
PWC Python Course - GUI programming
with Tkinter

Erik Spence

SciNet HPC Consortium

11 December 2014

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 1 / 50

An introduction to Tkinter

The purpose of this segment of the class is to introduce you to the basics
of GUI programming in Python, using Tkinter . There are several GUI
interfaces available in Python:

Tkinter is the Python interface to the Tk GUI toolkit.

wxPython is an open-source Python interface for wxWindows.

JPython is a Python port for Java which gives Python scripts access
to Java class libraries.

Many others are also available. We will use Tkinter, due to the fact that it
is the de facto standard Python GUI library.

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 2 / 50

What is Tk?
If Tkinter is the Python interface to the Tk GUI toolkit, what is Tk?

Tk started life as Tcl extension (1991). It is now written in C.

Tk is a high-level windowing toolkit. You can interface with it directly
using C or other languages.

Tk interfaces are also available in Python, Ruby, Perl, Tcl, and
probably other languages.

What Tk itself is interfacing with depends on your system:
I Mac: Tk provides interfaces to the MacOS windowing system.
I Windows: Tk provides interfaces to the Microsoft windowing system.
I Other platforms: Tk 8.X attempts to look like the Motif window

manager, but without using Motif libraries. Prior to that it interfaced
with the X window system.

Let it suffice to say that Tk provides a high-level means of accessing your
system’s windowing infrastructure.

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 3 / 50

Running code in today’s class

All the code for this morning’s class will be written as stand-alone scripts.
As such we won’t be using the interactive prompt. Those using Eclipse
should be able to run the code from the editor or the toolbar.

If you’re using the supplied Python code, and using Eclipse, be sure to
import it into your current Project so that you can run it.

Do NOT use IDLE, or any other standard graphical Python interface.
Some of these use Tk as a back end, and today’s code may break or
confuse the interface.

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 4 / 50

Our first Tkinter program

The Tkinter module is needed
to build Tkinter widgets.

First thing generated is the
parent window, upon which
everything else will be placed.

The Label widget is generated.

Arrange the Label using the
pack command.

The ’mainloop’ command is
used to launch the window, and
start the event loop.

The window can be moved,
resized, and closed.

firstTkinter.py

from Tkinter import Tk, Label

Create the window.

top = Tk()

Create a Label.

l = Label(top, text = "Hello World")

Arrange the Label.

l.pack()

Run the parent, and its children.

top.mainloop()

The window has the ’look’ of
whatever system you
are running.

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 5 / 50

Event-driven programming

The previous example was trivial, but it illustrates steps which are seen in
most Tkinter programs. Some notes:

The mainloop method puts the label on the window, the window on
the screen and enters the program into a Tkinter wait state.

In the wait state, the code waits for user-generated activity, called
’events’.

This is called event-driven (also called asynchronous) programming.

The programs are essentially a set of event handlers that share
information rather than a single linear control flow.

This style of programming is notably different from what most of us are
accustomed.

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 6 / 50

Our first Tkinter program, continued

We can tweak the appearance of our
main window:

Use the ’title’ option to change
the title of the window.

The ’minsize/maxsize’ arguments
set the minimum/maximum size
of the window.

The ’configure’ argument can be
used to set a variety of different
window features, such as the
background colour.

firstTkinter2.py

from Tkinter import Tk, Label

top = Tk()

l = Label(top, "Hello World")

l.pack()

Give the window a title.

top.title("My App")

Change the minimum size.

top.minsize(400, 400)

Change the background colour.

top.configure(bg = "green")

Run the widget.

top.mainloop()

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 7 / 50

Our second Tkinter program

The Tkinter Button command
creates a button.

The first argument is the
parent window.

The ’pack’ command makes
the widget visible, and tells the
parent to resize to fit the
children.

When the button is pushed,
the callback function
’hello callback’ is called.

