
Mapmaking



First, Why?
• To look at CMB/mm-wave sky, typically use 

bolometers.  Getting more & more detectors.

• Cameras scan back & forth across sky, so need to 
convert scans to maps.

• Noise properties of most any total-power 
detector complicated.  1/f noise big.  So, best map 
made from all data.



Touches on Lots of Topics

• Optimal map is a linear least-squares solution.  Can’t solve 
directly, so we will meet iterative matrix solutions.

• Noise is defined in Fourier space, so will meet FFTW.

• Will meet thread safety using other people’s routines.  
Something you will have to be aware of.

• Will see new OpenMP (un)synchronization commands.



Goal:
Turn this.

Into this.

WMAP 5-year.

Simulated 1/f  timestream



And do it Quickly
• WMAP has .15 TB, takes ~week on 50 cores.  

• Modern experiments will have to deal with 
10-100 TB of data.

• One drive, reading 50 MB/s takes 23 days to 
read 100 TB. 

• If nodes have 8 GB, holding 100 TB in 
memory takes 12,500 nodes.    



Lest You Think I’m Joking...
Planck - 1010 pts/detector/year

70 detectors, ~3 years, 
single-precision =  8 TB 

Launched already.

ACT - 3000 detectors,  400Hz 
readout, 12 hrs/night, up to 

200 GB/day.  2 years = 150 TB.
Have > 1 year already

SPT, SCUBA2, others...



1/f?  Why do I hate it?

• For most total-power detectors, detector noise is larger 
on long timescales.

• I could make a map where ith pixel was the average of all 
data that fell in it.

• Lots of noise in common in data taken at similar times.

• Usually scan back & forth on sky - low-frequency noise 
makes stripes in the maps.  Not good for science... 



Stripey Map
Typical timestream

Resulting map



Cross-linking
But say I had data 
taken in a different 
direction.  Ought to be 
able use information in 
one direction from 
one, the other from 
the other, right?  Yep.  
But how?



And now for some math...

• Optimal map minimizes χ2 of the data.  

• Because the data is correlated, χ2 requires 
work.

• Want to use data from different directions to 
beat down striping.

• How do we do this?  Linear least-squares.



Fundamental Equation

d=Pm+n

(We really, really hope)

d=data.
m=map.
n=noise
P=Pointing matrix.  It turns
    sky into expected data. 

For a given map, I think noise=d-Pm.  If N is 
my expected noise matrix, then χ2 =nTN-1n 

or (d-Pm)TN-1(d-Pm)



Mapmaking Equation

• At χ2 minimum, ∂χ2/∂m=0

• Matrix algebra gives PTN-1(Pm-d)=0

• Or, PTN-1Pm=PTN-1d.  Need to solve this.

• You have seen this before:  simply linear least 
squares for parameters m given data d. 



How Big is This?

• For Planck, maps are ~108 pixels.   

• N-1 is size of data.   1012-1013 on a side.

• P tells you which data lives in which pixel.  
It is ndata x npixel.  Ideally, one non-zero 
element per column (since each data point 
lives in one pixel).



How Long?

• We often can pull tricks to get fast multiplies by P, N-1.  
Hopefully, at least.

• We have to invert PTN-1P, because m=(PTN-1P)-1 PTN-1d 
(now, this assumes all other matrix operations are free!).

• So, down to inverting 108x108 matrix.  1 sec. for 103x103.  
So, 1015 core-seconds.  That’s 104 cores for 3000 years.  If 
we’d started during Trojan war, we’d be done!



So, What Next?

• If someone gave us the right answer, would we know?  Let’s 
look at terms.

• RHS:  N-1d means I’ve divided the data by the noise 
(squared).  If I knew how to divide data by its noise, I might 
be in business.

• PT(N-1d) sums (noise-filtered) data into a map (this is the 
operation I used to make the striped map).  Takes 
order(#data) FLOPS.  Doable.



So, What Next?  Contd.

• LHS:  Pm says make the data I should have seen if this were 
the true map.  Again, about as many FLOPS as I have data.

• PTN-1(Pm) is same work as PTN-1d, so if I can do this N-1 
thing, I stand a chance.

• So, how do I divide the data by the noise?  Find a space in 
which the noise is simple.



1/f giveth, 1/f taketh away.
Fourier modes are uncorrelated in 

1/f.  Not bad in real life.  So, if I 
divide by noise (squared) in 

Fourier space, I can make N-1d.

FT of data.

1/f region

White noise plateau

1/f knee.



Calculating N-1d
• Fourier transform data.

• Fit 1/f+constant (or more complicated, if need be) to data FT.

• Now whenever I want to have N-1 on a vector, I just use that 
Fourier model for N-1.

