
High Performance Computing (HPC) Introduction

Ontario Summer School on
High Performance Computing

Scott Northrup
SciNet HPC Consortium

Compute Canada

May 7th, 2013

Outline

1 HPC Overview

2 Parallel Computing
Amdahl’s law
HPC Lesson #1
Beating Amdahl’s law
HPC Lesson #2
Load balancing
Locality
HPC Lesson #3

3 HPC Hardware
Distributed Memory
Shared Memory
Hybrid Architectures
HPC Lesson #4

4 HPC Programming Models

5 GNU Parallel

6 HPC System Software

Acknowledgments

Contributing Material

SciNet Parallel Scientific Computing Course
- L. J. Dursi & R. V. Zon, SciNet

Parallel Computing Models - D. McCaughan, SHARCNET

High Performance Computing - D. McCaughan, SHARCNET

HPC Architecture Overview - H. Merez, SHARCNET

Intro to HPC - T. Whitehead, SHARCNET

Scientific High Performance Computing

What is it?

HPC is essentially leveraging larger and/or multiple computers to
solve computations in parallel.

What does it involve?

hardware - pipelining, instruction sets, multi-processors,
inter-connects

algorithms - concurrency, efficiency, communications

software - parallel approaches, compilers, optimization,
libraries

When do I need HPC?

My problem takes to long→ more/faster computation

My problem is to big→ more memory

My data is to big→ more storage

Scientific High Performance Computing

What is it?

HPC is essentially leveraging larger and/or multiple computers to
solve computations in parallel.

What does it involve?

hardware - pipelining, instruction sets, multi-processors,
inter-connects

algorithms - concurrency, efficiency, communications

software - parallel approaches, compilers, optimization,
libraries

When do I need HPC?

My problem takes to long→ more/faster computation

My problem is to big→ more memory

My data is to big→ more storage

Scientific High Performance Computing

What is it?

HPC is essentially leveraging larger and/or multiple computers to
solve computations in parallel.

What does it involve?

hardware - pipelining, instruction sets, multi-processors,
inter-connects

algorithms - concurrency, efficiency, communications

software - parallel approaches, compilers, optimization,
libraries

When do I need HPC?

My problem takes to long→ more/faster computation

My problem is to big→ more memory

My data is to big→ more storage

Scientific High Performance Computing

Why is it necessary?

Modern experiments and observations yield vastly more data
to be processed than in the past.

As more computing resources become available, the bar for
cutting edge simulations is raised.

Science that could not have been done before becomes
tractable.

However

Advances in clock speeds, bigger and faster memory and
storage have been lagging as compared to e.g. 10 years ago.
Can no longer “just wait a year” and get a better computer.

So modern HPC means more hardware, not faster hardware.

Thus parallel programming/computing is required.

Scientific High Performance Computing

Why is it necessary?

Modern experiments and observations yield vastly more data
to be processed than in the past.

As more computing resources become available, the bar for
cutting edge simulations is raised.

Science that could not have been done before becomes
tractable.

However

Advances in clock speeds, bigger and faster memory and
storage have been lagging as compared to e.g. 10 years ago.
Can no longer “just wait a year” and get a better computer.

So modern HPC means more hardware, not faster hardware.

Thus parallel programming/computing is required.

Analogy

HR Dilemma

Problem: job needs to get done faster

can’t hire substantially faster people
can hire more people

Solution:

split work up between people (divide and conquer)
requires rethinking the work flow process
requires administration overhead
eventually administration larger than actual work

Analogy

HR Dilemma

Problem: job needs to get done faster

can’t hire substantially faster people
can hire more people

Solution:

split work up between people (divide and conquer)
requires rethinking the work flow process
requires administration overhead
eventually administration larger than actual work

Analogy

HR Dilemma

Problem: job needs to get done faster

can’t hire substantially faster people
can hire more people

Solution:

split work up between people (divide and conquer)
requires rethinking the work flow process
requires administration overhead
eventually administration larger than actual work

Wait, what about Moore’s Law?

(source: Transistor Count and Moore’s Law - 2008.svg, by Wgsimon, wikipedia)

Wait, what about Moore’s Law?

(source: Transistor Count and Moore’s Law - 2008.svg, by Wgsimon, wikipedia)

Moore’s law

. . . describes a long-term trend in the history of
computing hardware. The number of transistors that can
be placed inexpensively on an integrated circuit doubles
approximately every two years.