If the upper-right-corner ’X’ is
not visible the window is too
small. Resize the window.

secondTkinter.py

from Tkinter import Label, Button, Tk

The ’callback function’. Invoked

when the button is pressed.

def hello callback(): print "Hello"

top = Tk()

Make a Label.

l = Label(top, text = "My Button:")

l.pack()

Make a button.

b = Button(top, text = "Hello",

command = hello callback)

b.pack()

top.mainloop()

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 8 / 50

A better second Tkinter program

Widgets are usually created as
objects, so let’s recast our example
as such.

secondTkinter2.py

import Tkinter

from MyApp import MyApp

top = Tkinter.Tk()

Note that the constructor takes the

parent window as an argument.

app = MyApp(top)

top.mainloop()

MyApp.py

from Tkinter import Label, Button

class MyApp:

def init (self, master):

self.l = Label(master,

text = "My Button:")

self.l.pack()

self.b = Button(master,

text = "Hello",

command = self.hello)

self.b.pack()

Function called when the button

is pressed.

def hello(self): print "Hello"

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 9 / 50

An even better second Tkinter program

Generally speaking, objects should
be invokable on their own.

MyApp2.py

from Tkinter import Label, Button,

Frame

Extend the Frame class, to inherit

the mainloop function.

class MyApp(Frame):

def init (self, master = None):

Construct the Frame object.

Frame. init (self, master)

self.pack()

MyApp2.py, continued

self.l = Label(self,

text = "My Button:")

self.l.pack()

self.b = Button(self,

text = "Hello",

command = self.hello)

self.b.pack()

Function called when the button

is pressed.

def hello(self): print "Hello"

Allow the class to run stand-alone.

if name == " main ":

MyApp().mainloop()

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 10 / 50

Callback functions

’Callback functions’ are invoked by widgets due to an ’event’, such as the
pressing of a button. These functions need to be handled carefully:

Notice that we used ”command = self.hello” rather than
”command = self.hello()” in the code for the Button in the last
example.

If you do ”command = func()” in the widget declaration, func() will
be run upon the widget creation, not when it is needed.

But without the brackets there is no way to pass arguments to the
function! If arguments are needed you must use lambda, or another
indirection layer.

(Global variables may also work, but are not recommended.)

Functions invoked using lambda are only called at runtime, not when
the widget is created.

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 11 / 50

Many different Tkinter widgets are available

The list of widgets which can be added to a Tkinter window is extensive:

Buttons, Checkbuttons, Radiobuttons, Menubuttons

Canvas (for drawing shapes)

Entry (for text field entries)

Message (for displaying text messages to the user)

Labels (text captions, images)

Frames (a container for other widgets)

Scale, Scrollbar

Text (for displaying and editting text)

and others...

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 12 / 50

Tkinter control variables
More often then not, we want to tie the value of variables to the specific
states of widgets, or to specific events. This is called tracing.

Native Python variables don’t track events as they occur.

However Tkinter contains wrapper objects for variables which change
value with changing events. These are called Tkinter variables.

Because they are objects, Tkinter variables are invoked using a
constructor: var = IntVar().

These variables have a number of important functions:

Checkbuttons use a control variable to hold the status of the button.

Radiobuttons use a single control variable to indicate which button
has been set.

Control variables hold text strings for several different widgets (Entry,
Label, Text).

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 13 / 50

How to use Tkinter control variables

There are four types of control variables: StringVar (string), IntVar
(integers), DoubleVar (floats), BooleanVar (booleans). Each variable has a
default value. How do these variables tend to manifest themselves?

Button: set its ’textvariable’ to a StringVar. When the StringVar is
changed the Button’s text will change.

Checkbutton: set the ’variable’ option to an IntVar. Note that you
can also use other values for a Checkbutton (string, boolean).

Entry: set the ’textvariable’ option to a StringVar.

Radiobutton: the ’variable’ option must be set to either an IntVar or
StringVar.

Scale: set the ’variable’ option to any control variable type. Then set
the ’from ’ and ’to’ values to set the range.

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 14 / 50

Tkinter control variables example
MyCheckbutton.py

from Tkinter import IntVar, BOTH

Checkbutton, Frame

class MyCheckbutton(Frame):

def init (self, master = None):

Frame. init (self, master)

self.pack(expand = True,

fill = BOTH)

self.master.title("")

self.master.minsize(200, 100)

Object variables.

self.var = IntVar()

Create a checkbutton.

cb = Checkbutton(self, text =

"Show title", variable =

self.var, command = self.click)

cb.place(x = 50, y = 50)

MyCheckbutton.py, continued

def click(self):

if (self.var.get() == 1):

self.master.title("Checkbutton")

else: self.master.title("")

if name == " main ":

MyCheckbutton().mainloop()

The IntVar object tracks the
checkbox value (0 or 1).

.get()/.set(’x’) returns/sets the
value of the control variable.

The ’place’ function locates
the checkbox in the window,
from the upper-right
corner.

