
Scientific Computing (Phys 2109/
Ast 3100H)

I. Scientfic Software Development

SciNet HPC Consortium

This Lecture

• Brief Intro Tour of Python for visualization
and analysis

• Homework 1

• Introduction to Problem for weeks 2-4

• Valgrind, gdb

• Modular programming and Testing

• Start on Homework 2

Python
• Flexible, mature (20yo)

scripting-style
programming language

• Ubiquitous

• Huge standard library,
massive # of 3rd party
packages

• Much slower than C/
Fortran or even IDL/Malab

http://www.python.org/

http://www.python.org
http://www.python.org

ipython
• For interactive use

• Automatically loads a
lot of modules

• If you write python
scripts, have to do
this on your own

• --pylab: lots of good
math, plotting stuff.

reposado-$ ipython --pylab
Enthought Python Distribution -- www.enthought.com

Python 2.7.2 |EPD 7.1-2 (64-bit)| (default, Jul 3 2011, 15:17:51)
Type "copyright", "credits" or "license" for more information.

IPython 0.11 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.

Welcome to pylab, a matplotlib-based Python environment [backend:
TkAgg].
For more information, type 'help(pylab)'.

In [1]:

http://www.enthought.com
http://www.enthought.com

Basic python
• Variables

• Like most scripting
languages, don’t have
to declare.

• Very handy for quick
stuff, but has real
drawbacks

• Math works the way
you’d expect

In [1]: x = 2

In [2]: y = 3

In [3]: print x+y
5

In [4]: print x*y
6

In [5]: print y/x
1

Numpy, Arrays
• Python has lists [] but

not “real” arrays

• Arrays are supplied by
numpy, automatically
included by pylab

• Numpy is the
backbone of most
scientific computing
done in python.

In [6]: z = array([1., 2., 3., 4., 5.])

In [7]: print z
[1. 2. 3. 4. 5.]

In [8]: print x*z
[2. 4. 6. 8. 10.]

In [9]: z2d = array([[1.,2.,3.],
 ...: [4.,5.,6.]])

In [10]: print z2d
[[1. 2. 3.]
 [4. 5. 6.]]

In [11]: print y*z2d
[[3. 6. 9.]
 [12. 15. 18.]]

Numpy, SciPy
• Numpy provides basic N-

dimensional array data
structure, “fast”
operations on that
structure.

• Some low level math
libraries

• SciPy has higher-level
routines - linear algebra,
fftpack, sparse matrix
stuff, optimization
packages, etc.

http://www.scipy.org/SciPy

http://www.scipy.org/SciPy
http://www.scipy.org/SciPy

Python for loops
• For loops are more like

“foreach”

• Each item in list

• If want a C-like for loop,
use xrange (generates
list 0..N-1)

• Note indentation:
indentation is important
in python!

• (what happens with for
element in z2d?)

In [13]: for element in z:
 : print element
 :
1.0
2.0
3.0
4.0
5.0

In [14]: for name in ['Frank', 'Tina',
'Sam', 'Kim']:
 : print name
 :
Frank
Tina
Sam
Kim

In [15]: for i in xrange(10):
 : print i
 :
0
1
2
3
4

Python Functions

• Can also define
functions

• ‘def’ keyword

In [17]: def squareNum(x):
 : return x*x
 :

In [18]: print squareNum(4)
16

In [19]: print squareNum(7.3)
53.29

In [20]: print squareNum('Type Safety is a
good Feature')

If/else

• Control flow

• Same :, same punctuation
significance

• functions needn’t return
a value.

In [22]: def evenOrOdd(n):
 : if n % 2 == 0:
 : print "even."
 : else:
 : print "odd"
 :

In [23]: evenOrOdd(17)
odd

In [24]: evenOrOdd(18)
even.

Writing python files

• Can write functions in a
file, import them in
ipython

• specify them with
filename.functionname

• Code not in functions
will be run at import
time.

In [26]: import myRoutines

In [27]: help("myFunction")
...
FUNCTIONS
 myFunction(x, y)
 This returns square of sum of args

In [28]: a = myRoutines.myFunction(1, 2)

In [29]: print a
5

$ cat myRoutines.py
def myFunction(x, y):
 '''This returns square of sum of args'''
 return x*x+y*y

Basic Plotting with Matplotlib
• matplotlib.sourceforge.net/

• gallery of examples with
source code

• matlab like
In [29]: x = array([1.,2.,3.,4.,5.,6.,7.])

