High Performance Computing (HPC) Introduction

Ontario Summer School on
High Performance Computing

Scott Northrup
SciNet HPC Consortium
Compute Canada

May 7th, 2013

Scilet

@ HPC Overview
@ Parallel Computing
@ Amdahl’s law
HPC Lesson #1
Beating Amdahl's law
HPC Lesson #2
Load balancing
Locality
HPC Lesson #3
© HPC Hardware
@ Distributed Memory
@ Shared Memory
@ Hybrid Architectures
@ HPC Lesson #4
e HPC Programming Models

GNU Parallel
© GNU Paralle Scillet

@ HPC System Software P e iy

AAAAAA

®© 6 6 6 0 o

Acknowledgments

Contributing Material

@ SciNet Parallel Scientific Computing Course
- L. J. Dursi & R. V. Zon, SciNet

o Parallel Computing Models - D. McCaughan, SHARCNET

@ High Performance Computing - D. McCaughan, SHARCNET
@ HPC Architecture Overview - H. Merez, SHARCNET

@ Intro to HPC - T. Whitehead, SHARCNET

Scilet

Scientific High Performance Computing

What is it?
HPC is essentially leveraging larger and/or multiple computers to
solve computations in parallel.

Scilet

Scientific High Performance Computing

What is it?
HPC is essentially leveraging larger and/or multiple computers to
solve computations in parallel.

What does it involve?
@ hardware - pipelining, instruction sets, multi-processors,
inter-connects
@ algorithms - concurrency, efficiency, communications
@ software - parallel approaches, compilers, optimization,
libraries J

cSél?\let

CANADA

Scientific High Performance Computing

What is it?
HPC is essentially leveraging larger and/or multiple computers to
solve computations in parallel.

What does it involve?
@ hardware - pipelining, instruction sets, multi-processors,
inter-connects
@ algorithms - concurrency, efficiency, communications
@ software - parallel approaches, compilers, optimization,
libraries J

When do | need HPC?
@ My problem takes to long — more/faster computation

@ My problem is to big — more memory

let

J ecalcul
“ADA

@ My data is to big — more storage

Scientific High Performance Computing

Why is it necessary?
@ Modern experiments and observations yield vastly more data
to be processed than in the past.
@ As more computing resources become available, the bar for
cutting edge simulations is raised.
@ Science that could not have been done before becomes
tractable. |

cSél?\let

AAAAAA

Scientific High Performance Computing

Why is it necessary?
@ Modern experiments and observations yield vastly more data
to be processed than in the past.
@ As more computing resources become available, the bar for
cutting edge simulations is raised.
@ Science that could not have been done before becomes
tractable.

However

@ Advances in clock speeds, bigger and faster memory and
storage have been lagging as compared to e.g. 10 years ago.
Can no longer “just wait a year” and get a better computer.

@ So modern HPC means more hardware, not faster hardware.

@ Thus parallel programming/computing is required.

Zlet

Analogy

HR Dilemma

@ Problem: job needs to get done faster

Scilet

Analogy

HR Dilemma

@ Problem: job needs to get done faster

e can't hire substantially faster people
@ can hire more people

cScfl?\let

AAAAAA

Analogy

HR Dilemma

@ Problem: job needs to get done faster
e can't hire substantially faster people
@ can hire more people

@ Solution:

o split work up between people (divide and conquer)
e requires rethinking the work flow process

e requires administration overhead

e eventually administration larger than actual work

Scilet

’ compute ca\cu\

Wait, what about Moore's Law?

CPU Transistor Counts 1971-2008 & Moore’s Law

2,000,000,000 —
1,000,000,000 —

100,000,000 —;

10,000,000 —

1,000,000 —{

Transistor count

100,000 —{

10,000 —

2,300 —

BT e O Quad Core Itanium Tukwila

ec
"OWE"‘K' S
Htanium 2 with SMB cache @ /l
Gore 2auaa”,#10
anmze - BEPZ0
,A:oz
e ‘ eBaton gaom
pa Lot
Curve shows ‘Moore’s Law’: .
transistor count doubling o
every two years o
~®Pentium
e’
386 ¢~
20 o0
waoss
5080
4004 ¢ 4 008
1971 1980 1990 2000 2008

Date of introduction

(source: Transistor Count and Moore's Law - 2008.svg, by Wgsimon, wikipedia)

Sciet

) computeoca\cu\

W
CPU Transistor Counts 1971 -2008 & Moore’s Law

Moore's law

. describes a long-term trend in the history of
computing hardware. The number of transistors that can
be placed inexpensively on an integrated circuit doubles
approximately every two years.

(source: Moore's law, wikipedia)

[RVVRVIVY)
#8088

10,000
% e

2,300 — sos g8

1971 1980 1990 2000 2008

Date of introduction

Scilet

(source: Transistor Count and Moore's Law - 2008.svg, by Wgsimon, wikipedia) ’ compute+ Ca\cu\

, W
CPU Transistor Counts 1971 -2008 & Moore’s Law

Moore's law

. describes a long-term trend in the history of
computing hardware. The number of transistors that can
be placed inexpensively on an integrated circuit doubles
approximately every two years.

(source: Moore's law, wikipedia)

But. ..

@ Moores Law didn’t promise us clock speed.

@ More transistors but getting hard to push clockspeed up.

Power density is limiting factor.
@ So more cores at fixed clock speed.

