>> print word[:-2]
Hello Wor

What is the output of word[-5:-4] and word[-4:-5]?

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 20 / 75

String manipulation, beginning and ending

Startswith/Endswith:

>>> word.startswith("H")
True
>>> word.endswith("d")
True
>>> word.startswith("h")
False

Replacing:

>>> print word.replace("Hello", "Goodbye")
Goodbye World
>>> print word.replace("l", "?")
He??o Wor?d
>>> print word.replace("l", "?", 2)
He??o World

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 21 / 75

String manipulation, upper and lower case

Changing upper and lower case:

>>> print word.upper()
HELLO WORLD
>>> print word.lower()
hello world
>>> print word.swapcase()
hELLO wORLD
>>> word.lower().isupper()
False
>>> word.lower().islower()
True
>>> world.upper().isupper()
True

The isupper() and islower() commands test the case of the
characters in the string.

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 22 / 75

String manipulation, stripping

Strip: to remove characters from both ends of a string:

>>> print word.strip("d")
Hello Worl
>>> print "aaaaa Hello Worldaaaaa".strip("a")
Hello World
>>> print "aaaaa Hello Worldaaaaa".lstrip("a")
Hello Worldaaaaa
>>> print "aaaaa Hello Worldaaaaa".rstrip("a")
aaaaa Hello World
>>> print " Hello World ".strip()
Hello World

Using strip(), without an argument, will remove all leading and trailing
white space.

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 23 / 75

String manipulation, testing character
types

There are many functions for testing the nature of your string:

>>> "3141592".isdigit()
True
>>> "3.141592".isdigit()
False
>>> word.isalpha()
False
>>> "Hello".isalpha()
True

word.isdigit(), are all chars
numbers?

word.isalpha(), are all chars
alphabetic?

word.isalnum(), does it contain
digits?

word.isspace(), does it contain
spaces?

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 24 / 75

String manipulation exercise

Quiz: What is a one-line command which determines if a string contains
only numbers and a maximum of one dot?

>>>

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 25 / 75

String manipulation exercise

Quiz: What is a one-line command which determines if a string contains
only numbers and a maximum of one dot?

>>>
>>> "3.22143".replace(".", "1", 1).isdigit()
True
>>>

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 26 / 75

String manipulation, misc functions

There are too many functions to mention. Here are some more:

>>> str(5.31)
’5.31’
>>> print "Hello " + "World" + "!"
Hello World!
>>> word.split(’ ’)
[’Hello’, ’World’]
>>> word.split(’o’)
[’Hell’, ’ W’, ’rld’]

The split function splits up a string based on a particular symbol, and
returns a list.

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 27 / 75

Lists

The list is a data type not available in a number of lower-level languages:

A list is a collection of items.

Each item in the list has an assigned index value.

Lists are enclosed in square brackets and each item is separated by a
comma.

The items in a list can be of any data type, and mixed types, though
as a general rule they are usually all the same type.

Lists can contain lists.

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 28 / 75

Lists, creation

>>> a = [3.123, "Hello World", 3]
>>> print a
[3.123, ’Hello World’, 3]
>>> L = [’yellow’, ’red’, ’blue’, ’green’, ’black’]
>>> print len(L)
5
>>> print L[0]
yellow
>>> print L[1:4]
[’red’, ’blue’, ’green’]
>>> print L[2:]
[’blue’, ’green’, ’black’]
>>> print L[1:5]
[’red’, ’blue’, ’green’, ’black’]
>>> print L[1:5:2]
[’red’, ’green’]
>>> print L[-1]
black

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 29 / 75

Lists, manipulation

>>> print sorted(L)
[’black’, ’blue’, ’green’, ’red’, ’yellow’]
>>>
>>> L
[’yellow’, ’red’, ’blue’, ’green’, ’black’]
>>> L.sort()
>>> L
[’black’, ’blue’, ’green’, ’red’, ’yellow’]
>>>
>>> L.append(’pink’)
>>> L
[’black’, ’blue’, ’green’, ’red’, ’yellow’, ’pink’]
>>> L.insert(2, ’white’)
>>> L
[’black’, ’blue’, ’white’, ’green’, ’red’, ’yellow’, ’pink’]

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 30 / 75

Lists, removing elements

>>> L.remove(’green’)
>>> L
[’black’, ’blue’, ’white’, ’red’, ’yellow’, ’pink’]
>>> tmp = [1, 5, 3, 5]
>>> tmp.remove(5)
>>> tmp
[1, 3, 5]
>>> L.pop()
’pink’
>>> L
[’black’, ’blue’, ’white’, ’red’, ’yellow’]
>>> L.pop(1)
’blue’
>>> L
[’black’, ’white’, ’red’, ’yellow’]

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 31 / 75

Lists, deleting elements

The del command will remove an individual element without returning it.