In [30]: y = x*x

In [31]: plot(x,y)
Out[31]: [<matplotlib.lines.Line2D at ...

In [32]: clf()

In [33]: plot(x,y,'ro-')
Out[33]: [<matplotlib.lines.Line2D ...]

http://matplotlib.sourceforge.net
http://matplotlib.sourceforge.net

Basic Plotting with Matplotlib
• matplotlib.sourceforge.net/

• gallery of examples with
source code

• matlab like
In [29]: x = array([1.,2.,3.,4.,5.,6.,7.])

In [30]: y = x*x

In [31]: plot(x,y)
Out[31]: [<matplotlib.lines.Line2D at ...

In [32]: clf()

In [33]: plot(x,y,'ro-')
Out[33]: [<matplotlib.lines.Line2D ...]

http://matplotlib.sourceforge.net
http://matplotlib.sourceforge.net

Basic Plotting with Matplotlib
• linspace(start, end, npts)

• pi, e defined

• By default, overplot
In [34]: x = linspace(0,2*pi,75)

In [35]: y = sin(x)

In [36]: z = sin(2*x)

In [37]: plot(x, y, 'g^-')
Out[37]: [<matplotlib.lines.Line2D at
0x334d550>]

In [38]: plot(x, z, 'bo')
Out[38]: [<matplotlib.lines.Line2D at
0x3351b50>]

Multiple Figure Plotting

In [43]: figure()
Out[43]: <matplotlib.figure.Figure ...

In [44]: subplot(2,1,1)
Out[44]: <matplotlib.axes.AxesSubplot ...

In [45]: plot(x,y)
Out[45]: [<matplotlib.lines.Line2D ...

In [46]: subplot(2,1,2)
Out[46]: <matplotlib.axes.AxesSubplot ...

In [47]: plot(x,z)
Out[47]: [<matplotlib.lines.Line2D ...

In [48]: close()

Multi-d arrays
In [50]: eye(5)
Out[50]:
array([[1., 0., 0., 0., 0.],
 [0., 1., 0., 0., 0.],
 [0., 0., 1., 0., 0.],
 [0., 0., 0., 1., 0.],
 [0., 0., 0., 0., 1.]])

In [51]: zeros([3,4,2])
Out[51]:
array([[[0., 0.],
 [0., 0.],
 [0., 0.],
 [0., 0.]],

 [[0., 0.],
 [0., 0.],
 [0., 0.],
 [0., 0.]],

 [[0., 0.],
 [0., 0.],
 [0., 0.],
 [0., 0.]]])

• By hand, as before

• Some special arrays:
identity matrix of size
nxn, or arbitrary shape
array of zeros

Multi-d arrays

In [55]: z = zeros([4,3])

In [56]: z[2,1] = 1.

In [57]: print z
[[0. 0. 0.]
 [0. 0. 0.]
 [0. 1. 0.]
 [0. 0. 0.]]

In [58]: print z[:,1]
[0. 0. 1. 0.]

• Python lists, numpy arrays,
are zero-based

• Can select out particular
rows, columns

Python Slicing

In [61]: a = ['a','b','c','d','e','f','g']

In [62]: a[1]
Out[62]: 'b'

In [63]: a[2]
Out[63]: 'c'

In [64]: a[3]
Out[64]: 'd'

In [65]: a[:]
Out[65]: ['a', 'b', 'c', 'd', 'e', 'f', 'g']

In [66]: a[1:3]
Out[66]: ['b', 'c']

In [67]: a[1:6:2]
Out[67]: ['b', 'd', 'f']

• Like Fortran, Matlab with
one important difference

• ‘:’ selects entire range in
that dimension

• start:end selects from
start to before end

• start:end:stride

2d plotting
In [76]: data = gen<TAB>
generic genfromtxt

In [76]: data = genfromtxt('data.txt')

In [77]: shape(data)
Out[77]: (301, 301)

In [78]: x, y = mgrid[0:301,0:301]

In [79]: x.max()
Out[79]: 300

In [80]: x = x - 150.

In [81]: y = y - 150.

In [82]: r2 = x*x+y*y

In [83]: gauss = exp(-r2/(2*30.*30.))