(source: Moore’s law, wikipedia)

But. . .

Moores Law didn’t promise us clock speed.
More transistors but getting hard to push clockspeed up.
Power density is limiting factor.
So more cores at fixed clock speed.

Wait, what about Moore’s Law?

(source: Transistor Count and Moore’s Law - 2008.svg, by Wgsimon, wikipedia)

Moore’s law

. . . describes a long-term trend in the history of
computing hardware. The number of transistors that can
be placed inexpensively on an integrated circuit doubles
approximately every two years.

(source: Moore’s law, wikipedia)

But. . .

Moores Law didn’t promise us clock speed.
More transistors but getting hard to push clockspeed up.
Power density is limiting factor.
So more cores at fixed clock speed.

Parallel Computing

Thinking Parallel

The general idea is if one processor is good, many processors will
be better

Parallel programming is not generally trivial

Tools for automated parallelism are either highly specialized or
absent

serial algorithms/mathematics don’t always work well in
parallel without modification

Parallel Programming

its Necessary (serial performance has peaked)

its Everywhere (cellphones, tablets, laptops, etc)

its Only getting worse (Sequoia has 1.5 Million cores)

Parallel Computing

Thinking Parallel

The general idea is if one processor is good, many processors will
be better

Parallel programming is not generally trivial

Tools for automated parallelism are either highly specialized or
absent

serial algorithms/mathematics don’t always work well in
parallel without modification

Parallel Programming

its Necessary (serial performance has peaked)

its Everywhere (cellphones, tablets, laptops, etc)

its Only getting worse (Sequoia has 1.5 Million cores)

Concurrency

Must have something to do
for all these cores.

Find parts of the program
that can done
independently, and
therefore concurrently.

There must be many such
parts.

There order of execution
should not matter either.

Data dependencies limit
concurrency.

(source: http://flickr.com/photos/splorp)

Parameter study: best case scenario

Aim is to get results
from a model as a
parameter varies.

Can run the serial
program on each
processor at the same
time.

Get “more” done.

'

&

$

%

µ = 1

'

&

$

%

µ = 2

'

&

$

%

µ = 3

'

&

$

%

µ = 4

? ? ? ?

&%
'$
Answer

&%
'$
Answer

&%
'$
Answer

&%
'$
Answer

Throughput

How many tasks can you do per time unit?

throughput = H =
N

T

Maximizing H means that you can do as much as possible.

Independent tasks: usingP processors increases H by a
factorPiiii

?�
�
�
�

vs.

i
?�
�
�
�

i
?�
�
�
�

i
?�
�
�
�

i
?�
�
�
�

T = NT1 T = NT1/P
H = 1/T1 H = P/T1

Scaling — Throughput

How a problem’s throughput scales as processor number
increases (“strong scaling”).

In this case, linear scaling:

H ∝ P

This is Perfect scaling.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

T
as

ks
 p

er
 u

ni
t t

im
e

P

Scaling – Time

How a problem’s timing scales as processor number increases.

Measured by the time to do one unit. In this case, inverse
linear scaling:

T ∝ 1/P

Again this is the ideal case, or “embarrassingly parallel”.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

T
im

e
pe

r
un

it
ta

sk

P

Scaling – Time

How a problem’s timing scales as processor number increases.

Measured by the time to do one unit. In this case, inverse
linear scaling:

T ∝ 1/P

Again this is the ideal case, or “embarrassingly parallel”.

 0.1

 1

 1 10

T
im

e
pe

r
un

it
ta

sk

P

Scaling – Speedup

How much faster the problem is solved as processor number
increases.

Measured by the serial time divided by the parallel time

S =
Tserial

T (P)
∝ P

For embarrassingly parallel applications: Linear speed up.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

S
pe

ed
-u

p

P

Non-ideal cases

Say we want to
integrate some
tabulated
experimental data.

Integration can be
split up, so different
regions are summed
by each processor.

Non-ideal:

First need to get
data to processor
And at the end
bring together all
the sums:
“reduction”

�� ��Partition data

? ? ? ?'

&

$

%

region 1

'

&

$

%

region 2

'

&

$

%

region 3

'

&

$

%

region 4

? ? ? ?�� ��Reduction

?

&%
'$
Answer

Non-ideal cases

Parallel region⇒



�� ��Partition data

? ? ? ?'