>>> a = [-1, 1, 66.25, 333, 333, 1234.5]
>>> del a[0]
>>> a
[1, 66.25, 333, 333, 1234.5]
>>> del a[2:4]
>>> a
[1, 66.25, 1234.5]
>>> del a[:]
>>> print a
[]
>>> del a
>>> print a
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name ’a’ is not defined

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 32 / 75

Lists, more manipulation

Lists are manipulated with many of the same commands used on strings.

>>> L.reverse()
[’yellow’, ’red’, ’white’, ’black’]
>>> L.count(’red’)
1
>>> [1, 5, 3, 5].count(5)
2
>>> ’red’ in L
True
>>> range(6)
[0, 1, 2, 3, 4, 5]
>>> L + range(3)
[’yellow’, ’red’, ’white’, ’black’, 0, 1, 2]

The range command is often used for indexing loops.

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 33 / 75

Looping over lists

A common operation is to loop over the elements of a list. Note the colon,
and the use of white space in the syntax of the loop.

>>> for item in L:
... print item
...
yellow
red
white
black
>>>

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 34 / 75

Lists of numbers

The range function is commonly used when indices are needed within a
loop. It returns a list.

>>> for i in range(3):
... print i
...
0
1
2
>>> for i in range(5,10,2):
... print i
...
5
7
9
>>>

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 35 / 75

List comprehensions

Python allows you to create lists with loops, in what is at first a somewhat
strange syntax:

>>> S = [x**2 for x in range(10)]
>>> S
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>>
>>> t = [x**2 for x in range(10) if x > 5]
>>> t
[36, 49, 64, 81]

These are called “list comprehensions”. The basic syntax is

[expression(item) for item in list conditional(item)].

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 36 / 75

List comprehensions exercise

Using a list comprehension, create a list whose entries are the first letter of
every word in the sentence below.

>>> sentence = "Python is easy to learn"
>>>

List comprehensions are very powerful, and very fast.

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 37 / 75

List comprehensions exercise

Using a list comprehension, create a list whose entries are the first letter of
every word in the sentence below.

>>> sentence = "Python is easy to learn"
>>>
>>> answer = [word[0] for word in sentence.split(’ ’)]
>>>
>>> print answer
[’P’, ’i’, ’e’, ’t’, ’l’]
>>>

List comprehensions are very powerful, and very fast.

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 38 / 75

If statements

All code blocks in Python are delineated by white space. The if statement
is no exception:

>>> for i in range(10):
... if (i > 4):
... print i
...
5
6
7
8
9
>>>

The brackets in the if statement are optional. The colon is not.

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 39 / 75

If/elif/else statements
Like all if statements, there is an ‘elif’ (else if) and ‘else’ option:

>>> for i in range(7):
... if (i > 5):
... print i
... elif i < 2:
... print i - 7
... else:
... print ’hello’
...
-7
-6
hello
hello
hello
hello
6
>>>

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 40 / 75

Using white space
All code blocks in Python are delineated by white space. But the amount
of indentation does not need to be the same from one code block to
another. But it must be consistent within the same code block.

>>> for i in range(5):
... if (i > 2):
... print ’eek’
... elif i == 2:
... print i
... else:
... print i - 7
...
-7
-6
2
eek
eek
>>>

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 41 / 75

Using white space, continued

If the code blocks do not line up, you’ll get an error message:

>>> for i in range(5):
... if (i > 2):
... print ’eek’
... elif i == 2:
... print i
... else:
... print i - 7
...
File "<stdin>", line 6
else:

^
IndentationError: unindent does not match any outer indentation
level
>>>

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 42 / 75

While loops

Python actually has only two types of loops, ‘for’ and ‘while’. The while
loop behaves in a fashion similar to other languages:

>>> i = 3
>>> while (i > 0):
... print i
... i -= 1
...
3
2
1
>>>

The loop is indented, as expected, and takes a colon, as usual.