• First, let’s load some 2d
data

• Import your data from
HW1

• (loaddata is another useful
from-text-file routine)

• mgrid - generate x,y
coordinates for 2d grid

2d plotting

In [84]: clf()

In [85]: contour(data)
Out[85]: <matplotlib.contour.QuadContourSet
instance at 0x3751050>

In [86]: imshow(data)
Out[86]: <matplotlib.image.AxesImage at
0x3757f90>

In [87]: figure()
plot(Out[87]: <matplotlib.figure.Figure at
0x3757b50>

In [88]: plot(data[151,:])
Out[88]: [<matplotlib.lines.Line2D at
0x3f77ad0>]

3d plotting

In [99]: from mpl_toolkits.mplot3d import Axes3D

In [100]: fig = figure()

In [101]: ax = fig.gca(projection='3d')

In [102]: ax.plot_surface(x,y,gauss)
xlOut[102]:
<mpl_toolkits.mplot3d.art3d.Poly3DCollection at
0x3be3410>

In [103]: xlabel('x'); ylabel('y')
Out[103]: <matplotlib.text.Text at 0x4ea8590>

• Lots of very powerful things
possible with matplotlib

• But once you leave the
simple things, starts getting
cryptic.

Misc. Analysis
In [111]: hist(data.flatten(),30)
Out[111]:
(array([71365, 3904, 2316, 1620, 1236, ...

In [115]: size(data)
Out[115]: 90601

In [116]: size(where(data > 0.2))
Out[116]: 18224

In [117]: size(where(data > 0.5))
Out[117]: 7816

In [118]: figure()
plot(Out[127]: <matplotlib.figure.Figure at
0x2bbb58d0>

In [128]: plot(sum(data,axis=1)); plot(data[151,:])
Out[128]: [<matplotlib.lines.Line2D at 0x2bbba950>]

In [129]: quit()

Homework 1

• We’ve reviewed all the homeworks; well
done!

• Will have proper marks next week.

• Make, git quite well done.

• Biggest problem: .c / .h

Interface vs. Implementation

• The implementation - actual code - goes in
the .c file.

• The interface - what the calling code needs
to know about - goes in the .h file.

• This distinction is crucial for writing
modular code.

What does main.c need
to know at compile

time?
$ cat outputarray.h

void output2dbin(char *filename, double **data, const int nrows, const int ncols);
void output2dascii(char *filename, double **data, const int nrows, const int ncols);

$ cat main.c

#include "outputarray.h"

int main(int argc, char **argv) {
 // ...
 tick(&clock);
 output2dascii("data.txt", data, nrows, ncols);
 asciitime = tock(&clock);

 tick(&clock);
 output2dbin("data.bin", data, nrows, ncols);
 bintime = tock(&clock);
 //
}

Interface vs. Implementation

• When main.c is being compiled to a .o file,
needs to know that there exists out there
somewhere a function of the form
void output2dascii(char *, double **, const int,
const int);

• Does not need to know implementation
details (source of routine)

• Neither does programmer of
main.c

Compiling vs. Linking

• main.o can’t be executed - it’s missing the
routines for output2dascii() (and printf,
and exp, and..)

• At link time, .o’s (or libraries) must be
linked in to the executable that satisfy all
those routines that the code needs.

• If you leave out one of the needed .o’s, fatal
error - ‘symbol not found’

What goes in interface?

$ cat outputarray.h

void output2dbin(char *filename, double **data, const int nrows, const int ncols);
void output2dascii(char *filename, double **data, const int nrows, const int ncols);

• At the very least, the
function prototypes (so
compiler can make sure it’s
valid function, arguments)

• There may also be constants
that calling function and
routine need to agree on
(eg, error codes) or
definitions of data
structures.

What goes in interface?

$ cat outputarray.h

void output2dbin(char *filename, double **data, const int nrows, const int ncols);
void output2dascii(char *filename, double **data, const int nrows, const int ncols);

• Not necessarily every
function prototype (or
constant, or..)

• Usually, one .c/.h file per unit
of functionality - often more
than one routine.

• Internal routines do not get
publicly exposed

Why does it matter?
• Scientific software can be large, complex, subtle.

• If each section uses internal details from each other
section, have to understand the whole code at once
to do everything

• Interactions grow as (Lines of code)2.

• This is why global variables are bad

• Have to enforce boundaries between sections of
code - self-contained modules of functionality.

• Makes testing easier

More work up front
• Think about what you want the pieces of

functionality to be.

• How are you going to use these routines?

• Think about everything you might want to use these
routines for, then design interface.

• May change a bit in early stages, but if it changes a lot
you should rethink things - you’re not using the
functionality the way you thought.