&

$

%

region 1

'

&

$

%

region 2

'

&

$

%

region 3

'

&

$

%

region 4

? ? ? ?�� ��Reduction

?

&%
'$
Answer

Non-ideal cases

Parallel region⇒


Perfectly Parallel
(for large N)

�� ��Partition data

? ? ? ?'

&

$

%

region 1

'

&

$

%

region 2

'

&

$

%

region 3

'

&

$

%

region 4

? ? ? ?�� ��Reduction

?

&%
'$
Answer

Non-ideal cases

Parallel region⇒


Perfectly Parallel
(for large N)

Serial portion ⇒

�� ��Partition data

? ? ? ?'

&

$

%

region 1

'

&

$

%

region 2

'

&

$

%

region 3

'

&

$

%

region 4

? ? ? ?�� ��Reduction

?

&%
'$
Answer

Non-ideal cases

Parallel region⇒


Perfectly Parallel
(for large N)

Serial portion ⇒

Parallel overhead ⇒
�� ��Partition data

? ? ? ?'

&

$

%

region 1

'

&

$

%

region 2

'

&

$

%

region 3

'

&

$

%

region 4

? ? ? ?�� ��Reduction

?

&%
'$
Answer

Non-ideal cases

Parallel region⇒


Perfectly Parallel
(for large N)

Serial portion ⇒

Parallel overhead ⇒
�� ��Partition data

? ? ? ?'

&

$

%

region 1

'

&

$

%

region 2

'

&

$

%

region 3

'

&

$

%

region 4

? ? ? ?�� ��Reduction

?

&%
'$
Answer

Suppose non-parallel part const: Ts

Amdahl’s law

Speed-up (without parallel overhead):

S =
NT1 + Ts

NT1

P
+ Ts

or, calling f = Ts/(Ts +NT1) the serial fraction,

S =
1

f + (1− f)/P

P →∞−→
1

f

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16 (for f = 5%)

Serial part dominates asymptotically.

Speed-up limited, no matter size of P .

And this is the overly optimistic case!

Amdahl’s law

Speed-up (without parallel overhead):

S =
NT1 + Ts

NT1

P
+ Ts

or, calling f = Ts/(Ts +NT1) the serial fraction,

S =
1

f + (1− f)/P
P →∞−→

1

f

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16 (for f = 5%)

Serial part dominates asymptotically.

Speed-up limited, no matter size of P .

And this is the overly optimistic case!

Amdahl’s law

Speed-up (without parallel overhead):

S =
NT1 + Ts

NT1

P
+ Ts

or, calling f = Ts/(Ts +NT1) the serial fraction,

S =
1

f + (1− f)/P
P →∞−→

1

f

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16 (for f = 5%)

Serial part dominates asymptotically.

Speed-up limited, no matter size of P .

And this is the overly optimistic case!

Amdahl’s law

Speed-up (without parallel overhead):

S =
NT1 + Ts

NT1

P
+ Ts

or, calling f = Ts/(Ts +NT1) the serial fraction,

S =
1

f + (1− f)/P
P →∞−→

1

f

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16 (for f = 5%)

Serial part dominates asymptotically.

Speed-up limited, no matter size of P .

And this is the overly optimistic case!

Scaling efficiency

Speed-up compared to ideal factor P :

Efficiency =
S

P

This will invariably fall off for larger P except for embarrassing
parallel problems.

Efficiency ∼
1

fP

P →∞−→ 0

You cannot get 100% efficiency in any non-trivial problem.
All you can aim for here is to make the efficiency as least low as
possible.
Sometimes, that can mean running on less processors, but more
problems at the same time.

Timing example

Say 100s in integration cost

5s in reduction

Neglect communication cost

What happens as we vary number of processors P ?

T ime = (100s)/P + 5

 0

 20

 40

 60

 80

 100

 120

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)

Number of processors P

Time=(100s)/P+5s
Ideal

 1

 10

 100

 1000

 1 10

T
im

e
(s

)

Number of processors P

Time=(100s)/P+5s
Ideal

Throughput example

H(P) =
N

Time(P)

Say we are doing k at the same time, on P processors total.

Hk(P) =
kN

Time(P/k)

Say N = 100:

 0

 5

 10

 15

 20

 25

 30

 35

 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t (

#/
s)

Number of processors P

k=1
k=2
k=3
k=4

Ideal

 30

 40

 50

 60

 70

 80

 90

 100

 5 10 15 20 25 30 35 40 45 50

E
ffi

ci
en

cy

Number of processors P

k=1
k=2
k=3
k=4

HPC Lesson #1

Always keep throughput in mind: if you have several runs, running
more of them at the same time on less processors per run is often

advantageous.