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 15 / 50

Exercise 1

Create an application which

Accepts a numeric entry from the user, using the Entry widget.

The Entry widget has a Label widget beside it, which says ”lbs”.

Has a ’Calculate’ button. When the ’Calculate’ button is pressed:
I The application calculates the number of kilograms, assuming that the

value given in the Entry widget is numeric, and is in pounds
(1 pound = 0.453592 kilograms).

I Prints the value to the command line.

Hint: create a StringVar() for the entry widget. When the button is
pressed grab the value and go.

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 16 / 50

Exercise one
lbs2kgs.py

from Tkinter import *

class lbs2kgs(Frame):

def init (self, master = None):

Frame. init (self, master)

self.pack()

self.lbs = StringVar()

lbs entry = Entry(self, width = 7,

textvariable = self.lbs)

lbs entry.pack(side = LEFT)

Label(self, text = "lbs").pack(

side = LEFT)

Button(self, text = "Calculate",

command = self.calc).pack(

side = LEFT)

lbs entry.focus()

for c in self.master.winfo children():

c.pack configure(padx = 5, pady = 5)

lbs2kgs.py, continued

def calc(self):

try:

value = float(self.lbs.get())

print "The number of

kgs is", 0.453592 * value

except ValueError: pass

if name == " main ":

lbs2kgs().mainloop()

.focus() moves the window
focus: type without clicking

.winfo children() returns a
list of all child widgets.

.pack configure() adjusts
the packing of
the widgets.

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 17 / 50

Widgets and assignments
Did you notice the strange lines
of code in the previous
example? What’s wrong here?

Because these widgets were not
assigned to a name, they should
be garbage collected as soon as
the pack() command is finished.

Tkinter emits Tk calls when
objects are constructed. Tkinter
internally cross-links widget
objects into a long-lived tree
used to build the display. As
such the widgets are retained,
even if not in the code itself.

lbs2kgs.py

from Tkinter import *

class lbs2kgs(Frame):

def init (self, master = None):

Frame. init (self, master)

self.pack()

self.lbs = StringVar()

lbs entry = Entry(master, width = 7,

textvariable = self.lbs)

lbs entry.pack(side = LEFT)

Label(self, text = "lbs").pack(

side = LEFT)

Button(self, text = "Calculate",

command = self.calc).pack(

side = LEFT)

lbs entry.focus()

for c in master.winfo children():

c.pack configure(padx = 5, pady = 5)

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 18 / 50

Widgets and assignments
Did you notice the strange lines
of code in the previous
example? What’s wrong here?

Because these widgets were not
assigned to a name, they should
be garbage collected as soon as
the pack() command is finished.

Tkinter emits Tk calls when
objects are constructed. Tkinter
internally cross-links widget
objects into a long-lived tree
used to build the display. As
such the widgets are retained,
even if not in the code itself.

lbs2kgs.py

from Tkinter import *

class lbs2kgs(Frame):

def init (self, master = None):

Frame. init (self, master)

self.pack()

self.lbs = StringVar()

lbs entry = Entry(master, width = 7,

textvariable = self.lbs)

lbs entry.pack(side = LEFT)

Label(self, text = "lbs").pack(

side = LEFT)

Button(self, text = "Calculate",

command = self.calc).pack(

side = LEFT)

lbs entry.focus()

for c in master.winfo children():

c.pack configure(padx = 5, pady = 5)

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 18 / 50

Widgets and assignments
Did you notice the strange lines
of code in the previous
example? What’s wrong here?

Because these widgets were not
assigned to a name, they should
be garbage collected as soon as
the pack() command is finished.

Tkinter emits Tk calls when
objects are constructed. Tkinter
internally cross-links widget
objects into a long-lived tree
used to build the display. As
such the widgets are retained,
even if not in the code itself.

lbs2kgs.py

from Tkinter import *

class lbs2kgs(Frame):

def init (self, master = None):

Frame. init (self, master)

self.pack()

self.lbs = StringVar()

lbs entry = Entry(master, width = 7,

textvariable = self.lbs)

lbs entry.pack(side = LEFT)

Label(self, text = "lbs").pack(

side = LEFT)

Button(self, text = "Calculate",

command = self.calc).pack(

side = LEFT)

lbs entry.focus()

for c in master.winfo children():

c.pack configure(padx = 5, pady = 5)

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 18 / 50

Using images with Tkinter

There are several packages available for using images in Tkinter :

The PhotoImage class can read GIF and PGM/PPM images, as well
as base64-encoded GIF files from strings.

