
MPI 3.0

SciNet
www.scinet.utoronto.ca
University of Toronto

Toronto, Canada

October 22, 2013



Outline

1 MPI History

2 MPI Implementations

3 MPI 3.0 New Features



Message Passing Interface (MPI)

What is it?

An open standard library interface for message passing,
ratified by the MPI Forum

Version: 1.0 (1994), 1.1 (1995), 1.2 (1997), 1.3 (2008)

Version: 2.0 (1997), 2.1 (2008), 2.2 (2009)

Version: 3.0 (2012)



Message Passing Interface (MPI)

What is it?

An open standard library interface for message passing,
ratified by the MPI Forum

Version: 1.0 (1994), 1.1 (1995), 1.2 (1997), 1.3 (2008)

Version: 2.0 (1997), 2.1 (2008), 2.2 (2009)

Version: 3.0 (2012)



MPI-2

Features added in MPI-2

Dynamic Processes - extensions that remove the static process
model of MPI. Provides routines to create new processes after
job startup.

One-Sided Communications - provides routines for one
directional communications. Include shared memory
operations (put/get) and remote accumulate operations.

Extended Collective Operations - allows for the application of
collective operations to inter-communicators.

External Interfaces - defines routines that allow developers to
layer on top of MPI, such as for debuggers and profilers.

Additional Language Bindings - describes C++ bindings and
discusses Fortran-90 issues.

Parallel I/O - describes MPI support for parallel I/O.



MPI-3

New for MPI-3.0

Non-blocking Collectives - Permits tasks in a collective to
perform operations without blocking, possibly offering
performance improvements.

Neighborhood Collectives - Extends the distributed graph and
Cartesian process topologies with additional communication
power.

New One-Sided Functions and Semantics - Better handle
different memory models.

New Communicator Creation Functions - New group-collective
communicator creation.



MPI-3

New for MPI-3 - continued

Fault Tolerance/Resiliency - Attempt at user-level failure
notification.

MPI Tool interface - Exposes certain internal variables,
counters (primarily for performance tools).

Matched Probe - Fixes a bug in MPI-2 where one could not
probe for messages when using MPI and threads.

Language Bindings - Hello Fortran 2008, goodbye C++.

Large counts - Added MPI COUNT.



MPI Implementations

MPI Version Support

MPI-3

MPICH 3.x (3.1b1) (no longer MPICH1 & MPICH2)
MVAPICH 2.0a (MPICH 3.0.4)

MPI-2.2 + some MPI-3

OpenMPI 1.7.2, 1.7.3 and 1.9.x (svn)
MPICH2 1.5 (BGQ)

MPI-2.2

IntelMPI 4.1

SciNet GPC

module load intel/13.1.1 use.experimental mvapich2



Non-blocking Collectives

Non-blocking Communication

Many applications benefit from overlapping communication
and computation using non-blocking MPI point-to-point
operations.

i. e. MPI ISEND/MPI IRECV with MPI WAIT/MPI TEST

Non-blocking Collectives

Non-blocking versions of all collective operations

MPI IBCAST, MPI IBARRIER, MPI IGATHER,
MPI IALLTOALL, etc.

Can have multiple outstanding collectives on the same
communicator.



Non-blocking Collectives

Non-blocking Communication

Many applications benefit from overlapping communication
and computation using non-blocking MPI point-to-point
operations.

i. e. MPI ISEND/MPI IRECV with MPI WAIT/MPI TEST

Non-blocking Collectives

Non-blocking versions of all collective operations

MPI IBCAST, MPI IBARRIER, MPI IGATHER,
MPI IALLTOALL, etc.

Can have multiple outstanding collectives on the same
communicator.



Non-blocking Collectives

MPI IBARRIER

Sounds counter-intuitive, but can be useful.

Overlap barrier latency, and do other work while waiting.
Use the split semantics to processes notify non-collectively but
synchronize collectively.