Less ideal case of Amdahl’s law

We assumed reduction is constant.
But it will in fact increase with P,
from sum of results of all processors

Ts ≈ PT1

Serial fraction now a function of P :

f(P) =
P

N

Amdahl:

S(P) =
1

f(P) + [1− f(P)]/P

Example: N = 100, T1 = 1s. . .

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 5 10 15 20 25 30 35 40 45 50

S
pe

ed
-u

p

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)

Number of processors P

Less ideal case of Amdahl’s law

We assumed reduction is constant.
But it will in fact increase with P,
from sum of results of all processors

Ts ≈ PT1

Serial fraction now a function of P :

f(P) =
P

N

Amdahl:

S(P) =
1

f(P) + [1− f(P)]/P

Example: N = 100, T1 = 1s. . .

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 5 10 15 20 25 30 35 40 45 50

S
pe

ed
-u

p

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)

Number of processors P

Less ideal case of Amdahl’s law

We assumed reduction is constant.
But it will in fact increase with P,
from sum of results of all processors

Ts ≈ PT1

Serial fraction now a function of P :

f(P) =
P

N

Amdahl:

S(P) =
1

f(P) + [1− f(P)]/P

Example: N = 100, T1 = 1s. . .

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 5 10 15 20 25 30 35 40 45 50

S
pe

ed
-u

p

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)

Number of processors P

Trying to beat Amdahl’s law #1

Scale up!

The larger N , the smaller
the serial fraction:

f(P) =
P

N

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 5 10 15 20 25 30 35 40 45 50

S
pe

ed
-u

p

Number of processors P

N=100
N=1,000

N=10,000
N=100,000

Ideal

Weak scaling: Increase problem size while increasing P

T imeweak(P) = T ime(N = n× P, P)

Good weak scaling means this time approaches a constant for large P .

Gustafson’s Law

Any large enough problem can be efficiently parallelized
(Efficiency→1).

Trying to beat Amdahl’s law #1

Scale up!

The larger N , the smaller
the serial fraction:

f(P) =
P

N

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 5 10 15 20 25 30 35 40 45 50

S
pe

ed
-u

p

Number of processors P

N=100
N=1,000

N=10,000
N=100,000

Ideal

Weak scaling: Increase problem size while increasing P

T imeweak(P) = T ime(N = n× P, P)

Good weak scaling means this time approaches a constant for large P .

Gustafson’s Law

Any large enough problem can be efficiently parallelized
(Efficiency→1).

Trying to beat Amdahl’s law #1

Scale up!

The larger N , the smaller
the serial fraction:

f(P) =
P

N

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 5 10 15 20 25 30 35 40 45 50

S
pe

ed
-u

p

Number of processors P

N=100
N=1,000

N=10,000
N=100,000

Ideal

Weak scaling: Increase problem size while increasing P

T imeweak(P) = T ime(N = n× P, P)

Good weak scaling means this time approaches a constant for large P .

Gustafson’s Law

Any large enough problem can be efficiently parallelized
(Efficiency→1).

Trying to beat Amdahl’s law #2

Parallel region⇒


Perfectly Parallel
(for large N)

Serial portion ⇒

Parallel overhead ⇒

Rewrite

∝ log2(P)

�� ��Partition data

? ? ? ?'

&

$

%

region 1

'

&

$

%

region 2

'

&

$

%

region 3

'

&

$

%

region 4

? ? ? ?�� ��Reduction

?

&%
'$
Answer

�� �� �� ���� ��? ?

?

&%
'$
Answer

Trying to beat Amdahl’s law #2

Parallel region⇒


Perfectly Parallel
(for large N)

Serial portion ⇒

Parallel overhead ⇒

Rewrite

∝ log2(P)

�� ��Partition data

? ? ? ?'

&

$

%

region 1

'

&

$

%

region 2

'

&

$

%

region 3

'

&

$

%

region 4

? ? ? ?�� ��Reduction

?

&%
'$
Answer

�� �� �� ���� ��? ?

?

&%
'$
Answer

Trying to beat Amdahl’s law #2

Parallel region⇒


Perfectly Parallel
(for large N)

Serial portion ⇒

Parallel overhead ⇒

Rewrite

∝ log2(P)

�� ��Partition data

? ? ? ?'