The Python Imaging Library (PIL) contains classes that can handle
over 30 file formats. This package is no longer being maintained, and
has been succeeded by the Pillow package.

Important: you must keep a reference to your PhotoImage object (of
either the PhotoImage of PIL class). This is in direct contrast to
what was shown on the last slide.

If you do not keep a reference the object will be garbage collected
even if the widget is still operating!

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 19 / 50

Using images within widgets
To embed an image in a widget,
there are several steps:

First open the image file in
question.

Then convert it to a Tkinter
-compatible image object.

Then embed it into a widget.

Again: you must keep a
reference to your PhotoImage
object, otherwise the object
will be garbage collected.

MyImage.py

from Tkinter import Label, Frame

from PIL import Image, ImageTk

class MyImage(Frame):

def init (self, master = None):

Frame. init (self, master)

self.pack()

img = Image.open("tatras.jpg")

pic = ImageTk.PhotoImage(img)

label = Label(self, image = pic)

Keep a reference!

(or don’t and see what happens)

label.image = pic

label.pack()

if name == " main ":

MyImage().mainloop()

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 20 / 50

Arranging your widgets

There are three Geometry Managers in Tkinter for arranging widgets:
’grid’, ’pack’ and ’place’. We’ve already used the latter two. Do not try to
mix grid and pack in the same window (’container’).

pack
I Lays widgets out along the sides of a box.
I Works best when everything is in one row or one column.
I Can be tricky to make more-complicated layouts until you understand

the packing algorithm, which we won’t cover here. It’s best not to try.

grid
I Lays out widgets in a grid (along row and column boundaries)
I Good for creating tables and other structured types of layouts.

place
I Can place a widget at an absolute position, a given x and y
I Can place a widget relatively, such as at the edge of another widget.

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 21 / 50

Grid
The grid Geometry Manager
puts widgets in a 2-D table.
The ’container’ widget is split
into rows and columns, and
each cell in the table can hold
a widget.

The column defaults to 0 if not
specified. The row defaults to
the first unused row in the grid.

MyGrid.py

from Tkinter import Label, Entry,

Checkbutton, Frame

class MyGrid(Frame):

def init (self, master = None):

Frame. init (self, master)

self.pack()

Label(self, text = "First").grid()

Label(self, text = "Second").grid()

Entry(self).grid(row = 0, column = 1)

Entry(self).grid(row = 1, column = 1)

Checkbutton(self, text = "More?").grid(

columnspan = 2)

if name == " main ":

MyGrid().mainloop()

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 22 / 50

Grid keywords

Grid takes a number of useful keywords:

column/row: the column or row into which the widget will be placed.
I If no column is specified, column = 0 is used.
I If no row is specified, the next unused row is used.
I If you put two widgets in the same cell, both will be visible, with

potentially odd results.

columnspan/rowspan, number of columns/rows to span, to the
right/down.

sticky, defines how to expand the widget if the cell is larger than the
widget.

I Can be any combination of S, N, E, W, NE, NW, SW, SE.
I Default is to be centred.

padx/pady, optional horizontal/vertical padding to place around the
widget, within the cell.

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 23 / 50

Pack, vertical example
The pack Geometry Manager
lays widgets on the side of a
box, in this example on the
top side. Pack can allow the
widget to change size if the
window is resized.

Using ’fill = X’ will cause the
widget to fill in the horizontal
direction if the window is
resized.

MyPack1.py

from Tkinter import Label, X, Frame, BOTH

class MyPack1(Frame):

def init (self, master = None):

Frame. init (self, master)

self.pack(expand = True, fill = BOTH)

self.master.minsize(100, 70)

Label(self, text = "Red", bg = "red",

fg = "white").pack()

Label(self, text = "Green",

bg = "green").pack(fill = X)

Label(self, text = "Blue", bg = "blue",

fg = "white").pack()

if name == " main ":

MyPack1().mainloop()

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 24 / 50

Pack, horizontal example
Use the ’side’ argument to
indicate which side of the box
pack should pack against.

Resizing the window will not
cause the widgets to grow in
this case, the way that ’fill’
does, though they will stay
centered on the left side.