Semantics:

MPI IBARRIER - calling process enters the barrier, no
synchronization happens
Synchronization may happen asynchronously
MPI TEST/MPI WAIT - synchronization happens if necessary

MPI Ibarrier(comm, request);
...
/* computation, other MPI communications */
...
MPI Wait(request, status);



Non-blocking Collectives

MPI IBARRIER

Sounds counter-intuitive, but can be useful.

Overlap barrier latency, and do other work while waiting.
Use the split semantics to processes notify non-collectively but
synchronize collectively.

Semantics:

MPI IBARRIER - calling process enters the barrier, no
synchronization happens
Synchronization may happen asynchronously
MPI TEST/MPI WAIT - synchronization happens if necessary

MPI Ibarrier(comm, request);
...
/* computation, other MPI communications */
...
MPI Wait(request, status);



Non-blocking Collectives

Examples

Dynamic Sparse Data Exchange (DSDE)

Dynamic: communciation pattern varies across iterations
Sparse: number of neighbors is limited
Data exchange: only senders know neighbors

Parallel 3D FFT

Traditionally implemented with MPI ALLTOALL’s
Subdivide into blocks and use MPI IALLTOALL



Topology & Neighborhood Collectives

MPI Topologies

Specify application/algorithm communication topology via virtual
topology creation functions (since MPI-1.0).

MPI CART CREATE - a k-dimensional Cartesian application
topology

MPI DIST GRAPH CREATE - scalable distributed graph

Neighborhood Collectives (new for MPI-3.0)

Many applications are written (compute, communicate,
compute, ...)

High temporal locality in communication patterns!

Specify the communication pattern statically along a virtual
topology

MPI NEIGHBOR ALLGATHER - same buffer to all
MPI NEIGHBOR ALLTOALL - specialized send buffer

Blocking and non-blocking variants.



Topology & Neighborhood Collectives

MPI Topologies

Specify application/algorithm communication topology via virtual
topology creation functions (since MPI-1.0).

MPI CART CREATE - a k-dimensional Cartesian application
topology

MPI DIST GRAPH CREATE - scalable distributed graph

Neighborhood Collectives (new for MPI-3.0)

Many applications are written (compute, communicate,
compute, ...)

High temporal locality in communication patterns!

Specify the communication pattern statically along a virtual
topology

MPI NEIGHBOR ALLGATHER - same buffer to all
MPI NEIGHBOR ALLTOALL - specialized send buffer

Blocking and non-blocking variants.



One-sided Communication in MPI

One-sided Communication - Remote Memory Access

Allow one process to specify all communication parameters,
both for the sending side and for the receiving side.

Can be advantageous as avoids message matching overhead
and reduce memory overhead.

Separate communication and synchronization.

Allocate/Deallocate memory:
MPI WIN ALLOCATE, MPI WIN FREE
Send/Receive: MPI PUT, MPI GET

See Chapter 11.0 in MPI standard.

Status

Initially implemented in MPI-2.0, good for non-coherent
systems.

Hard to use and slow on coherent systems.



One-sided Communication in MPI

One-sided Communication - Remote Memory Access

Allow one process to specify all communication parameters,
both for the sending side and for the receiving side.

Can be advantageous as avoids message matching overhead
and reduce memory overhead.

Separate communication and synchronization.

Allocate/Deallocate memory:
MPI WIN ALLOCATE, MPI WIN FREE
Send/Receive: MPI PUT, MPI GET

See Chapter 11.0 in MPI standard.

Status

Initially implemented in MPI-2.0, good for non-coherent
systems.

Hard to use and slow on coherent systems.



One-sided Communication in MPI

New Features in MPI-3

Improved one-sided semantics and extended operations.

Dynamic window creation.

Lightweight local and remote synchronization.

Flush operations.

Request-based operations.



Scalable Communicator Creation

Communicator Creation

Creating a communicator in MPI-2 is an all-collective
operation.

Can lead to performance/scaling issues with may small groups
of communictators.

Non-Collective Communicator Creation

Create communicators without involving all processes in the
parent communicator.

Very useful for some applications, dynamic load balancing,
fault tolerance.