&

$

%

region 1

'

&

$

%

region 2

'

&

$

%

region 3

'

&

$

%

region 4

? ? ? ?�� �� �� ���� ��? ?

?

&%
'$
Answer

Trying to beat Amdahl’s law #2

Parallel region⇒


Perfectly Parallel
(for large N)

Serial portion ⇒

Parallel overhead ⇒

Rewrite

∝ log2(P)

�� ��Partition data

? ? ? ?'

&

$

%

region 1

'

&

$

%

region 2

'

&

$

%

region 3

'

&

$

%

region 4

? ? ? ?�� �� �� ���� ��? ?

?

&%
'$
Answer

Trying to beat Amdahl’s law #2

‘Serial’ fraction now different
function of P :

f(P) =
log2(P)

N

Amdahl:

S(P) =
1

f(P) + [1− f(P)]/P

Example: N = 100, T1 =
1s. . .

 0

 2

 4

 6

 8

 10

 12

 14

 5 10 15 20 25 30 35 40 45 50

S
pe

ed
-u

p

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)

Number of processors P

Time

Trying to beat Amdahl’s law #2

‘Serial’ fraction now different
function of P :

f(P) =
log2(P)

N

Amdahl:

S(P) =
1

f(P) + [1− f(P)]/P

Example: N = 100, T1 =
1s. . .

 0

 2

 4

 6

 8

 10

 12

 14

 5 10 15 20 25 30 35 40 45 50

S
pe

ed
-u

p

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)

Number of processors P

Time

Trying to beat Amdahl’s law #2

‘Serial’ fraction now different
function of P :

f(P) =
log2(P)

N

Amdahl:

S(P) =
1

f(P) + [1− f(P)]/P

Example: N = 100, T1 =
1s. . .

 0

 2

 4

 6

 8

 10

 12

 14

 5 10 15 20 25 30 35 40 45 50

S
pe

ed
-u

p

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)

Number of processors P

Time

Trying to beat Amdahl’s law #2

Weak Scaling

T imeweak(P) = T ime(N = n×P, P)

Should approach constant for
large P .
Let’s see. . .

Not quite!
But much better than before.

Gustafson?
It turns out that Gustafson’s law
assumes that the serial cost does
not change with P .
Here that grows logarithmically
with P , and this is reflected in the
weak scaling.

 95

 100

 105

 110

 115

 120

 125

 130

 135

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)

Number of processors P

 now
ideal

before

Really not that bad.
and other algorithms can do

better.

Trying to beat Amdahl’s law #2

Weak Scaling

T imeweak(P) = T ime(N = n×P, P)

Should approach constant for
large P .
Let’s see. . .
Not quite!

But much better than before.

Gustafson?
It turns out that Gustafson’s law
assumes that the serial cost does
not change with P .
Here that grows logarithmically
with P , and this is reflected in the
weak scaling.

 95

 100

 105

 110

 115

 120

 125

 130

 135

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)

Number of processors P

 now
ideal

 95

 100

 105

 110

 115

 120

 125

 130

 135

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)

Number of processors P

 now
ideal

before

Really not that bad.
and other algorithms can do

better.

Trying to beat Amdahl’s law #2

Weak Scaling

T imeweak(P) = T ime(N = n×P, P)

Should approach constant for
large P .
Let’s see. . .
Not quite!
But much better than before.

Gustafson?
It turns out that Gustafson’s law
assumes that the serial cost does
not change with P .
Here that grows logarithmically
with P , and this is reflected in the
weak scaling.

 95

 100

 105

 110

 115

 120

 125

 130

 135

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)

Number of processors P

 now
ideal

 95

 100

 105

 110

 115

 120

 125

 130

 135

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)

Number of processors P

 now
ideal

before

Really not that bad.
and other algorithms can do

better.

Trying to beat Amdahl’s law #2

Weak Scaling

T imeweak(P) = T ime(N = n×P, P)

Should approach constant for
large P .
Let’s see. . .
Not quite!
But much better than before.

Gustafson?
It turns out that Gustafson’s law
assumes that the serial cost does
not change with P .
Here that grows logarithmically
with P , and this is reflected in the
weak scaling.