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 43 / 75

Loop control statements

Python supports three loop control statements, which modify the normal
execution of the loop:

break: terminates the loop and transfers execution to the statement
immediately following the loop, like the traditional break found in C.

continue: causes the loop to skip the remainder of its body, and then
retest the loop condition prior to reiterating.

pass: is used when a statement is required by syntax, but you do not
want any code to execute.

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 44 / 75

Loop control statements, continued

>>> for letter in "Python":
... if letter == ’h’:
... break
... print letter
...
P
y
t
>>>
>>> a = 10
>>> if (a > 1):
... print a
... else:
... pass
...
10

>>> for letter in "Python":
... if letter == ’h’:
... continue
... print letter
...
P
y
t
o
n
>>>

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 45 / 75

Sets
Sets are similar to lists, but all elements are unique.

>>> s = set([1, 3, 2])
>>> s
{1, 2, 3}
>>> s.add(4)
>>> s
{1, 2, 3, 4}
>>>
>>> s.add(2)
>>> s
{1, 2, 3, 4}
>>>
>>> t = {’apple’, ’pear’, ’apple’, ’orange’, ’orange’}
>>> t
{’apple’, ’orange’, ’pear’}

Note that sets are automatically sorted.

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 46 / 75

Sets, removing elements

>>> s.remove(2)
>>> s
{1, 3, 4}
>>> s.remove(2)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
KeyError: 2
>>> s.discard(3)
>>> s
{1, 4}
>>> s.discard(3)
>>> s
{1, 4}
>>> s.clear()
>>> s
set()

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 47 / 75

Sets, union, intersection

>>> RedFruit = set([’strawberry’, ’watermelon’])
>>> FruitWithSkin = set([’banana’, ’orange’, ’watermelon’])
>>> FruitWithSeeds = set([’watermelon’, ’orange’, ’currant’])
>>>
>>> Fruits = RedFruit | FruitWithSkin | FruitWithSeeds
>>> print Fruits
set([’strawberry’, ’watermelon’, ’orange’, ’currant’, ’banana’])
>>>
>>> Fruits - RedFruit
{’orange’, ’currant’, ’banana’}
>>>
>>> RedFruit & FruitWithSeeds
{’watermelon’}
>>>

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 48 / 75

Tuples

Tuples are useful for representing what other languages call records,
related information that belongs together:

Like lists, a tuple is a sequence of immutable objects.

Each item has an assigned index value.

Tuples customarily use parentheses to enclose the elements, though
this isn’t required.

Tuples are the default type for comma-separated assignments.

Tuple elements can include other tuples.

One-element tuples exist, but need to have a comma in their
declaration.

Empty tuples are also possible.

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 49 / 75

Tuples, creating

>>> tup1 = (12, 34.56)
>>> tup2 = "tup2", 36, 21
>>> print tup2
(’tup2’, 36, 21)
>>>
>>> print tup1[0]
12
>>> print tup2[1:3]
(36, 21)
>>>
>>> tup3 = (95.0,)
>>> tup3
(95.0,)
>>>
>>> tup4 = ()
>>> print tup4
()

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 50 / 75

Tuples, index ranges

When you request an index range of a tuple, a tuple is returned.

>>> tup3 = tup1 + tup2
>>> print tup3
(12, 34.56, ’tup2’, 36, 21)
>>>
>>> print tup2[0]
tup2
>>>
>>> print tup2[0:1]
(’tup2’,)
>>>
>>> (tup2[0], 52, tup2[2:])
(’tup2’, 52, (21,))
>>>
>>> (tup2[0],) + (52,) + tup2[2:]
(’tup2’, 52, 21)

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 51 / 75

Tuples, updating

Tuples are immutable, which means you cannot update or change the
values of the tuple elements.

>>> print tup2
(’tup2’, 36, 21)
>>>
>>> tup2[1] = 52
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: ’tuple’ object does not support item assignment
>>>
>>> tmptup = (tup2[0],) + (52,) + tup2[2:]
>>> del tup2
>>> tup2 = tmptup
>>> print tup2
(’tup2’, 52, 21)

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 52 / 75

Tuples, removing elements

Removing tuple elements is also not possible. The tuple must be rebuilt,
as per the previous slide.