—7—calcul
“ADA

Parallel Computing

Thinking Parallel
The general idea is if one processor is good, many processors will
be better
o Parallel programming is not generally trivial
@ Tools for automated parallelism are either highly specialized or
absent

@ serial algorithms/mathematics don't always work well in
parallel without modification

cSél?\let

AAAAAA

Parallel Computing

Thinking Parallel
The general idea is if one processor is good, many processors will
be better
o Parallel programming is not generally trivial
@ Tools for automated parallelism are either highly specialized or
absent

@ serial algorithms/mathematics don't always work well in
parallel without modification

Parallel Programming
@ its Necessary (serial performance has peaked)
@ its Everywhere (cellphones, tablets, laptops, etc)

e its Only getting worse (Sequoia has 1.5 Million cores)

v

Wlldet

Concurrency

@ Must have something to do
for all these cores.

e Find parts of the program
that can done
independently, and
therefore concurrently.

@ There must be many such
parts.

@ There order of execution
should not matter either.

(source: http://flickr.com/photos/splorp)

@ Data dependencies limit
concurrency.

cSc:I?\let

AAAAAA

Parameter study: best case scenario

@ Aim is to get results
from a model as a
parameter varies. p=1 n=2 n=3 nw=4

@ Can run the serial
program on each
processor at the same
time.

o Get “more” done.

Scilet

Throughput

@ How many tasks can you do per time unit?
throughput = H = —

@ Maximizing H means that you can do as much as possible.

@ Independent tasks: using P processorsincreases H by a

factor P
T = NT. T = NT,/P Sciv
H = 1/T1 H = P/Tl () comeits‘xg\!:u\

Scaling — Throughput

@ How a problem’s throughput scales as processor number
increases (“strong scaling”).

@ In this case, linear scaling:
H x P

@ This is Perfect scaling.

Tasks per unit time

O P N W A~ 1O N ©

1 2 3 4 5 6 7 8 Sﬁ?\let

AAAAAA

@ How a problem’s timing scales as processor number increases.

@ Measured by the time to do one unit. In this case, inverse
linear scaling:
Tx1/P

@ Again this is the ideal case, or “embarrassingly parallel”

lK
0.8

=
[7]
s
€ 06
5 ‘\
g o4
(0]
£
F 02
0

P Met

) compute ca\cu\

Scaling — Time

@ How a problem’s timing scales as processor number increases.

@ Measured by the time to do one unit. In this case, inverse
linear scaling:
Tx1/P

@ Again this is the ideal case, or “embarrassingly parallel”.

1
R
0
8
£
S
o}
o
Q
£
—
0.1 .
1 10

P Met

) compute ca\cu\

Scaling — Speedup

@ How much faster the problem is solved as processor number

increases.

@ Measured by the serial time divided by the parallel time

@ For embarrassingly parallel applications: Linear speed up.

Speed-up

Tserial

5= 7P

O P N W H» O O N

cScfl?\let

AAAAAA

Non-ideal cases

) Say we want to C Partition data)

integrate some
tabulated

experimental data.

@ Integration can be
split up, so different
regions are summed
by each processor.

region 1| |region 2| [region 3| [region 4

@ Non-ideal:

o First need to get
data to processor

° Ar.1d at the end Reduction
bring together all
the sums:

“reduction”

ch?\let

AAAAAA

(Partition data)

region 1| |region 2| [region 3| [region 4

R

Scilet

Parallel region =

(Partition data)

region 1| |region 2| [region 3| [region 4

R

Scilet

Parallel region =

Perfectly Parallel
(for large IN)

Nonidealcases
(Partition data)

region 1| |region 2| [region 3| [region 4

(I

Serial portion €> Reduction)

Parallel region =

Perfectly Parallel
(for large IN)

Scilet

Non-ideal cases

Parallel overhead <:> Partition data)

NN

region 1| |region 2| [region 3| [region 4

(I

Serial portion €> Reduction)

Parallel region =

Perfectly Parallel
(for large N)

Scilet

Non-ideal cases

Parallel overhead <:> Partition data)

YeYaYaTa

region 1| |region 2| [region 3| [region 4

(I

Serial portion €> Reduction)

Parallel region =

Perfectly Parallel
(for large IN)

Suppose non-parallel part const: Ty

Scilet

Amdahl’s law

Speed-up (without parallel overhead):
NTl + Ts
S = §m
NT 4T,
or, calling f = Ts/(Ts + NT1) the serial fraction,
1

S=ira—n/p

16
14
12
10

o N A~ O 0

Scilet

2 4 6 8 10 12 14 16 (for f — 5%) ()compute.ca\cu\

AAAAAA

Amdahl’s law

Speed-up (without parallel overhead):
NTl + Ts
S = §m
NT 4T,
or, calling f = Ts/(Ts + NT1) the serial fraction,
1 P—oco 1

S=ira—n/p f

16
14
12
10

o N A O

Scilet

2 4 6 8 10 12 14 16 (for f — 5%) ()compute.ca\cu\

AAAAAA

Amdahl’s law

Speed-up (without parallel overhead):
NT, + Ts
S=1Nm
? + TS

or, calling f = Ts/(Ts + NT1) the serial fraction,

f+Q@-r/pP f
16
14
12 Serial part dominates asymptotically.

10

Speed-up limited, no matter size of P.

o N A O

Scilet

2 4 6 8 10 12 14 16 (for f — 5%) ()compute.ca\cu\

AAAAAA

Amdahl’s law

Speed-up (without parallel overhead):
NT, + Ts
S=1Nm
? + TS

or, calling f = Ts/(Ts + NT1) the serial fraction,

f+Q@-r/pP f
16
14
12 Serial part dominates asymptotically.

10

Speed-up limited, no matter size of P.

And this is the overly optimistic case!

Scilet

2 4 6 8 10 12 14 16 (for f — 5%) ()compute.ca\cu\

AAAAAA

o N A O

Scaling efficiency

Speed-up compared to ideal factor P:

S
Effici _ 2
fficiency P

This will invariably fall off for larger P except for embarrassing
parallel problems.

P—oo

1
Ef ficiency ~ f—P — 0

You cannot get 100% efficiency in any non-trivial problem.