• How much work?  FFT goes like nlog(n).  If data is broken 
into hour chunks, have ~106 elements, log(n)~20.  For 1013 
elements, need 2*1014 FLOP.   Good core can do 1010 FLOPS 
(4 FLOP/clock@2.5GHz).  So, 100 cores can test guessed 
answer in ~3 min.  

mailto:clock@2.5GHz
mailto:clock@2.5GHz


But is My First Guess Right?

• No.  But it doesn’t have to be.

• There’s a whole literature on solving Ax=b.  People 
have been doing this at least since Gauss.

• Given current guess, we can make a guess as to a 
better map.  Keep doing this until we’re happy.

• Cookbook scheme:  a method called conjugate 
gradient tells us how to take our next step.



Conjugate Gradient
From Wikipedia:

Here’s the cookbook recipe.  At each 
step, I have to multiply A(=PTN-1P) by pk, 
where pk looks like a map.  Then I do a 
bunch of map times map operations, 
which are fast.

Conjugate gradient steps 
somewhat intelligently 
downhill to get to a 

minimum error.



Finally, Memory.
• “But wait - you can’t fit 150 TB in memory, can you?”  Well, no. But...  

First, only need PTN-1d, which is the size of a map, don’t need actual data.

• Different chunks of data don’t have noise in common.  So, in matrixese, 
N-1 is block-diagonal

• P has one 1 per column, so it doesn’t mix things.  

• This means that I can make the dirty map for a chunk of model data 
(Pm), then sum those maps, which are small.  BTW, this should scream 
“parallelize me”.

• Of course, I still need P, where I was pointed...



Timing, etc. concerns
• Conjugate-gradient can take few hundred steps to converge.

• Noise is often correlated between detectors.  Must take this 
into account as well.

• Applying P takes time (not as much as FFT’s, but close)

• Still have to read data - tens of  TB non-trivial to read.

• My noise estimate depends on the map (n=d-Pm).  So, will 
have to update the noise during mapmaking.

• Can’t store pointing for all the data, so need fast way to 
reconstruct it.



Disk Usage
• Disks read ~50 MB/s (a bit more perhaps).

• If I have 1000 disks reading, then get 50 GB/s, 3 TB/min, 
or 50 min to read entire dataset.  Hard, but not 
impossible.

• Alas, need to re-read data every time I update noise.  
May need to do this several times during mapmaking.

• The lower your S/N, the fewer times you have to do 
this.  Yay, crappy data!



Bird’s Eye View of Steps 

•                                              Read the data.  

• Decide on a map, and how to assign data to map.

• Figure out noise and its inverse.

• Figure out how to apply N-1, P, and PT to objects.

• Use iterative techniques to solve LLS problem.

PTN-1Pm=PTN-1d



Step 1:  Read the data.

Have code to read one 
timestream (TOD, Time-Ordered 
Data).  We have a bunch of 
timestreams that need to be read.  
How would you do this with 
OpenMP?  With MPI?



Reading, cont’d 
• In the data, we have the data, x and y positions for 

each data point (could be, say, RA and Dec).  Finally, 
have a representation of the noise.

• Just a big loop over data.  Don’t want all processes 
reading all data.  Trivial in OpenMP.  Requires 
thinking in MPI.

• You may notice if you read the data twice, second 
time is much faster.  Hello, disk caching.



Step 2:  Set the Pointing

• Have both x and y coordinates in high precision.  Really, just 
want to know in which map pixel each data point lives.

• So, make a 1-D vector corresponding to a 2-D map.  Then 
we need to store 1 integer per data point instead of 2 float/
doubles.

• Need to make sure map is big enough.  Need outer limits 
for all data.  MPI alert.



Pointing, cont’d.
Find my min/max x and y.  Have to 
look at all of the data.  Have a map 
structure that stores the map limits.

If I have coords ix,iy, then 
set my pixel to ix+nx*iy.  
Now I can throw away 
x&y and save memory.



Step 3:  Applying the Pointing

• So, now we have an index for each data point.  This 
is a compressed representation of P.  

• To multiply P*m, we have: for i=1 to n, 
data(i)=map(index(i))

• To multiply PT*d, we have:  for i=1 to n, 
map(index(i))+=data(i).

• Again, these loops scream parallelize me!



Applying the Pointing II
map2tod carries out d=Pm.  I loop 
over all of my TOD’s, and over all the 
data in each TOD.   All data is 
separate, so embarassingly parallel.

tod2map does m=PTd.  Note that 
many pixels can write to a single 
map pixel, so will need to watch 
for race conditions in parallel.

(filterTOD command applies noise inverse 
to data.  Will get there soon.)