• Like documentation, etc.. - more work upfront, much
more productivity in long run.

Module design

• Keep purpose of module clear

• As simple as possible (for your own sanity)

• As general as makes sense

HW1 - Makefiles
• Makefiles were good, but don’t forget

header file dependancies (depend on
interface to code, not implementation).

• If interface changes, code calling it will have
to be recompiled

• gcc -MM can help:

$ gcc -MM main.c
main.o: main.c array2d.h gaussian.h outputarray.h

HW1 - Text vs Binary

• In HW1 sample soln on wiki, include two
file outputs - in Text format describe, and in
binary

• Also have timing of output:
reposado-$./main 300 30
Text time = 0.073281, Binary time = 0.024263

reposado-$./main 3000 30
Text time = 6.368578, Binary time = 0.956578

reposado-$ ls -l data.*
-rw-r--r-- 1 ljdursi scinet 720008 Nov 10 21:50 data.bin
-rw-r--r-- 1 ljdursi scinet 1260300 Nov 10 21:50 data.txt

Text vs Binary
• Text ok for what we’re doing - small

• Basically, ok for anything you might actually
plausibly read.

• Not going to read it (15GB of data?)
Binary.

• Faster, smaller.

• Accuracy!

• Number of good formats

Course Project
• Will be working on for next 3

weeks

• Charged tracer particle moving
in a diffusive environment

• Colloidal transport in fluid
medium

• Couple kinds of physics, couple
kinds of data structures (grid,
particle)

Course Project
• Get source code:

• https://wiki.scinethpc.ca/wiki/
images/f/fb/Diffuse2.c

• Setup: Supervisor has this old
code for diffusive background,
“works fine”, wants you to add
tracer particle to it.

• Uses library you don’t have for
ploting - ifdef’ed out for now.

https://wiki.scinethpc.ca/wiki/images/f/fb/Diffuse2.c
https://wiki.scinethpc.ca/wiki/images/f/fb/Diffuse2.c
https://wiki.scinethpc.ca/wiki/images/f/fb/Diffuse2.c
https://wiki.scinethpc.ca/wiki/images/f/fb/Diffuse2.c

Discretizing
Derivatives

•Done by finite differencing the
discretized values

•Implicitly or explicitly involves
interpolating data and taking
derivative of the interpolant

•More accuracy - larger ‘stencils’

i-2 i-1 i i+1 i+2

+1 -2 +1

d2Q

dx2

����
i

⇥ Qi+1 � 2Qi + Qi�1

�x2

Discretizing
Derivatives

•Done by finite differencing the
discretized values

•Implicitly or explicitly involves
interpolating data and taking
derivative of the interpolant

•More accuracy - larger ‘stencils’

i-2 i-1 i i+1 i+2

✓
d

2
Q

dx

2
+

d

2
Q

dy

2

◆����
i

⇡

Qi+1,j+1 + Qi+1,j�1 � 4Qi,j + Qi�1,j+1 + Qi�1,j�1

�x

2

1

1

1

1
-4

2D diffusion
• Get source code:

• https://wiki.scinethpc.ca/wiki/
images/f/fb/Diffuse2.c

• Setup: Supervisor has this old
code for diffusive background,
“works fine for them”, wants
you to add tracer particle to it.

• Uses library you don’t have for
ploting - ifdef’ed out for now.

i-2 i-1 i i+1 i+2

https://wiki.scinethpc.ca/wiki/images/f/fb/Diffuse2.c
https://wiki.scinethpc.ca/wiki/images/f/fb/Diffuse2.c
https://wiki.scinethpc.ca/wiki/images/f/fb/Diffuse2.c
https://wiki.scinethpc.ca/wiki/images/f/fb/Diffuse2.c

Course Project

• Code isn’t a disaster as these
things go

• Even has comments! That are
still true!

• But one monolithic routine.
Difficult to follow (even in this
simple 154-line case)

Course Project
• You’re almost always better off

in these situations spending
some time cleaning these things
up some first

• For your own sanity

• But need to make sure your
changes don’t change answers

• So let’s start setting up decent
development environment,
baseline

Course Project

• Make a new git repository

• Start a makefile (CFLAGS=-O3
-Wall; LDFLAGS=-lm; then link
line should be enough to start).

• Include a “clean” target.

On compiler flags

• Optimization:

• -O, -O0, -O1, -O2, -O3 ...