MyPack2.py

from Tkinter import Label, Frame,

BOTH, LEFT

class MyPack2(Frame):

def init (self, master = None):

Frame. init (self, master)

self.pack(expand = True, fill = BOTH)

self.master.minsize(130, 100)

Label(self, text = "Red", bg = "red",

fg = "white").pack(side = LEFT)

Label(self, text = "Green",

bg = "green").pack(side = LEFT)

Label(self, text = "Blue", bg = "blue",

fg = "white").pack(side = LEFT)

if name == " main ":

MyPack2().mainloop()

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 25 / 50

Pack keywords

Pack takes several useful keywords:

side, which side to pack against. Options are LEFT, TOP (default),
RIGHT, BOTTOM. You can mix them within the same parent
widget, but you’ll likely get unexpected results.

fill, specifies whether the widget should occupy all the space provided
to it by the parent widget. Options are NONE (default), X
(horizontal fill), Y (vertical fill), or BOTH.

expand, specifies whether the widget should be expanded to fill extra
space inside the parent widget. Options are False (default) and True.

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 26 / 50

Place
The place Geometry
Manager is the simplest of
the three to use. It places
the widget either in absolute
or relative terms. However,
it is a pain to use for general
placement of widgets,
though can be useful in
special cases.

MyPlace.py

from Tkinter import Label, NW, E, CENTER,

Frame, BOTH

class MyPlace(Frame):

def init (self, master = None, **options):

Frame. init (self, master, **options)

self.pack(expand = True, fill = BOTH)

self.config(width = 100, height = 100)

Label(self, text = "Red", bg = "red",

fg = "white").place(anchor = NW,

relx = 0.4, y = 10)

Label(self, text = "Green",

bg = "green").place(anchor = E,

relx = 0.2, rely = 0.8)

Label(self, text = "Blue", bg = "blue",

fg = "white").place(anchor = CENTER,

x = 80, rely = 0.4)

if name == " main ": MyPlace().mainloop()

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 27 / 50

Place keywords

Place takes a number of useful keywords:

relx/rely: between 0 and 1, the position of the widget, in the x/y
direction, relative to the parent window in which its embedded.

x/y: in pixels, the absolute position of the widget, in the window in
which the widget is embedded.

If both relx and x are specified then the relative position is calculated
first, and the absolute position is added after.

anchor: the point on the widget that you are actually positioning.
Options are the eight points of the compass (E, S, NW, ...) and
CENTER.

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 28 / 50

Centering your widget

The default location of
your widget depends on
the Window Manager.
Generally it’s in the
upper-left corner.

Use
winfo screenwidth()
to get the window
width. Similarly for
height.

The geometry
command is used to
set the location of
the window’s
upper-left corner.

MyCentre.py

from Tkinter import Frame

class MyCentre(Frame):

def init (self, master = None):

Frame. init (self, master)

self.pack()

Width and height of the window.

w = 200; h = 50

Upper-left corner of the window.

x = (self.master.winfo screenwidth() - w) / 2

y = (self.master.winfo screenheight() - h) / 2

Set the height and location.

master.geometry("%dx%d+%d+%d" % (w, h, x, y))

if name == " main ": MyCentre().mainloop()

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 29 / 50

Bindings
Any user action (keyboard or
mouse), is called an ’event’.
Events can be captured by the
application, and specific actions
taken. This is accomplished using
the ’bind’ function.

Event actions can be bound to any
widget, not just the main window.

MyBindings.py

from Tkinter import Frame

from tkMessageBox import showerror,

askyesno

class MyBindings(Frame):

def init (self, master = None):

Frame. init (self, master)

self.pack()

MyBindings.py, continued

self.master.minsize(100, 100)

self.master.bind("a",

self.a callback)

self.master.bind("<Button-1>",

self.b callback)

Called when the ’a’ is pressed.

def a callback(self, event):

if not askyesno("A query",

"Did you press the ’a’ button?"):

showerror("I am aghast!", "Liar!")

def b callback(self, event):

print "clicked", event.x, event.y

if name == " main ":

MyBindings().mainloop()

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 30 / 50

Event formats

A partial list of possible bindings:

”<Button-1>”: a mouse button is pressed over the widget. Button 2 is
the middle, 3 is the right. ”<Button-1>” and ”<1>” are synonyms.

”<Enter>”/”<Leave>”: the mouse pointer entered/left the widget.

”<Return>”: the user pressed the Enter key.

”<key>”: the user pressed the any key.