• To parallelize the loop, where we sum data into map, each 
thread should have its own copy of the map to avoid race 
condition.

• Happens naturally in MPI, requires making private map copies 
in OpenMP.

• At end, must combine maps.  MPI use MPI_Allreduce.  
OpenMP, well, this may be one of few times where MPI is 
simpler.

Applying the Pointing III



Reducing in OpenMP
• Simplest map reduction in OpenMP is to use #pragma omp 

critical.  This will work - how does it scale?

• Say data parts scale perfectly, so time ∝1/np.  Reduction time 
∝np.  

• How bad?  Say data is 100x work of map sum.  2 CPUs:  50 
time units on data, 2 for reduction, so 4% in reduction.  10 
CPUs:  10 time units on data, 10 on reduction.  So have 
already lost factor of 2.  16 CPU’s:  ~75% of time reducing!

Makes Amdahl look optimistic!



Reducing in OpenMP II

• First thing we can do:  end of #pragma omp for has an implied barrier.  
Everybody waits.  Well, if one thread is done, start it on the reduction 
while others still work.  Add nowait clause to #pragma omp for.

• #pragma omp critical locks a whole block of code.  If I’m reducing, if I’ve 
finished a piece of map, next guy can start.

• One note:  Could put critical around each row.  Would this help?  Not 
offhand.  Critical is a global structure:  only one thread allowed 
anywhere in code in a critical. 

• Can give names to critical regions, but who wants to name every row?  
Overhead on criticals also potentially high.



Reduction:  Locks.
• Solution:  locks. 

• What is a lock?  Low-level routine with a variable.  Can create 
locks (omp_lock_t type in C,  pointer size in Fortran).  

• If a thread asks for lock, waits until it gets it.  Only one thread 
allowed to have a lock at a time.

• Make a lock for each row.   Each thread sets the lock when 
starts, releases when done.

• Might be lower overhead than critical:  only care about lock I 
ask for.  (Of course compiler might do critical with a lock)



Locks in Action
Have to set up locks, but now I 

can have processes reducing 
simultaneously.  @8 threads, 

locks win by 2 (and maybe more 
if I tweak #of locks).   Also, w/
locks 2 threads takes 0.02, so 

reduction time sub-linear.



Step 3:  Noise

• I have kindly given you noise in the form you’ll need.  
Doesn’t happen in real life, so enjoy!

• You have noise in Fourier Space, where it is diagonal.  To 
apply, FFT data, divide by noise, and FFT back.

• FFT’s so common, going to discuss them.



FFTW

• Almost everybody uses FFTW for FFT’s these days.

• FFTW=Fastest Fourier Transform in the West.  Ask them...

• Unlike Numerical Recipes, FFTW works on all sizes - not 
just powers of 2.

• Be careful of powerful tool.  Can blow off own foot.

Go to www.fftw.org for info, source code etc.

http://www.fftw.org
http://www.fftw.org


FFTW in Action
Here’s how to actually 
calculate an FFT using 
FFTW.  You will have to do 
this at some point in your 
career, so here’s an example.



Program Output

Two runs of FFTW for different sizes.  Note badness of 
1048681.  I could win a factor of 7 in CPU time by tossing 1 
data point out of 1,000,000.  Keep this in mind when FFTing.  



More FFTW

• Say I really needed to calculate all those 
FFT’s.  Well, looks perfect for OpenMP!

• Slap a parallel for with a dynamic schedule, 
should leak to happiness, right?

• Let’s see.



Multi-threaded FFTW

Works fine on 1 thread.  
Dies miserably on 8.  Did 

we screw up?



Did We Screw Up?

No!  All variables used in loop are declared in there.  
All we did was use stuff and call FFTW.  Oh wait...



Thread Safety
“Users writing multi-threaded programs must concern 
themselves with the thread safety of the libraries they use—
that is, whether it is safe to call routines in parallel from 
multiple threads. FFTW can be used in such an environment, 
but some care must be taken because the planner routines 
share data (e.g. wisdom and trigonometric tables) between 
calls and plans.

The upshot is that the only thread-safe (re-entrant) routine in 
FFTW is fftw_execute”

-FFTW Documentation



In English
• Sometimes you have to use other peoples code.

• Sometimes that code only likes to run one copy at a 
time.

• If you try to run more copies, you will be punished.

• If you want to call library routines in parallel sections, 
check on their thread safety.  May save you much pain.

• What’s going on to make this a problem?



In a Word, Static
• C supports static variables.  They are variables in routines 

that stick around and keep their values between calls.

• If one thread expects a static not to have changed between 
calls, but another thread changed it, well...