All you can aim for here is to make the efficiency as least low as
possible.

Sometimes, that can mean running on less processors, but more

problems at the same time.
SciNet

Timing example

@ Say 100s in integration cost
@ 5s in reduction
@ Neglect communication cost
@ What happens as we vary number of processors P?
Time = (100s)/P + 5

120 Time= (1005)/P+53 1000 Time= (1005)/P+53

100 Ideal Ideal
—~ 80 . 100
O IO
g % £
F a0 T

20

1
5 10 15 20 25 30 35 40 45 50 1

Number of processors P Number of processors P Sm et

’ compute ca\cu\

Throughput example

N

H(P) = Time(P)

@ Say we are doing k at the same time, on P processors total.

Hy(P) kN
k - .
Time(P/k)
Say N = 100:
100 1
920 k=2 —
—_ k=3 ——
£ . 8 k=4 ——
L
%’ £ 60
2 50
£
40
30
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 et

Number of processors P Number of processors P () compute «calcul
CANADA

HPC Lesson #1

Always keep throughput in mind: if you have several runs, running
more of them at the same time on less processors per run is often
advantageous.

Scilet

) compute ca\cu\

Less ideal case of Amdahl’s law

We assumed reduction is constant.
But it will in fact increase with P,
from sum of results of all processors

T; = PTh

Serial fraction now a function of P:

FP) = &

Amdahl:

1

S = By T L= FP)/P

Scilet

Less ideal case of Amdahl’s law

We assumed reduction is constant.
But it will in fact increase with P,
from sum of results of all processors

T; = PTh

Serial fraction now a function of P:

P
f(P) = N
Amdahl:
S(P) = -
- f(P)+ - f(P)/P
Example: N = 100, T7; = 1s... Sﬁﬁ\let

Less ideal case of Amdahl’s law

We assumed reduction is constant.

55
But it will in fact increase with P, 5
from sum of results of all processors 4‘2
,z 35
T, =~ PT; g 3
? 25
. . . 2
Serial fraction now a function of P: 15
P ! 5 10 15 20 25 30 35 40 45 50
f(P) = 100
N 90
. 80
Amdahl: 2
2 60
E 50
1 = a0
S(P) = :
F(P)+[1-rP)/P 2
5 10 15 20 25 30 35 40 45 50
Example: N = 100, T; = 1s... Number of processors P
P 1 Met

AAAAAA

Trying to beat Amdahl’s law #1

| 50
I N=1o0 ——
Scale up R
40 N=10,000 ——
a 35 N=100I,C?OC: —
eal
The larger N, the smaller 3 o
. - Q
the serial fraction: & 2]
10
5
0
f(P):— 5 10 15 20 25 30 35 40 45 50

Number of processors P

Scilet

) compute ca\cu\

Trying to beat Amdahl’s law #1

| 50
1 =100 7
Scale up R
401 N=10,000 —
a 35 N:lOOI,c?OCi E—
eal
The larger N, the smaller 3 o
. - Q
the serial fraction: & 2]
10
5
0
f(P):— 5 10 15 20 25 30 35 40 45 50

Number of processors P
Weak scaling: Increase problem size while increasing P
Timeyeak(P) = Time(N = n X P, P)

Good weak scaling means this time approaches a constant for large

cSél?\let

AAAAAA

Trying to beat Amdahl's law #1

| 50 — -
Scale up! I~
401 N=10,000 —
a 35 N:lOOI,C(‘)OCi E—
eal
The larger N, the smaller 3 o
. - Q
the serial fraction: & 2]
10
5
0
f(P):— 5 10 15 20 25 30 35 40 45 50

Number of processors P
Weak scaling: Increase problem size while increasing P

Timeyeak(P) = Time(N = n X P, P)

A9

Good weak scaling means this time approaches a constant for large P.

Gustafson's Law
Any large enough problem can be efficiently parallelized
(Efficiency—1).

Jlet

Trying to beat Amdahl's law #2

Parallel overhead C:> Partition data)

NYaYata

region 1| |region 2| [region 3| [region 4

(WA

Serial portion é Reduction)

©

‘) compute «calcul
AAAAAA

Parallel region =

Perfectly Parallel
(for large IN)

Trying to beat Amdahl's law #2

Parallel overhead C:> Partition data)

NYaYata

region 1| |region 2| [region 3| [region 4

(WA

Serial portion é Reduction)

Rewrite
‘ SCiet

‘) compute «calcul
AAAAAA

Parallel region =

Perfectly Parallel
(for large IN)

Trying to beat Amdahl's law #2

Parallel overhead C:> Partition data)

NYaYata

region 1| |region 2| [region 3| [region 4

I

Serial portion =-

)
Y 2
Rewrite ()
‘ SCiet

‘) compute «calcul
AAAAAA

Parallel region =

Perfectly Parallel
(for large N)

)

Trying to beat Amdahl's law #2

Parallel overhead C:> Partition data)

NeYaYala

region 1| |region 2| [region 3| [region 4

I

Serial portion =-

)
Y Y
Rewrite ()
x log,(P)
SciNet

‘) compute «calcul
AAAAAA

Parallel region =

Perfectly Parallel
(for large N)

)

Trying to beat Amdahl's law #2

‘Serial’ fraction now different
function of P:

7(p) = 1o8P)
Amdahl:
S(P) = !

f(P)+ 01— f(P)]/P

Scilet

Trying to beat Amdahl's law #2

‘Serial’ fraction now different
function of P:

log, (P)

() = =2

Amdahl:

1
f(P)+ 01— f(P)]/P

Example: NN = 100, T} =
1s...

