
Part II

Review of C

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 11 / 124

C review: Basics

C was designed for (unix) system programming.

C has a very small base.

Most functionality is in (standard) libraries.

Most basic C program:

int main() {
return 0;

}

main is first called function: must return an int .

C expresses a lot with punctuation.

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 12 / 124

C review: Language elements

Variables

Define a variable with
type name;

where type may be a

built-in type:

floating point type:
float, double, long double

integer type:
short, [unsigned] int, [unsigned] long int

character or string of characters:
char, char*

structure
enumerated type
union
array
pointer

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 13 / 124

C review: Language elements

Pointers

type *name;

Assignment:

int a,b;
int *ptr = &a;
a = 10;
b = *ptr;

Automatic arrays

type name[number];

Gotcha: limitations on automatic arrays

• There’s an implementation-dependent limit on number.

• C standard only says at least 65535 bytes.
Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 14 / 124

C review: Language elements

Dynamically allocated arrays

Defined as a pointer to memory:

type *name;

Allocated by a function call:

name = (type*)malloc(sizeof(type)*number);

Deallocated by a function call:

free(name);

System function call can access all available memory.

Can check if allocation failed (name == 0).

Can control when memory is gived back.

Can even resize memory.

Even better in C++
Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 15 / 124

C review: Language elements

Structures: collection of other variables.

struct name {
type1 name1;
type2 name2;
...

};

Example

struct Info {
char name[100];
unsigned int age;

};
struct Info myinfo;
myinfo.age = 38;
strcpy(myinfo.name, "Ramses");

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 16 / 124

C review: Language elements

Enums

Used to define integer constants, typically increasing.

enum name {
enumerator[=value], ...

};

By default, successive enumerators get successive integer values.

In C, interconvertible with an int.
Useful to reduce number of #define’s.

Unions

Put one variable on top of another; rarely used.

union name {
type1 name1;
type2 name2;
...

};

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 17 / 124

C review: Language elements

Typedefs

Used to give a name to an existing data type, or a compound data type.

typedef existingtype newtype;

Similar to existingtype name; but defines a type instead of a variable.

Example (a controversial way to get rid of the struct keyword)

typedef struct Info Info;

Then you can declare a struct Info simply by

Info myinfo;

This works become the name Info in “struct Info” does not live in the
namespace of typenames.

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 18 / 124

C review: Language elements

Functions

Function declaration (prototype)

returntype name(argument-spec);

Function definition

returntype name(argument-spec) {
statements

}

Function call

var = name(arguments);
f(name(arguments);

Procedures

Procedures are just functions with return type void and are called without
assignment.

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 19 / 124

C review: Language elements

Conditionals

if (condition) {
statements

} else if (other condition) {
statements

} else {
statements

}

switch (integer-expression) {
case integer:

statements
break;

...
default:

statements;
break;

}

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 20 / 124

C review: Language elements

Loops

while (condition) {
statements

}

for (initialization;condition;increment) {
statements

}

You can use break to exit the loop.

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 21 / 124

C review: Operators

C has many operators

() [] -> .

! ++ -- (type) - * &

* / %

+ -

<< >> < <= > >=

== !=

& ^ | && || ?:

= += -= *= /= %= |= &=

,

Gotcha: Bad precendence

Relying on operator precedence is error-prone and makes code harder to
read and thus maintain (except for +, -, *, / and maybe %).

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 22 / 124

C review: Libraries

Usage

Put an include line in the source code, e.g.

#include <stdio.h>
#include "mpi.h"

Include the libraries at link time.
(not needed for standard libraries)

Common standard libraries

stdio.h: input/output, e.g.,printf and fwrite

stdlib.h: memory, e.g. malloc

string.h: strings, memory copies, e.g. strcpy

math.h: special function, e.g. sqrt

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 23 / 124

Compilation:
Workflow

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 24 / 124

Compilation workflow

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 25 / 124

Compiling

Scientific computing = performance: Compile with optimization!

Compiling C from the command-line

If the source is in main.c, type

$ gcc main.c -O3 -o main

or

$ icc main.c -O3 -o main

Compiling C++ from the command-line

If the source is in main.cpp, type

$ g++ main.cpp -O3 -o main

or

$ icpc main.cpp -O3 -o main

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 26 / 124

Compilation:
Using make

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 27 / 124

Compiling with make

Single source file

This file is called makefile
CC = gcc
CFLAGS = -O3
main: main.c

$(CC) $(CFLAGS) main.c -o main

Multiple source file application

CC = gcc
CFLAGS = -O3
main: main.o mylib.o

$(CC) main.o mylib.o -o main
main.o: main.c mylib.h
mylib.o: mylib.h mylib.c
clean:

\rm main.o mylib.o

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 28 / 124

Compiling with make

When typing make at command line:

Checks if main.c or mylib.c or mylib.h were changed.

If so, invokes corresponding rules for object files.

Only compiles changed code files: faster recompilation.

Gotcha:

Make can only detect changes in the dependencies.
It does not detect changes in compiler, or in system.
But .o files are system/compiler dependent, so they should be recompiled.
So always specify a “clean” rule in the makefile, so that moving from one
system or compiler to another, you can do a fresh rebuild:

$ make clean
$ make

Ramses van Zon, Scott Northrup (SciNet) Intro Scientific Programming in C++ March 15, 2011 29 / 124