”<Control-p>”: the user pressed Ctrl-p.

The event object has a number of standard attributes:

x, y: current mouse position, in pixels.

char: the character code, as a string.

type: the event type.

and others...

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 31 / 50

Bindings exercise

Create an application which

Has a label at the top of the frame which says ”Are you an idiot?”

Has a button below the label which contains the text ”No”.

Moves to a random location on the screen every time you try to press
the ”No” button.

Don’t bother making this one a class, since that doesn’t really make
sense.

Hints:

Use the ”Enter” binding to bind the mouse pointer.

When the mouse enters the ”No” button, move the window (use the
random.random() function to get a random number).

master.winfo screenwidth() and height might be useful.

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 32 / 50

Bindings exercise

idiot.py

from Tkinter import Tk, Label, Button

from random import random

def moveme(event):

x = xsize * random()

y = ysize * random()

Move the window.

master.geometry("%dx%d+%d+%d" %

(w, h, x, y))

master = Tk()

xsize = master.winfo screenwidth()

ysize = master.winfo screenheight()

w = 200

h = 50

idiot.py, continued

master.minsize(w, h)

master.title("Let me check")

Label(master,

text = "Are you an idiot?").pack()

b = Button(master, text = "No!")

b.pack()

b.bind("<Enter>", moveme)

master.mainloop()

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 33 / 50

Pop-up windows

Pop-up windows are fun. Every app
needs a pop-up window. The
easiest package to use for pop-up
windows is tkMessageBox.

Like the main window, the pop-up
windows have a default look which
depends upon the system running
the code.

MyPopup.py

from Tkinter import Button, Frame

from tkMessageBox import showinfo

class MyPopup(Frame):

def init (self, master = None):

Frame. init (self, master)

self.pack()

Button(self, text = "Pop-up!",

command = self.popup).pack()

def popup(self):

showinfo("My Pop-Up", "Hello")

if name == " main ":

MyPopup().mainloop()

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 34 / 50

Many pre-made pop-up windows are
available

If you’re going to use pop-up windows, the defaults that come with
tkMessageBox should be sufficient:

single-button pop-ups:
I “Ok”: showinfo, showwarning, showerror

double-button pop-ups:
I “Yes-No”: askquestion, returns the strings “yes”, “no”
I “Yes-No”: askyesno, returns True/False
I “Ok-Cancel”: askokcancel, returns True/False
I “Retry-Cancel”: askretrycancel, returns True/False

These functions all have the same syntax:
tkMessageBox.function(title, message [, options]).

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 35 / 50

Toplevel windows
Sometimes the pre-made
pop-up windows don’t meet
your needs, since these are
canned pop-ups. For these cases
one uses Toplevel windows.

Toplevel windows behave like
main windows, but are actually
children of whichever window
spawned them.

MyToplevel.py

from Tkinter import Button, Frame,

Toplevel

class MyToplevel(Frame):

def init (self, master = None):

Frame. init (self, master)

self.pack()

Button(self, text = "A new window!",

command = self.new window).pack()

A new functional window.

def new window(self):

top = Toplevel(master = self)

Button(top, text = "Quit",

command = top.quit).pack()

if name == " main ":

MyToplevel().mainloop()

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 36 / 50

File manager windows
MyFile.py

from Tkinter import Button, Frame

from tkFileDialog import

askopenfilename

class MyFile(Frame):

def init (self, master = None):

Frame. init (self, master)

self.pack()

Button(self, text = "Get a file!",

command = self.getfile).pack()

def getfile(self):

filename = askopenfilename(

parent = self,

title = "Please select a file")

if (len(filename) > 0):

print "You chose %s" % filename

MyFile.py, continued

if name == " main ":

MyFile().mainloop()

Pre-made file manager dialog
boxes are available through the
tkFileDialog module.

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 37 / 50

Quitting cleanly

We want our program to close
cleanly. But we must be careful
how we do so:

All Tkinter widgets come with
the ’quit’ function built in.
This will close the
entire Tkinter program, which
may not be what you want.

Alternatively, you can use the
’destroy’ function, which will
only close the particular widget
which you are referencing.