S(P) =

Scilet

Trying to beat Amdahl's law #2

‘Serial’ fraction now different 10
function of P:

Speed-up

() = =2

Amdahl: 5 10 15 20 25 30 35 40 45 50

8
6
logz(P) 4
2
0

Time
S(P) ! T
P) = 70
F(P)+[1—-f(P)/P

Example: N = 100, T3y = 30
1s... 10

Time (s)
(o)
o

5 10 15 20 25 30 35 40 45 50

Number of processors P Sm
et

Trying to beat Amdahl's law #2

Weak Scaling

Timeyeak(P) = Time(N = nXx P, P)

Should approach constant for
large P.
Let's see. ..

Scilet

Trying to beat Amdahl's law #2

Weak Scaling

Timeyeak(P) = Time(N = nXx P, P)

135
Should approach constant for 120 now

large P. 125
Let's see. .. 120

. 115
Not quite! 110

105
100
95

Time (s)

5 10 15 20 25 30 35 40 45 50
Number of processors P

cSc:I?\let

AAAAAA

Trying to beat Amdahl's law #2

Weak Scaling

Timeyeak(P) = Time(N = nXx P, P)

Should approach constant for 122 L —
large P. 125
Let's see. .. z 120
Not quite! é ﬁi
But much better than before. 105
e

5 10 15 20 25 30 35 40 45 50
Number of processors P

cSc:I?\let

AAAAAA

Trying to beat Amdahl's law #2

Weak Scaling

Timeyeak(P) = Time(N = nXx P, P)

35
h | I h n n f r L noaw———
Should approach constant fo 130 hoaiy
large P. 125 | before
Let's see. .. % ﬁg
H £
Not quite! E 1o
But much better than before. 105
100
95

5 10 15 20 25 30 35 40 45 50
Number of processors P

cSc:I?\let

AAAAAA

Trying to beat Amdahl's law #2

Weak Scaling

Timeyeak(P) = Time(N = nXx P, P)

35
h | I h n n f r L noaw———
Should approach constant fo 130 hoaiy
large P. 125 | before
Let's see. .. % ﬁg
H £
Not quite! E 1o
But much better than before. 105
100
95
Gustafson? 5 10 15 20 25 30 35 40 45 50

Number of processors P

It turns out that Gustafson's law
assumes that the serial cost does
not change with P.

Here that grows logarithmically
with P, and this is reflected in the

weak scaling. Sﬁﬁ\let

AAAAAA

Trying to beat Amdahl's law #2

Weak Scaling

Timeyeak(P) = Time(N = nXx P, P)

35
h | I h n n f r L noaw———
Should approach constant fo 130 hoaiy
large P. 125 | before
Let's see. .. % ﬁg
H £
Not quite! E 1o
But much better than before. 105
100
95
Gustafson? 5 10 15 20 25 30 35 40 45 50

, Number of processors P
It turns out that Gustafson's law

assumes that the serial cost does Really not t_hat bad.
not change with P and other algorithms can do

Here that grows logarithmically better.

with P, and this is reflected in the
weak scaling. Sﬁﬁ\let

AAAAAA

HPC Lesson #2

Optimal Serial Algorithm for your problem may
not be the P —1 limit of your optimal
parallel algorithm.

Scilet

Synchronization

~

@ Most problems are not
purely concurrent.

® Some level of " Synchronizition
synchronization or exchange ——~ —— —————

of information is needed
between tasks.

- €
J\/

. / \\ / \
Synchronization

YV YV (1}

e While synchronizing,
nothing else happens:
increases Amdahl’s f.

NN\
N/

@ And synchronizations are
themselves costly. (>

Syn%hronizgtion v)
ScCiNet

Load balancing

@ The division of calculations
among the processors may
not be equal.

Synchronization

))

@ Some processors would ——
already be done, while
others are still going.

o Effectively using less than
P processors: This reduces

Synchronization

the efficiency. (V) Vo) v o) v o)
@ Aim for load balanced

lgorithms. —
algorithms (v syn%hronizﬁtion v)

So far we neglected communication costs.

But communication costs are more expensive than
computation!
@ To minimize communication to computation ratio:

* Keep the data where it is needed.
* Make sure as little data as possible is to be communicated.
* Make shared data as local to the right processors as possible.

Local data means less need for syncs, or smaller-scale syncs.

Local syncs can alleviate load balancing issues.

Scilet

’ compute ca\cu\

Locality

CPU SIZE
i 306
‘ Device Memory I ‘ L2 Cache |

1075 of eycles

~8 GBJs -

—
100,000°s of cycles
\ Disk |
you don’t want to know
‘ Massive Tape Storage I SPEED

Scilet

’ computeoca\cu\

Example (PDE Domain decomposition)

wrong

Scilet

HPC Lesson #3

Parallel algorithm design is about finding as
much concurrency as possible, and arranging
it in a way that maximizes locality.

Scilet

) compute ca\cu\

HPC Systems

Top500.org:

List of the worlds
500 largest
supercomputers.
Updated every 6
months,

Info on
architecture, etc.

) PROJECT | LISTS | STATISTICS | RESOURCES k NEWS

Home » Lists » June 2012

TOP500 List - June 2012 (1-100)

Rumax and Rpeak values are in TFlops. For more details about other fields, check the TOP500 description

Power data in KW for entire system

Rank Site

DOEMNSA/LLNL

ComputerfYear Vendor

Sequoia- BlueGenel0, Poer BOC 16C
150 GHz, Custom J 2011
1M

K computer, SPARCS4 VIl 2.0GHz, Tofu
1

United States
BIKEN Advenced nsiute for
2 ce (AICS)
Japan
DOE/SC/Argonne National
3 Laboratory
United State:
Y Leibniz Rechenzentrum
rmany
National Supercomputing Center in
5 Tianjin
China.
DOE/SC/Oak Ridge National
6 Laboratory
United Staes
CINECA
7 taly
0 Forschungszentrum Juelich (FZ3)
ermany.
o CEATGCC-GENCI
France
National Supercomputing Centre in
10 Shenzhen (NSCS)

China

Fujtsu

Mira - BlucGene/Q, Porer 5QC 16C
160GHz, Custom! 2012
iBM

erMUC - iDataPlex DX350M4, Xeon

SR 5 2 T06k2 nimiband FOR 1

iBM

Tianhe-1A - NUDT YH PP, Xeon X5670
93 G Hz, NVIDIA 2050/ 2010

NUDT

Jaguar - Cray XKS, Opteron 6274 16C

2.200GHz Cray Gemini interconrect,

HVIDIA 2090/ 2009

Cray Inc.