>>> print tup2
(’tup2’, 52, 21)
>>>
>>> tmp = tup2[1:]
>>>
>>> del tup2
>>> tup2 = tmp
>>> print tup2
(52, 21)

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 53 / 75

Tuples exercise

Loop over the list of products (stored as a list of tuples(name, IsFruit,
price), and calculate the sum of the fruit prices.

>>> products = [("banana", True, 2), ("potatoe", False, 3),
("apple", True, 3), ("pear", True, 4), ("carrot", False, 3)]

>>>
>>> sum = 0

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 54 / 75

Tuples exercise

Loop over the list of products (stored as a list of tuples(name, IsFruit,
price), and calculate the sum of the fruit prices.

>>> products = [("banana", True, 2), ("potatoe", False, 3),
("apple", True, 3), ("pear", True, 4), ("carrot", False, 3)]

>>>
>>> sum = 0
>>> for item in products:
... if (item[1]):
... sum += item[2]
...
>>>
>>> print sum
9
>>>

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 55 / 75

Dictionaries

Dictionaries are a Python data type which associates keys to values.

These definitions of the dictionary are all equivalent:

>>> a = dict(one = 1, two = 2, three = 3)
>>> b = {’one’: 1, ’two’: 2, ’three’: 3}
>>> c = dict([(’two’, 2), (’one’, 1), (’three’, 3)])
>>> d = dict({’three’: 3, ’one’: 1, ’two’: 2})
>>>
>>> e = {}
>>> e[’one’] = 1
>>> e[’two’] = 2
>>> e[’three’] = 3
>>>
>>> e
{’one’: 1, ’three’: 3, ’two’:2}
>>>

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 56 / 75

Dictionary key values

Dictionary values have no restrictions. They can be any arbitrary Python
object, either standard or user-defined objects.

The same is not true of dictionary keys. These must be strings, numbers
or tuples.

>>> d = {[’three’]: 3, ’one’: 1, ’two’: 2}
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unhashable type: ’list’
>>>

More than one entry per key is not allowed.

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 57 / 75

Dictionary key values

If duplicate keys are encountered, the previous value of the key is
over-written.

>>> d = {’three’: 3, ’one’: 1, ’two’: 2}
>>> d
{’one’: 1, ’three’: 3, ’two’: 2}
>>>
>>> d[’three’] = 4
>>> d
{’one’: 1, ’three’: 4, ’two’: 2}
>>>
>>> d[’four’] = 4
>>> d
{’four’: 4, ’one’: 1, ’three’: 4, ’two’: 2}

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 58 / 75

Deleting dictionary keys

>>> d
{’four’: 4, ’one’: 1, ’three’: 4, ’two’: 2}
>>>
>>> del d[’three’]
>>> print d
{’four’: 4, ’one’: 1, ’two’: 2}
>>>
>>> d.clear()
>>> d
{}

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 59 / 75

Manipulating dictionary entries

>>> MonthNumbers = {’January’: 1, ’February’: 2, ’March’: 3}
>>> MonthNumbers.items()
[(’January’, 1), (’February’, 2), (’March’, 3)]
>>>
>>> MonthNumbers.keys()
[’January’, ’February’, ’March’]
>>>
>>> MonthNumbers.values()
[1, 2, 3]
>>>
>>> "March" in MonthNumbers
True
>>> "April" in MonthNumbers
False
>>>

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 60 / 75

Manipulating dictionary entries

>>> MonthNumbers[’February’]
2
>>> MonthNumbers.get(’July’)
>>>
>>> MonthNumbers.setdefault(’July’, -1)
-1
>>> MonthNumbers.setdefault(’March’, -1)
3
>>>
>>> MonthNumbers
{’February’: 2, ’January’: 1, ’July’: -1, ’March’: 3}
>>>
>>> MonthNumbers.get(’May’, -1)
-1
>>> MonthNumbers.get(’March’, -1)
3

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 61 / 75

Dictionary exercise

Exercise: using a loop, create a dictionary with fruits as keys, and the
number of times the fruit is in the list as a value.