• The only static I ever use is to tell me if a routine is being 
called for the first time.  Even then I feel dirty.  Better to put 
inside a structure.

• So am I trashing FFTW?  No.  Come talk to me about statics 
when your FFT is as fast as theirs.



FFTW Loop Working

Since plans aren’t thread-safe, lock ‘em up in 
critical regions.  And we’re in business.  Another 

solution:  make plans once & save  them.



} } }  (Closing Many Clauses)
Now that we have met FFTW 
and how to use it in parallel, 

here’s noise filtering. Need a temp space to FFT into.
Run the FFT.  This call lets you use 

same plan for different data vectors.

Apply the noise to the FT

Get filtered data back to time domain. 



What Does This Look Like?

Turn this
into this



Back to Mapmaker

• Now we know how to do each operation.

• Next problem:  given a guess for m, come up with 
better guess for m.  Repeat until happy.

• Conjugate-gradient always works.  Tries to solve 
Ax=b for positive-definite A.

• Will spare you details, but works by taking optimal 
steps in (sort-of) orthogonal directions.

PTN-1Pm=PTN-1d



Pre-conditioning

• Conjugate gradient solves Ax=b.

• For (non-singular) A*, A*Ax=A*b if Ax=b

• If we pick a good A*, in the sense that it is close to 
A-1, CG converges faster.  Solving Ix=b is fast!

• A* is called a pre-conditioner.  Picking them is an 
art.  No more here, but if you use CG, investigate.



Giant Matrix Solving in Action
Setup FFT Plans

Make PTN-1d

Setup CG quantities.

If you recall (which you don’t), I put noise filtering 
inside the PT part.  Since N-1 never appears without 

PT in mapmaking equation, it makes sense.

Run it!



Actual Solving
This step is the biggie.  It 

calculates PTN-1Pm.  Consists of 
map2tod followed by tod2map.

Take steps.  The objects are all 
size of maps (small), not data (big)

Update quantities & clean up.

And this is my current error



So, Let’s See it in Action!
Merging galaxy pair Arp148

This is what we get 
from just adding up 

the data.



Initial Guess:



After Several Iterations



And now, homework...

Step 0:  go to ~/pca/src/mapmaker. Compile 
mapmaker.c.  Run it.  Did it work?  If it can’t find 
data, make sure froot in main is set correctly.
Copy mapmaker.c to mapmaker_omp.c  Now we 
will OpenMP mapmaker_omp.c



Step 1:  OpenMP map2map
• First, OpenMP map2tod.  There is no conflict in this routine:  

a simple omp parallel for should work.

• Second, OpenMP tod2map.  You will have to make a private 
copy of the map for each thread.  You may find the call:     
MAP *mymap=makeMapCopy(map); useful.  At the end, call 
destroyMap(mymap);  Feel free to use criticals in summation.  
Use the nowait clause on the for loop.  Why is this OK?

• Did it run?  Did you get same answer (look at residuals).  
What was the speedup?



Step 2:  OpenMP PCG

• We have left CG serial.  Is this bad?  The CG stepper uses 
the routines  mapTimesMap and MAPaxpy.  

• MAPaxpy is a simple parallel for.  OpenMP it.

• mapTimesMap is just a dot product.  OpenMP it with a 
reduce.  

• Now there are no serial bits left.  Re-run.  Did it speed up?



Step 3:  MPI the data
• There are only a few places where MPI kicks in.  

• Start with a fresh copy called mapmaker_mpi.c

• First, need to split up data.  Each process only gets a piece of 
data.  Throughout code, tod.ntod is total number of tod’s on a 
node.  Simplest to keep it that way, and add field 
tod.total_ntod to the TODvec structure.

• Have each thread decide how many tod’s it gets (and put in 
tod.ntod).  Next, have readAllTOD read the right subset of 
data.  Run - did every tod get read once?



Step 4:  MPI the Limits

• Maps need to have the same x/y limits.  Need to know 
the global max/min of both x and y.  

• MPI findMapLimits.  You can use MPI_Allreduce to 
globally share the x and y limits.  Can you share all the 
limits with a single MPI_Allreduce?  Might think about 
flipping sign of xmin and ymin, then flipping back...  

• Do you get same x/y limits as single processor job?



Step 5:  MPI the mapping

• tod’s don’t depend on each other, so if map is globally agreed on, map2tod is 
already set! 

• tod2map requires the same reduction that OpenMP tod2map needed.   If 
you use an MPI_Allreduce, everyone agrees on the map at the end.

• PCG:  I think (but don’t know for sure) that communications costs in PCG 
are steeper than running serially.  So, skip it.  You should be done now!

• Does your code run?  Do you get the right answers?