Fermi-BlueGene/Q, Pover BQC 16C

L60GHz, Custom / 2012

iBM

JUQUEEN - BlueGene/, Poner BQC 16C
160GHz, Custom / 2012
iBM

Curie thin nodes - Bullx 510, Xeon
E5-2680 BC 2.700GHz, Infiniband QDR /
202

Bull

ing TC3600 Blade System,
Koo XsR0 60 2 Baaits, Inniband DDA
HVIDIA 2050/ 2010

Cores

1572854

705024

780432

147456

186368

208502

163840

131072

77184

120840

Rmax

1652475

1051000

8162.38

2897.00

2566.00

199200

172549

138030

1359.00

127100

Rpeak

2013265

1128038

106,33

318505

7000

2627561

200715

157772

166717

208430

nex

Power

7890.0

126599

aws.0

a1227

a0a0.0

s142.0

8219

22500

2580.0

et
(’ com;:zxits; Ei\cu\

HPC Systems

Architectures

@ Clusters, or, distributed memory machines

e A bunch of servers linked together by a network
(“interconnect”).
e commodity x86 with gigk, Cray XK, IBM BGQ
e Symmetric Multiprocessor (SMP) machines, or, shared
memory machines
e These can see the same memory, typically Limited number of
cores.
o IBM Pseries, SGI Altix and Ultraviolet
@ Vector machines.
e No longer dominant in HPC anymore.
e Cray, NEC
@ Accelerator (GPU, Cell, MIC, FPGA)

o Heterogeneous use of standard CPU’s with a specialized
accelerator.
o NVIDIA, AMD, Intel, Xilinx let

) ecaleul
“ADA

Distributed Memory: Clusters

Simplest type of parallel com-
puter to build

o Take existing powerful
standalone computers

@ And network them

‘) compute «calcul
CANADA

Distributed Memory: Clusters

Each node is
independent!

Parallel code consists of
programs running on
separate computers,
communicating with

each other. CPU4
Could be entirely
different programs.
CPU3
CPU2

CPU1 .
SCiet

Distributed Memory: Clusters

Each node is
independent!

Parallel code consists of
programs running on
separate computers,
communicating with
each other. CPU4
Could be entirely
different programs.

Each node has own CPU3
memory!

Whenever it needs data
from another region, CPU2
requests it from that

CPU. CPU1 -
Scilet

. te « calcul
Usual model: “message passing” 0 Rt e

Clusters+Message Passing

Hardware:

Easy to build

(Harder to build well)
Can build larger and
larger clusters relatively

easily CPU4

Software:
Every communication
has to be hand-coded:

hard to program CPU3

CPU2

CPU1

Scilet

Task (function, control) Parallelism

Work to be done is decomposed across processors
@ e.g. divide and conquer
@ each processor responsible for some part of the algorithm
@ communication mechanism is significant

@ must be possible for different processors to be performing
different tasks

cSél?\let

AAAAAA

Cluster Communication Cost

Latency Bandwidth
GigE 10 ps 1 Gb/s
(10,000 ns) | (60 ns/double)
Infiniband 2 ps 2-10 Gb/s
(2,000 ns) | (10 ns /double)

Processor speed: O(GFLOP) ~ few ns or less.

Scilet

ommunication Cost

Throughput in Mbps

7000

6000

5000

4000

3000

1000

InfiniBand RDMA
7.5 us latency

/

InfiniBand
wio cache effects

10 GigE
75 us

1 1,000,000
Message size in Bytes

Scilet

) compute ca\cu\

SciNet General Purpose Cluster (GPC)

—) . e
i —~— v . e -
<l A = W c
\ |- —— e
S
= ———

SciNet General Purpose Cluster (GPC)

@ 3864 nodes with two 2.53GHz quad -core InteI Xeon
5500 (Nehalem) x86-64 processors (30240 cores
total)

o 16GB RAM per node

o Gigabit ethernet network on all nodes for
management and boot

o DDR and QDR InfiniBand network on the nodes for
job communication and file 1/0

o 306 TFlops

@ #16 on the June 2009 TOP500 supercomputer
sites (current #94)

o #1 in Canada

Shared Memory

One large bank of
memory, different
computing cores acting
on it. All ‘see’ same
data.

Core 3

Any coordination done

Core 2
through memory

Core 1

Could use message
passing, but no need.