The lambda command needs to be
used in this case because the
callback command which is being
referenced is self-referential.

badquit.py

from Tkinter import Tk, Button

behaviour 1

t1 = Tk()

t1.b = Button(t1, text = "push me",

command = lambda:t1.b.destroy())

t1.b.pack()

t1.mainloop()

behaviour 2

t2 = Tk()

t2.b = Button(t2, text = "me too!",

command = lambda:t2.b.quit())

t2.b.pack()

t2.mainloop()

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 38 / 50

Quitting cleanly

We want our program to close
cleanly. But we must be careful
how we do so:

All Tkinter widgets come with
the ’quit’ function built in.
This will close the
entire Tkinter program, which
may not be what you want.

Alternatively, you can use the
’destroy’ function, which will
only close the particular widget
which you are referencing.

The lambda command needs to be
used in this case because the
callback command which is being
referenced is self-referential.

badquit.py

from Tkinter import Tk, Button

behaviour 1

t1 = Tk()

t1.b = Button(t1, text = "push me",

command = lambda:t1.b.destroy())

t1.b.pack()

t1.mainloop()

behaviour 2

t2 = Tk()

t2.b = Button(t2, text = "me too!",

command = lambda:t2.b.quit())

t2.b.pack()

t2.mainloop()

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 38 / 50

A ’Quit’ button class
Let’s create a class that we can use
in future widgets.

MyQuitter.py

from Tkinter import Button, LEFT, YES,

BOTH, Frame

from tkMessageBox import askokcancel

Extends the Frame class.

class MyQuitter(Frame):

def init (self, master = None):

Frame. init (self, master)

self.pack()

b = Button(self, text = "Quit",

command = self.myquit)

b.pack(side = LEFT, expand = YES,

fill = BOTH)

MyQuitter.py, continued

def myquit(self):

if askokcancel("Quit",

"Do you really wish to quit?"):

Frame.quit(self)

The askokcancel function
returns True if ’OK’ is pressed.

The ’LEFT’ argument indicates
the position of the button.

The second ’pack’ is invoked
after the Button is created,
and so can go in
the same line.

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 39 / 50

Capturing destroy events

Tkinter lets you manipulate
’protocol handlers’

These handle the interaction
between the application and
the window manager

The most-used way to do this
is re-assigning the
WM DELETE WINDOW
protocol (invoked by pressing
the ’X’ in the upper-right
corner).

MyCapture.py

from Tkinter import Frame

from MyQuitter import MyQuitter

class MyCapture(Frame):

def init (self, master = None):

Frame. init (self, master)

self.pack()

q = MyQuitter(self)

q.pack()

self.master.protocol(

"WM DELETE WINDOW", q.myquit)

if name == " main ":

MyCapture().mainloop()

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 40 / 50

Notes on code re-usability

Modular programming is always to be encouraged, and GUI programming
is no exception.

Throughout this class we have crafted our examples such that they
are classes that can be embedded in other widgets.

Custom GUI classes can be written as extensions of existing classes,
the most common choice being Frame.

Using widgets that are extensions of existing classes allows uniform
and consistent modification of the look-and-feel of your widgets.

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 41 / 50

Code re-usability example

Because we set up our previous
code examples as classes, we can
just drop them into other widgets.

ABunchOfWidgets.py

from Tkinter import Frame, RAISED

from lbs2kgs import lbs2kgs

from MyPopup import MyPopup

from MyPlace import MyPlace

class ABunchOfWidgets(Frame):

def init (self, master = None):

Frame. init (self, master)

self.pack()

lbs2kgs(self).pack()

MyPopup(self).pack()

MyPlace(self, borderwidth = 2,

relief = RAISED).pack()

if name == " main ":

ABunchOfWidgets().mainloop()

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 42 / 50

Drop-down menus
MyMenus.py

from Tkinter import Menu, Frame

class MyMenus(Frame):

def init (self, master = None):

Frame. init (self, master)

self.pack()

self.master.minsize(100,100)

Create a menu instance,

the menu does not need packing.

self.mbar = Menu(self)

Attach to the root window.

self.master.config(menu =

self.mbar)

Create a new menu instance...

self.filemenu = Menu(self.mbar,

tearoff = 0)

MyMenus.py, continued

...and stick into the menubar.

self.mbar.add cascade(label =

"File", menu = self.filemenu)

Add entries to filemenu.

self.filemenu.add command(label =

"New", command = self.new call)

self.filemenu.add command(label =

"Open", command = self.o call)

The callback functions.

def new call(self): print "New call"

def o call(self): print "o call"

if name == " main ":

MyMenus().mainloop()

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 43 / 50

Threads and GUIs

In general, we recommend against using Python’s threading capabilities:

Python’s Global Interpreter Lock prevents more than one thread from
running at a given time.