• and machine/compiler specific

• -Wall

Course Project
• Make a new git repository

• Start a makefile (CFLAGS=-O3
-Wall; LDFLAGS=-lm; then link
line should be enough to start).

• Include a “clean” target.

reposado-$ make
make: `diffuse2' is up to date.

reposado-$./diffuse2
Segmentation fault (core dumped)

Segfault - valgrind, gdb

• The more spectacular the crash, the easier to
find the immediate cause.

• Segfault / Bus error - trying to access invalid
regions of memory.

• Scientific codes - array bounds, pointer errors,
or occasionally mis-calling a library routine

Valgrind
• Not everyone will

have this

• Everyone should know
about it

• Powerful tool for
finding memory
problems / memory
access problems

• Watches every
memory access.

http://valgrind.org/

http://valgrind.org
http://valgrind.org

-g

• Recompile with -g instead of -O3

• Keeps symbols from the source code in the
executable

• Disables some optimizations; may as well
disable others while we’re at it

• Allows much more information while we’re
debugging.

$ valgrind --tool=memcheck ./diffuse2
==8930== Memcheck, a memory error detector
==8930== Copyright (C) 2002-2009, and GNU GPL'd, by Julian Seward et al.
==8930== Using Valgrind-3.5.0 and LibVEX; rerun with -h for copyright info
==8930== Command: ./diffuse2
==8930==
==8930== Invalid read of size 8
==8930== at 0x400B04: main (diffuse2.c:172)
==8930== Address 0x4c27f20 is 0 bytes after a block of size 3,120 alloc'd
==8930== at 0x4A0515D: malloc (vg_replace_malloc.c:195)
==8930== by 0x400695: main (diffuse2.c:88)
==8930==
==8930== Invalid read of size 4
==8930== at 0x400B14: main (diffuse2.c:172)
==8930== Address 0x0 is not stack'd, malloc'd or (recently) free'd
==8930==
==8930==
==8930== Process terminating with default action of signal 11 (SIGSEGV)...

==8930==
==8930== HEAP SUMMARY:
==8930== in use at exit: 206,464 bytes in 4 blocks
==8930== total heap usage: 4 allocs, 0 frees, 206,464 bytes allocated
==8930==
==8930== LEAK SUMMARY:
==8930== definitely lost: 0 bytes in 0 blocks
==8930== indirectly lost: 0 bytes in 0 blocks
==8930== possibly lost: 0 bytes in 0 blocks
==8930== still reachable: 206,464 bytes in 4 blocks
==8930== suppressed: 0 bytes in 0 blocks
==8930== Rerun with --leak-check=full to see details of leaked memory
==8930==
==8930== For counts of detected and suppressed errors, rerun with: -v
==8930== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 6 from 6)
Segmentation fault (core dumped)
reposado-$

166 rhoint = 0.0;
167
168 for (i = 0; i < NPNTS+2; i++) {
169 for (j = 0; j < NPNTS+2; j++) {
170
171 rho[now][i][j] = rho[old][i][j]
172 + dt*D/(dx*dx) * (+rho[old][i+1][j]
173 +rho[old][i-1][j]
174 +rho[old][i][j+1]
175 +rho[old][i][j-1]
176 +4*rho[old][i][j]);
177 rhoint += rho[now][i][j];
178
179 }
180 }

104 /* setup initial conditions */
105
106 time = 0;
107
108 for (i = 0; i < NPNTS+2; i++) {
109 x[i] = X1 + (i + 0.5)*dx;
110 }
111
112 for (i = 0; i < NPNTS+2; i++) {
113 for (j = 0; j < NPNTS+2; j++) {
114 rho[now][i][j] = A0*exp(-(x[i]*x[i] + x[j]*x[j]) /(2.*SIGMA0*SIGMA0
115 }
116 }

Valgrind
• Linux, Mac OS X

• Catches out of bounds
errors, use of uninitialized
variables

• Can also be used for
memory performance
problems.

• Works great for C-based
languages, less well for
FORTRAN

http://valgrind.org/

http://valgrind.org
http://valgrind.org

gdb

• Debugger; allows you to step through code
one line at a time, see contents of
variables, etc.

• See what code is actually doing as vs. what
you think it is doing.

• Xcode, eclipse, visual studio - have
integrated debuggers with their
environments. Principle is the same.