Each code is assigned a
thread of execution of a
single program that acts

on the data. cSﬁ?\let

Threads versus Processes

Wjdursi@gpe-f102n081:~

Fle Edit View Terminal Tabs Help
top - 17:27:34 up 2 days, 1:40, 1 user, load average: 1.81, 0.56, 0.20
Tatke: 142 total, 3 runnings 130 sleeping, © stopped, O zomte
Cpu(s. 95.9%us, 3.0%sy. 0.0%n1, 0.0%d, 0.0%a, 0.1%hi, 1.6%si, 0.6%st
e ASATIOTIR totat, 3778360k useq, 13630sbak trie, | Bsew outfers
ovap: ety ok uaed. ox fres, 226562k cached
3 APy e
Th d . 18121 ljdursi 25 0 89536 1076 848 R 779.0 0.0 0:29.01 diffusion-omp
reads: 17103 root 15 035300 2580 605 15.6 0.0 0:01.57 pbs mom
17102 reot 13 833300571 636 R 6.0 0.6 6100.48 pbocee
- - - 1 root 15 0 10344 740 6125 0.0 0.0 ©:01.45 init
Threads of execution within 2romt Rkt o.3 e s 55 5l6 ol :e6en myracions
3 root 34 19] [} es 0.0 0.0 ©:00.00 ksoftirqd/0
. Gret RT3 @ 8 85 a0 a8 0880 uatchaoyss
Stof KT 3 6 6 05 00 0.6 8006 maration
one process, with access to the :mx 5. ¢ ¢ oo snnmnn
Tret AT 3 6 8 65 a0 a6 00060 watchdogrt
Gret RT3 8 8 0% o 0.0 0:08.00 Marations2
Ssame memory etc. 9root 34 18 o © 05 0.0 0.0 0:00.00 ksortirgds2
10 root RT -5 © © 05 0.0 0.0 0:00.00 watchdog/2
1 fat Wb es 5 U5 62 G 6l (uiseie merationss

ljaursIGgpe
Ele Edt View Terminal Tabs Help

top - 17:33:58 up 2 days, 1:47, 1 user, load average: 0.86, 6.31, 0.17

9 running, 141 sleeping, © stopped, © zombie
Cpu(s):100.0%us, 0.0%sy, ©.0%ni, 0.6%id, 0.0%a, 6.0%hi, 0.0%si

0.0%st

Processes: Wem: 16411872k total, 2001172k used, 13610700k free, 356K buffars

Swap: ok total, oK used, Ok free, 2268568k cached

Independent tasks with their FErE—

18395 ljaursi 25
18397 ljaursi 25

i UnTINt O Amw tirmime
own memory and resources et b b G e e Alsnten Mendisacey
e o R s e aterusionapt
i S b G attrusionmnt
5
:
9

1 root 15 10344 740 612 S it
2 root RT - o 8 05 nigration/e
3 root 31 o 8 os ksoftirgd/o
4 root RT - o 8 05 watcndog/o
5 root RT -5 @ © 0F5 nigration/l
6 root 34 19 8 0 05 ©:00.01 ksortirgd/1

SCiNet
(’ com;:zxitNe; Dca\cul

Shared Memory: NUMA

Non-Uniform Memory Access

@ Each core typically has
some memory of its own.

@ Cores have cache too.

@ Keeping this memory
coherent is extremely
challenging.

Scilet

‘:c[lO] =5

@ The different levels of
memory imply multiple
copies of some regions

@ Multiple cores mean can
update unpredictably

Very expensive hardware

@ Hard to scale up to lots of
Processors.

Very simple to program!!

Data (Loop) Parallelism

Data is distributed across processors
@ easier to program, compiler optimization
@ code otherwise looks fairly sequential

@ benefits from minimal communication overhead

@ scale limitations

cScfl?\let

AAAAAA

Shared Memory Communication Cost

Latency Bandwidth
GigE 10 ps 1 Gb/s
(10,000 ns) | (60 ns/double)
Infiniband 2 ps 2-10 Gb/s
(2,000 ns) | (10 ns /double)
NUMA 0.1 ps 10-20 Gb/s
(shared memory) | (100 ns) (4 ns /double)

Processor speed: O(GFLOP) ~ few ns or less.

Scilet

SciNet Tightly Coupled System (TCS)

SciNet Tightly Coupled System (TCS)

- ml‘““ A Ba

o 104 nodes with 16x 4.7GHz dual-core IBM Power6
processors (3328 cores total)

@ 128GB RAM per node

@ 4x DDR InfiniBand network on the nodes for job
communication and file 1/0

@ 62 TFlops

Hybrid Architectures

@ Multicore machines linked
together with an
interconnect

@ Many cores have modest
vector capabilities. i i

is multi-core, but the
amount of shared memory
is limited.

@ Machines with GPU: GPU i

Scilet

Heterogeneous Parallelism

Accelerators

@ CPUs are not optimal for all algorithms and workloads, have
to address many use cases.

@ Special purpose co-processors (accelerators) can be connected
to the CPU to handle particular tasks more efficiently.

@ Long history of different accelerator architectures (and
processors themselves) focusing on SIMD (single instruction,
multiple data; vector) operations.

@ Graphics processors (GPUs) have been extended such that
they are flexible enough to handle these workloads (and
they're relatively cheap).

y

cSei?\let

AAAAAA

Theoretical

GFLOP/s
3250
3000
NVIDIA GPU Single Predsion
2750 == NVIDIA GPU Double Predasion
2500 g |nitel CPU Single Predson
s Intel CPU Double Precision

2250
2000
1750
1500
1250
1000

750

i TeslaC2050 Sandy Bridge

’ TeslaC1060
250 okt BY
0 4
= West
Sep-BENLUM4 jyn 04 Mar-FRTPERONN p TH e Aug-12

GPUs trade-off single thread performance and memory caching for
SIMD parallel performance. J

—erlet
‘) com;:zx{ts; Ei\cu\

GPGPU

@ GPUs communicate with the CPU via PCl Express bus.

@ GPUs are driven by a host process running on the CPU, which
invokes computational kernels.

@ Extreme parallelism to get good speedup and hide latency,
high arithmetic intensity.

@ Data has to be explicitly sent back and forth to the GPU

@ Fine-grained parallelism complements other parallel methods
(MPI, threads, etc.)

e Programming is typically more involved (but tools and
frameworks are constantly improving)

Scilet

GPGPU

@ An array of streaming
multiprocessors attached to
a global memory.

o Computational kernels are
executed using many
threads, which are
organized in a grid of
thread blocks.