Collective only in the members of the new communicator.

No unnecessary global synchronization.

Reduced overhead when creating small communicators.



Scalable Communicator Creation

Communicator Creation

Creating a communicator in MPI-2 is an all-collective
operation.

Can lead to performance/scaling issues with may small groups
of communictators.

Non-Collective Communicator Creation

Create communicators without involving all processes in the
parent communicator.

Very useful for some applications, dynamic load balancing,
fault tolerance.

Collective only in the members of the new communicator.

No unnecessary global synchronization.

Reduced overhead when creating small communicators.



Fault Tolerance

Application involved fault tolerance (not transparent, no
magic)

Focus on user-level failure notification for Algorithm Based
Fault Tolerance (ABFT)
Management through communicators
Requires a robust implementation
Still a work in progress

FT modes

Run-through stabilization (MPI-3.0) - non-failed processes can
continue to use MPI and can determine which ranks have failed
Process recovery (targeted for MPI-3.1) - replace the failed
process in all existing communicators, windows and file handles



MPI Tool Interface

MPI T

Provide hooks for tools on MPI internal information

Query and set internal MPI variables and counters

Query internal state of the MPI library at runtime

Design similar to PAPI counters

Implementation agnostic

Complements the existing PMPI interface

Primarily for MPI performance tools (Scalasca, Vampir, Tau,
etc.)



Matched Probe

MPI-2.2

point-to-point communication is not thread safe!

Message probed in multiple threads but received in only one.
Leads to race conditions.

MPI-3.0

Matched Probes and Receives

Fix returns a message handle from probe.
Receive this message only through the handle.

MPI Message msg;
MPI Mprobe(...,msg, status)
size=get count(status)*size of(datatype)
buffer=malloc(size)
MPI recv(buffer,...,msg,...)



Matched Probe

MPI-2.2

point-to-point communication is not thread safe!

Message probed in multiple threads but received in only one.
Leads to race conditions.

MPI-3.0

Matched Probes and Receives

Fix returns a message handle from probe.
Receive this message only through the handle.

MPI Message msg;
MPI Mprobe(...,msg, status)
size=get count(status)*size of(datatype)
buffer=malloc(size)
MPI recv(buffer,...,msg,...)



Matched Probe

MPI-2.2

point-to-point communication is not thread safe!

Message probed in multiple threads but received in only one.
Leads to race conditions.

MPI-3.0

Matched Probes and Receives

Fix returns a message handle from probe.
Receive this message only through the handle.

MPI Message msg;
MPI Mprobe(...,msg, status)
size=get count(status)*size of(datatype)
buffer=malloc(size)
MPI recv(buffer,...,msg,...)



Misc. MPI 3.0

Language Bindings

New Fortran 2008

Deprecated C++ (use C)

Counts

MPI-2.2 All counts are int / INTEGER

MPI-3.0

New “long” count type
Fortran: INTEGER(KIND=MPI COUNT KIND)
C: typedef < some long type > MPI Count
No new communication routines



Misc. MPI 3.0

Language Bindings

New Fortran 2008

Deprecated C++ (use C)

Counts

MPI-2.2 All counts are int / INTEGER

MPI-3.0

New “long” count type
Fortran: INTEGER(KIND=MPI COUNT KIND)
C: typedef < some long type > MPI Count
No new communication routines



References & Acknowledgments

http://www.mpi-forum.org/

MPI: A Message-Passing Interface Standard V3.0

“New and old Features in MPI-3.0: The Past, the Standard,
and the Future” - Torsten Hoefler

“MPI 3.0 An overview of the proposed features” - Hristo Iliev

“Non-Blocking Collective Operations for MPI-3” - Torsten
Hoefler

“ADVANCED MPI 2.2 AND 3.0 TUTORIAL “ - Torsten
Hoefler

“MPI 3 and Beyond: Why MPI is Successful and What
Challenges it Faces” - William Gropp


	MPI History
	MPI Implementations
	MPI 3.0 New Features