>>> fruits = {"apple", "pear", "banana", "banana", "pear",
"banana"}
>>> MyDict = {}
>>>

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 62 / 75

Dictionary exercise

Exercise: using a loop, create a dictionary with fruits as keys, and the
number of times the fruit is in the list as a value.

>>> fruits = ["apple", "pear", "banana", "banana", "pear",
"banana"]
>>> MyDict = {}
>>>
>>> for fruit in fruits:

MyDict.setdefault(fruit,0)
MyDict[fruit] += 1

>>>
>>> print MyDict
{’apple’: 1, ’banana’: 3, ’pear’: 2}
>>>

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 63 / 75

Understanding loops

You’ve probably noticed that you can loop over just about any type of
container object:

>>> for element in [1, 2, 3]:
... print element
>>> for element in (1, 2, 3):
... print element
>>> for key in {’one’: 1, ’two’: 2}
... print key
>>> for char in "123":
... print char
>>>

But what’s happening under the hood?

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 64 / 75

How ‘for’ loops work

Behind the scenes, this is what happens:

the for statement is calling the iter() function on the container object;
this returns an iterator object.

the next() method (or next in Python 3) of the iterator is called,
returning the needed value.

this is repeated until the iterator raises a StopIteration exception.

once the exception is raised, the for loop ends.

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 65 / 75

Iterables and iterators
In Python, iterable and iterator have very specific meanings:

Iterable:

An iterable is an object that has an iter method, which returns an
iterator.

Or an iterable is an object wich defines a getitem method that can
take sequential indexes starting from zero.

An iterable is an object from which you get an iterator.

Iterator:

An iterator is an object with a next (Python 2) or next (Python 3)
method.

If you wish to add iterator behaviour to your classes, the above
functions need to be added to your class.

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 66 / 75

Iterators

A list is iterable because it has the iter method, but it is not an iterator:

>>>
>>> L = [1, 2, 3, 4]
>>> L.__iter__
<method-wrapper ’__iter__’ of list object at 0x7fbf38e72ea8>
>>>
>>> L.next()
Traceback (most recent call last):
File "<stdin>", line 1 in <module>
AttributeError: ’list’ object has not attribute ’next’
>>>

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 67 / 75

Iterators, continued
When we loop over a list, the list is converted as an iterator:

>>> L = [1, 2]
>>> items = iter(L)
>>> items.__iter__
<method-wrapper ’__iter__’ of listiterator object at
0x7fbf38e98290>
>>>
>>> items.next
<method-wrapper ’next’ of listiterator object at 0x7fbf38e98290>
>>> items.next()
1
>>> items.next()
2
>>> items.next()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 68 / 75

Running scripts within Eclipse

Click on the ‘New’ button, select ‘PyDev Project’.

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 69 / 75

Running scripts within Eclipse

Right click on the project, then select ‘New’, ‘PyDev Module’.

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 70 / 75

Running scripts within Eclipse

Give your script a name.

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 71 / 75

Running scripts within Eclipse

Choose an Empty template.

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 72 / 75

Running scripts within Eclipse

And you’re read to go!

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 73 / 75

Running scripts from within Eclipse

There are a number of ways to run your script from within Eclipse. After
you confirm that you have a “Console View” open, and you have saved
your code:

Right-click on the editor tab, and select “Run As”, “Python Run”.

If you’ve run this code previously, press the green right-arrow button
on the toolbar.

Type “%run C:\path\to\Script1.py” from the command prompt.

We’ll get more experience running scripts later in the class.

>>> %run C:\Users\Erik\workspace\Project1\Script1.py
Hello World!

Warning: when I did “%run” the interactive console stopped
producing output. If this happens, restart Eclipse.

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 74 / 75

Running scripts from the DOS prompt

Python code can also be executed from the DOS prompt:

Click the Start menu, and open up the prompt by searching for the
‘cmd’ command.

Once you’re at the prompt, type the command:

C:\Users\Erik>
C:\Users\Erik> cd workspace\Project1
C:\Users\Erik\workspace\Project1> C:\Python27\python.exe Script1.py
Hello World!
C:\Users\Erik\workspace\Project1>

Erik Spence (SciNet HPC Consortium) PWC Python Course - Introduction to Python 1 December 2014 75 / 75