@ Threads within a block
have a pool of shared

Grid 0

Thread

T Block (9,0) | Block (1,0)

| Block (0, 1) [Iln:k(l, 1)

Per-thread local
memory

Thread Block

—
. » Per-block shared
«— » memory

PA——

| Block (2,0)

T llnd;(z.,;)

Grid 1

memory, as well as local,

private memory. e
@ Focus on leveraging massive | e
parallelism in algorithms ‘

while working within the
constraints of limited

Block (0, 2) ‘

Global memory
Block (1,0) |

Block (1, 1)
—

Block(1,2) |

shared-memory.

cHet

’ compute ca\cu\

SHARCNET - monk

SUPERCOMPUTING AT 1/10™ THE COST

SHARCNET - monk

o 54 nodes with two 2.26 GHz quad—cre Intel Xeon
E5607 (432 cores total)

e 48GB RAM per node

@ 2x Nvidia M2070 Tesla GPU’s per node

@ QDR Inifiniband interconnect

SUPERCOMPUTING AT 1/10™ THE COST

AAAAAAA

HPC Lesson #4

The best approach to parallelizing your
problem will depend on both details of your
problem and of the hardware available.

Scilet

Program Structure

Structure of the problem

implement parallel solutions easy

dictates the ease with which we can J

casy

hard v

psrfact parallelism
independent calculations

pipeline parallelism
- overlap otherwise sequential work

syncheonous p&mﬂeham
- parallel work is well synchronized

asynchronous parallelism
-dependent calculations
-parallel work is loosely synchronized

Scilet

) compute ca\cu\

Parallel Granularity

Granularity

A measure of the amount of processing performed before
communication between processes is required.

Parallelism

@ Fine Grained
e constant communication necessary
@ best suited to shared memory environments
@ Coarse Grained
e significant computation performed before communication is
necessary
o ideally suited to message-passing environments
@ Perfect
@ no communication necessary

v
aaanet
(’ comeukthe; Ei\cu\

Batching Serail Jobs

@ SciNet is primarily a parallel computing resource. (Parallel
here means OpenMP and MPI, not many serial jobs.)

Scilet

Batching Serail Jobs

@ SciNet is primarily a parallel computing resource. (Parallel
here means OpenMP and MPI, not many serial jobs.)

@ You should never submit purely serial jobs to the GPC queue.

The scheduling queue gives you a full 8-core node. Per-node
scheduling of serial jobs would mean wasting 7 cpus.

Scilet

Batching Serail Jobs

@ SciNet is primarily a parallel computing resource. (Parallel
here means OpenMP and MPI, not many serial jobs.)

@ You should never submit purely serial jobs to the GPC queue.
The scheduling queue gives you a full 8-core node. Per-node

scheduling of serial jobs would mean wasting 7 cpus.

@ Nonetheless, if you can make efficient use of the resources
using serial runs and get good science done, that's good too.

Scilet

Batching Serail Jobs

@ SciNet is primarily a parallel computing resource. (Parallel
here means OpenMP and MPI, not many serial jobs.)

@ You should never submit purely serial jobs to the GPC queue.
The scheduling queue gives you a full 8-core node. Per-node
scheduling of serial jobs would mean wasting 7 cpus.

@ Nonetheless, if you can make efficient use of the resources
using serial runs and get good science done, that's good too.

@ Users need to utilize whole nodes by running at least 8 serial
runs at once.

Scilet

Easy case: serial runs of equal duration

#PBS -1 nodes=1:ppn=8,walltime=1:00:00
cd $PBS_0_WORKDIR

(cd rundiril; ./dorunil)
(cd rundir2; ./dorun2)
(cd rundir3; ./dorun3)
(cd rundir4d; ./dorun4d)
(cd rundir5; ./dorun5)
(cd rundir6; ./dorun6é)
(cd rundir7; ./dorun7)
(cd rundir8; ./dorun8)
wait # or all runs get killed immediately

R R R

Scilet

) compute ca\cu\

Hard case: serial runs of unequal duration

Different runs may not take the same time: load imbalance.
4 N [

N N\ [™)

Synchronization
(N)

Synchronization
o YET YRS

./ __J ___J

i ‘ SynEhroniition l

cSél?\let

AAAAAA

Hard case: serial runs of unequal duration

Different runs may not take the same time: load imbalance.
s N

'a N N\ [™)

i . Synchronization |
e N N N ~N

Synchronization
o YET YRS

./ __J ___J
i ‘ SynEhroniition l

@ Want to keep all 8 cores on a node busy.

@ Or even 16 virtual cores on a node (HyperThreading).

o = GNU Parallel can do this 5&]‘?\]
et

GNU Parallel

@ GNU parallel is a a tool to run multiple (serial) jobs in parallel.
As parallel is used within a GPC job, we'll call these subjobs.

o It allows you to keep the processors on each 8-core node busy,
if you provide enough subjobs.

@ GNU Parallel can use multiple nodes as well.

On the GPC cluster:

@ GNU parallel is accessible on the GPC in the module
gnu-parallel, which you can load in your .bashrc.

$ module load gnu-parallel/20121022

@ There are currently (Nov 2012) three gnu-parallel modules on

the GPC. Although for compatibility gnu-parallel /2010 is the

default, we recommend using gnu-parallel /20121022. -
Sciflet

GNU Parallel Example

SETUP

@ A serial c++ code 'mycode.cc’ needs to be compiled.

Scilet

GNU Parallel Example

SETUP

@ A serial c++ code 'mycode.cc’ needs to be compiled.

@ It needs to be run 32 times with different parameters, 1
through 32.