Consequently there is no increase in computational performance.

However, these concerns do not apply when dealing with GUIs, since
computational performance is not usually at issue. There are some details
worth noting:

The main event loop runs in a single thread.

If a callback function is invoked, it runs in the same thread.

If the function takes a long time to complete, you will notice:
I the windows will not update (resize, redraw, minimize)
I the windows will not respond to new events.

Threads can be useful to fix this problem.

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 44 / 50

Illustrating the problem

MySummer.py

from Tkinter import Tk, Button, Label

def button press():

total = 0

for i in xrange(100000000):

total += i

label.config(text = str(total))

master = Tk()

Button(master, text = "Add it up",

command = button press).pack()

label = Label(master)

label.pack()

master.mainloop()

Here we illustrate the problem
that GUIs can have. Perform the
following steps:

Run the GUI.

Press the button.

While the calculation is
being performed, resize the
window.

What happens?

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 45 / 50

Fixing the problem, using threads
MySummer.threaded.py

from Tkinter import Tk, Button, Label

import threading

def button press():

Create a function for the thread.

def callback():

total = 0

for i in xrange(100000000):

total += i

label.config(text = str(total))

Launch the thread.

threading.Thread(

target = callback).start()

Because the control of the
calculation is in a separate thread,
control returns to the event loop.

MySummer.threaded.py, continued

master = Tk()

Button(master, text = "Add it up",

command = button press).pack()

label = Label(master)

label.pack()

master.mainloop()

If you get an ’infinite loop’ error
then your Tcl was not compiled
with threading support. If so, try
using the ’mtTkinter’
package.

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 46 / 50

Making your GUIs launchable

By default if you click on your GUI application, it will bring up a Python
console as well as the GUI you’re after. It would be nice if that weren’t
necessary.

To do this, the code must be converted into a stand-alone executable.
This requires a package that will bundle all the needed code and libraries
into a single file. There are several such packages available:

py2exe

pyinstaller

cx freeze

We will use py2exe, as it is the most commonly used, at least for Windows.

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 47 / 50

Using py2exe

To use py2exe to create an executable, perform the following steps:

1 Create a setup.py file in the directory which contains the code.

from distutils.core import setup

import py2exe

setup(windows = [’firstTkinter.py’])

2 Open the ’cmd’ terminal. Change directory to the location of the
code.

3 Run the command ’python.exe setup.py py2exe’.

C:\Users\Erik>

C:\Users\Erik> cd Desktop\tkinter code

C:\Users\Erik\tkinter code> C:\Python27\python.exe setup.py py2exe

The executable is in the ’dist’ directory.

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 48 / 50

Using py2exe, continued

Some notes about the py2exe results:

Two directories were built, ’build’ and ’dist’. The build directory may
be deleted, it is no longer needed.

Like most Windows applications, the executable must stay in the dist
directory to run correctly. If you want an icon you can click on your
desktop, create a shortcut.

In theory you should be able to zip up the dist directory and distribute
it to your friends. Once unzipped the executable should work out of
box. This assumes, of course, that the Windows dll files that are
needed are on the system in question.

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 49 / 50

Enough to get started

Using the material here, you should have enough to get started. More
information can be found on the web. A few good websites are:

http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html

http://www.effbot.org/tkinterbook/tkinter-index.htm

http://cs.mcgill.ca/ hv/classes/MS/TkinterPres

http://www.python-course.eu/python tkinter.php

Other event-driven programming packages:

Twisted

asyncio

asyncore (for handling sockets)

asynchat (socket command/response handler)

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 11 December 2014 50 / 50

http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html
http://www.effbot.org/tkinterbook/tkinter-index.htm
http://cs.mcgill.ca/~hv/classes/MS/TkinterPres
http://www.python-course.eu/python_tkinter.php

	Tkinter
	Our first Tkinter program
	Our second Tkinter program

	Tkinter features
	Tkinter widgets
	Tkinter control variables
	Exercise 1
	Using images

	Geometry managers
	Grid
	Pack
	Place

	Bindings
	Exercise 2

	Pop-up windows
	Pre-made Pop-ups
	Toplevel windows
	File manager windows

	Other Tkinter goodies
	Quitting cleanly
	Protocol handlers
	Drop-down menus
	Threads