None No process In: Line: ?? PC: ??
 ┌──diffuse2.c───┐
 │165 │
 │166 rhoint = 0.0; │
 │167 │
 │168 for (i = 0; i < NPNTS+2; i++) { │
 │169 for (j = 0; j < NPNTS+2; j++) { │
 │170 │
 │171 rho[now][i][j] = rho[old][i][j] │
 >│172 + dt*D/(dx*dx) * (+rho[old][i+1][j] │
 │173 +rho[old][i-1][j] │
 │174 +rho[old][i][j+1] │
 │175 +rho[old][i][j-1] │
 │176 +4*rho[old][i][j]); │
 │177 rhoint += rho[now][i][j]; │
 │178 │
 │179 } │
 │180 } │
 └───┘
child process 8967 In: main Line: 172 PC: 0x400b14

Program received signal SIGSEGV, Segmentation fault.
0x0000000000400b14 in main (argc=1, argv=0x7fffffffe568) at diffuse2.c:172
Missing separate debuginfos, use: debuginfo-install glibc-2.12-1.7.el6_0.5.x86_64
(gdb) print i
$1 = 129
(gdb) print j
$2 = 0
(gdb) quit

reposado$ gdb --tui ./diffuse2
run

Fix this bug

• So let’s fix this classic indexing bug and
recompile

But problems remain...

$./diffuse2 | more
Step = 0, Time = 0.00714241, Error = 2.38837, Integrated density = 2.599993
Step = 1, Time = 0.0142848, Error = 2.38837, Integrated density = 6.759978
Step = 2, Time = 0.0214272, Error = 2.38837, Integrated density = 17.575960
Step = 3, Time = 0.0285697, Error = 2.38837, Integrated density = 45.697430
Step = 4, Time = 0.0357121, Error = 2.38837, Integrated density = 118.813644
Step = 5, Time = 0.0428545, Error = 2.38837, Integrated density = 308.915619
Step = 6, Time = 0.0499969, Error = 2.38837, Integrated density = 803.178406
Step = 7, Time = 0.0571393, Error = 2.38837, Integrated density = 2088.266357
Step = 8, Time = 0.0642817, Error = 2.38837, Integrated density = 5429.500977
....
Step = 89, Time = 0.642818, Error = 2.38837, Integrated density = inf
Step = 90, Time = 0.64996, Error = 2.38837, Integrated density = inf
Step = 91, Time = 0.657103, Error = 2.38837, Integrated density = inf

Testing

• Crashes are easy to find (although
sometimes harder to find root cause of)

• Wrong answers are harder

• Slightly wrong answers hardest of all (but
most dangerous!)

Integrated Testing
• Complicated piece

of software, with
many interacting
parts

• Difficult to tell
where a problem
begins in final
answer

• Integrated testing

In

Out

Unit Testing
• Testing major pieces of

the code individually

• Comparing easy
solutions, “typical”
solutions, wierd edge
cases

• Enormously speeds
up, simplifies, finding
problems when
introduced

In

In

In

In

Out

Out

Out

Out

Testing

• Complex piece of
software which
doesn’t have testing
regularly done on it -
integrated and unit?

• You can save yourself a
lot of time and just
assume it’s wrong.

In

In

In

In

Out

Out

Out

Out

Testing and Modularity
• Modular software is

needed for unit testing

• Have to have
separable, independant
units.

• Also answers the
question “how much
should be in module” -
what would be good
independant tests?

In

In

In

In

Out

Out

Out

Out

Testing Frameworks

• There are lots of excellent testing frameworks
that you can use - Google Tests (C++), xUnit,
Check (C), Nose (python), JUnit (Java)

• They’re great, but they have a big learning curve.

• You don’t need anything that elaborate to get
started with unit testing.

diffusionOperator.c
int diffusionOperator(float **rhoOld, /* original field */
 const int n, const int m, /* size of interior grid */
 float dt, float dx, float D, /* parameters of diffusion */
 float **rhoNew, float *rhoint) /* outputs */
{

 /* code goes here... */

 return 0;
}

int testDiffusionOperatorConstant() {

 /* give it one field and test its answer */

}

int testDiffusionOperatorGradient() {

 /* give it one field and test its answer */

}

int runDiffusionOperatorTests() {
 /* run each of the tests */
}

diffusionOperatorTests.c
int main() {

int runDiffusionOperatorTests();

}

Makfile
...
diffusionOperatorTests: diffusionOperatorTests.o diffusionOperator.o

$(CC) -o $@ $^ $(LDFLAGS)