Scilet

GNU Parallel Example

SETUP

@ A serial c++ code 'mycode.cc’ needs to be compiled.

@ It needs to be run 32 times with different parameters, 1
through 32.

@ The parameters are given as a command line argument.

Scilet

GNU Parallel Example

SETUP

@ A serial c++ code 'mycode.cc’ needs to be compiled.

@ It needs to be run 32 times with different parameters, 1
through 32.

@ The parameters are given as a command line argument.

@ 8 subjobs of this code fit into the GPC compute nodes's
memory.

Scilet

GNU Parallel Example

SETUP

@ A serial c++ code 'mycode.cc’ needs to be compiled.

@ It needs to be run 32 times with different parameters, 1
through 32.

@ The parameters are given as a command line argument.

8 subjobs of this code fit into the GPC compute nodes’s
memory.

@ Each serial run on average takes ~ 2 hour.

Scilet

GNU Parallel Example

$

Scilet

GNU Parallel Example

$ cd $SCRATCH/example
$

Scilet

GNU Parallel Example

$ cd $SCRATCH/example
$ module load intel

$

cSCﬁ?\let

AAAA

GNU Parallel Example

$ cd $SCRATCH/example
$ module load intel
$ icpc -03 -xhost mycode.cc -o myapp

$

cSCﬁ?\let

AAAA

GNU Parallel Example

$
$
$
$

cd $SCRATCH/example

module load intel

icpc -03 -xhost mycode.cc -o myapp
cat > subjob.lst

mkdir runO1; cd runOl; ../myapp 1 > out
mkdir run02; cd run02; ../myapp 2 > out

ﬁkéir run32; cd run32; ../myapp 32 > out

Scilet

) compute ca\cu\

GNU Parallel Example

$ cd $SCRATCH/example
$ module load intel
$ icpc -03 -xhost mycode.cc -o myapp

$ cat > subjob.lst

mkdir runO1; cd runOl; ../myapp 1 > out
mkdir run02; cd run02; ../myapp 2 > out

ﬁkéir run32; cd run32; ../myapp 32 > out
$ cat > GPJob
#PBS -1 nodes=1:ppn=8,walltime=12:00:00
cd $SCRATCH/example

module load intel gnu-parallel/20121022
parallel --jobs 8 < subjob.lst

Scilet

) compute ca\cu\

GNU Parallel Example

$ cd $SCRATCH/example
$ module load intel
$ icpc -03 -xhost mycode.cc -o myapp

$ cat > subjob.lst

mkdir runO1; cd runOl; ../myapp 1 > out
mkdir run02; cd run02; ../myapp 2 > out

ﬁkéir run32; cd run32; ../myapp 32 > out
$ cat > GPJob
#PBS -1 nodes=1:ppn=8,walltime=12:00:00
cd $SCRATCH/example

module load intel gnu-parallel/20121022
parallel --jobs 8 < subjob.lst

$ qsub GPJob
2961985.gpc-sched

Scilet

) compute ca\cu\

GNU Parallel Example

$ cd $SCRATCH/example
$ module load intel
$ icpc -03 -xhost mycode.cc -o myapp

$ cat > subjob.lst

mkdir runO1; cd runOl; ../myapp 1 > out
mkdir run02; cd run02; ../myapp 2 > out

ﬁkéir run32; cd run32; ../myapp 32 > out
$ cat > GPJob
#PBS -1 nodes=1:ppn=8,walltime=12:00:00
cd $SCRATCH/example

module load intel gnu-parallel/20121022
parallel --jobs 8 < subjob.lst

$ qsub GPJob
2961985.gpc-sched

$ 1s

GPJob GPJob.e2961985 GPJob.02961985 subjob.lst
myapp runO1 run02 run03

Scilet

) compute ca\cu\

GNU Parallel Example

DD@DD@DD

| | | | | |y
DDC]DC][:C]C]

C]=DDC]C]C]CJC]

17 hours
42% utilization

Scilet

GNU Parallel Example

) sy o) 5
- e C]C]DC]%C]
C]C]C]C]
(5 o [o D == DI:][:]
[:JCJ[:DC][:CJCJ
C]D=DC]C]C]CJC]
=
17 hours 10 hours
42% utilization 72% utilization
SCiNet

GNU Parallel Details

What else can it do?
@ Recover from crashes (joblog/resume options)

@ Span multiple nodes

Using GNU Parallel
e wiki.scinethpc.ca/wiki/index.php/User_Serial
o wiki.scinethpc.ca/wiki/images/7/7b/Tech-talk-gnu-
parallel.pdf
@ www.gnu.org/software/parallel
@ www.youtube.com/playlist?list=PL284C9FF24838BC6D1

@ O.Tange, GNU Parallel — The Command-Line Power Tool,
;login: The USENIX Magazine, February 2011:42-47.

SCHet

HPC Programming Models

Languages

@ serial
o C, C++, Fortran

o threaded (shared memory)
o OpenMP, pthreads

@ message passing (distributed memory)
o MPI, PGAS (UPC, Coarray Fortran)

@ accelerator (GPU, Cell, MIC, FPGA)
e CUDA, OpenCL, OpenACC

Scilet

HPC System

HPC Software Stack
@ Typically GNU/Linux

@ non-interactive batch processing using a queuing system
scheduler

@ software packages and versions usually available as “modules”
o Parallel filesystem (GPFS,Lustre)

Scilet

	HPC Overview
	Parallel Computing
	Amdahl's law
	HPC Lesson #1
	Beating Amdahl's law
	HPC Lesson #2
	Load balancing
	Locality
	HPC Lesson #3

	HPC Hardware
	Distributed Memory
	Shared Memory
	Hybrid Architectures
	HPC Lesson #4

	HPC Programming Models
	GNU Parallel
	HPC System Software