 95

 100

 105

 110

 115

 120

 125

 130

 135

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)

Number of processors P

 now
ideal

 95

 100

 105

 110

 115

 120

 125

 130

 135

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)

Number of processors P

 now
ideal

before

Really not that bad.
and other algorithms can do

better.

Trying to beat Amdahl’s law #2

Weak Scaling

T imeweak(P) = T ime(N = n×P, P)

Should approach constant for
large P .
Let’s see. . .
Not quite!
But much better than before.

Gustafson?
It turns out that Gustafson’s law
assumes that the serial cost does
not change with P .
Here that grows logarithmically
with P , and this is reflected in the
weak scaling.

 95

 100

 105

 110

 115

 120

 125

 130

 135

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)

Number of processors P

 now
ideal

 95

 100

 105

 110

 115

 120

 125

 130

 135

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)

Number of processors P

 now
ideal

before

Really not that bad.
and other algorithms can do

better.

Trying to beat Amdahl’s law #2

Weak Scaling

T imeweak(P) = T ime(N = n×P, P)

Should approach constant for
large P .
Let’s see. . .
Not quite!
But much better than before.

Gustafson?
It turns out that Gustafson’s law
assumes that the serial cost does
not change with P .
Here that grows logarithmically
with P , and this is reflected in the
weak scaling.

 95

 100

 105

 110

 115

 120

 125

 130

 135

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)

Number of processors P

 now
ideal

 95

 100

 105

 110

 115

 120

 125

 130

 135

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)

Number of processors P

 now
ideal

before

Really not that bad.
and other algorithms can do

better.

HPC Lesson #2

Optimal Serial Algorithm for your problem may
not be the P→1 limit of your optimal

parallel algorithm.

Synchronization

Most problems are not
purely concurrent.

Some level of
synchronization or exchange
of information is needed
between tasks.

While synchronizing,
nothing else happens:
increases Amdahl’s f .

And synchronizations are
themselves costly.

Load balancing

The division of calculations
among the processors may
not be equal.

Some processors would
already be done, while
others are still going.

Effectively using less than
P processors: This reduces
the efficiency.

Aim for load balanced
algorithms.

Locality

So far we neglected communication costs.

But communication costs are more expensive than
computation!

To minimize communication to computation ratio:

* Keep the data where it is needed.
* Make sure as little data as possible is to be communicated.
* Make shared data as local to the right processors as possible.

Local data means less need for syncs, or smaller-scale syncs.

Local syncs can alleviate load balancing issues.

Locality

Locality

Example (PDE Domain decomposition)

wrong right

HPC Lesson #3

Parallel algorithm design is about finding as
much concurrency as possible, and arranging

it in a way that maximizes locality.

HPC Systems

Top500.org:

List of the worlds
500 largest
supercomputers.
Updated every 6
months,

Info on
architecture, etc.

HPC Systems

Architectures

Clusters, or, distributed memory machines

A bunch of servers linked together by a network
(“interconnect”).
commodity x86 with gigE, Cray XK, IBM BGQ

Symmetric Multiprocessor (SMP) machines, or, shared
memory machines

These can see the same memory, typically Limited number of
cores.
IBM Pseries, SGI Altix and Ultraviolet

Vector machines.

No longer dominant in HPC anymore.
Cray, NEC

Accelerator (GPU, Cell, MIC, FPGA)

Heterogeneous use of standard CPU’s with a specialized
accelerator.
NVIDIA, AMD, Intel, Xilinx

Distributed Memory: Clusters

Simplest type of parallel com-
puter to build

Take existing powerful
standalone computers

And network them

(source: http://flickr.com/photos/eurleif)

Distributed Memory: Clusters

Each node is
independent!
Parallel code consists of
programs running on
separate computers,
communicating with
each other.
Could be entirely
different programs.

Each node has own
memory!
Whenever it needs data
from another region,
requests it from that
CPU.

Usual model: “message passing”

~ ~
~

~

n n
n

n

CPU1

CPU2

CPU3

CPU4

�
�
�
�
�
�
�
�
�
�
�
���

�
��

�*

6

�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
��

���
��

?

�
�

�
�	

Distributed Memory: Clusters

Each node is
independent!
Parallel code consists of
programs running on
separate computers,
communicating with
each other.
Could be entirely
different programs.

Each node has own
memory!
Whenever it needs data
from another region,
requests it from that
CPU.

Usual model: “message passing”

~ ~
~

~

n n
n

n

CPU1

CPU2

CPU3

CPU4

�
�
�
�
�
�
�
�
�
�
�
���

�
��

�*

6

�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
��

���
��

?

�
�

�
�	

Clusters+Message Passing

Hardware:
Easy to build
(Harder to build well)
Can build larger and
larger clusters relatively
easily

Software:
Every communication
has to be hand-coded:
hard to program

~ ~
~

~

n n
n

n

CPU1

CPU2

CPU3

CPU4

�
�
�
�
�
�
�
�
�
�
�
���

�
��

�*

6

�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
��

��
���

?

�
�

�
�	

Task (function, control) Parallelism

Work to be done is decomposed across processors

e.g. divide and conquer

each processor responsible for some part of the algorithm

communication mechanism is significant

must be possible for different processors to be performing
different tasks

Cluster Communication Cost

Latency Bandwidth

GigE 10 µs 1 Gb/s
(10,000 ns) (60 ns/double)

Infiniband 2 µs 2-10 Gb/s
(2,000 ns) (10 ns /double)

Processor speed: O(GFLOP) ∼ few ns or less.

Cluster Communication Cost

SciNet General Purpose Cluster (GPC)

3864 nodes with two 2.53GHz quad-core Intel Xeon
5500 (Nehalem) x86-64 processors (30240 cores
total)

16GB RAM per node

Gigabit ethernet network on all nodes for
management and boot

DDR and QDR InfiniBand network on the nodes for
job communication and file I/O

306 TFlops

#16 on the June 2009 TOP500 supercomputer
sites (current #94)

#1 in Canada

SciNet General Purpose Cluster (GPC)

3864 nodes with two 2.53GHz quad-core Intel Xeon
5500 (Nehalem) x86-64 processors (30240 cores
total)

16GB RAM per node

Gigabit ethernet network on all nodes for
management and boot

DDR and QDR InfiniBand network on the nodes for
job communication and file I/O

306 TFlops

#16 on the June 2009 TOP500 supercomputer
sites (current #94)

#1 in Canada

Shared Memory

One large bank of
memory, different
computing cores acting
on it. All ‘see’ same
data.

Any coordination done
through memory

Could use message
passing, but no need.

Each code is assigned a
thread of execution of a
single program that acts
on the data.

~ ~

~

~

n n

n

n

-� � -

?

6

6

?

Core 1 Core 2

Core 3

Core 4

Memory

Threads versus Processes

Threads:
Threads of execution within
one process, with access to the
same memory etc.

Processes:
Independent tasks with their
own memory and resources

Shared Memory: NUMA

Non-Uniform Memory Access

Each core typically has
some memory of its own.

Cores have cache too.

Keeping this memory
coherent is extremely
challenging.

~ ~

~

~

Memoryn n

n

n

Coherency

The different levels of
memory imply multiple
copies of some regions

Multiple cores mean can
update unpredictably

Very expensive hardware

Hard to scale up to lots of
processors.

Very simple to program!!

~ ~

~

~

Memoryn n

n

n

x[10] = 5

x[10] =?

Data (Loop) Parallelism

Data is distributed across processors

easier to program, compiler optimization

code otherwise looks fairly sequential

benefits from minimal communication overhead

scale limitations

Shared Memory Communication Cost

Latency Bandwidth

GigE 10 µs 1 Gb/s
(10,000 ns) (60 ns/double)

Infiniband 2 µs 2-10 Gb/s
(2,000 ns) (10 ns /double)

NUMA 0.1 µs 10-20 Gb/s
(shared memory) (100 ns) (4 ns /double)

Processor speed: O(GFLOP) ∼ few ns or less.

SciNet Tightly Coupled System (TCS)

104 nodes with 16x 4.7GHz dual-core IBM Power6
processors (3328 cores total)

128GB RAM per node

4x DDR InfiniBand network on the nodes for job
communication and file I/O

62 TFlops

SciNet Tightly Coupled System (TCS)

104 nodes with 16x 4.7GHz dual-core IBM Power6
processors (3328 cores total)

128GB RAM per node

4x DDR InfiniBand network on the nodes for job
communication and file I/O

62 TFlops

Hybrid Architectures

Multicore machines linked
together with an
interconnect

Many cores have modest
vector capabilities.

Machines with GPU: GPU
is multi-core, but the
amount of shared memory
is limited.

Heterogeneous Parallelism

Accelerators

CPUs are not optimal for all algorithms and workloads, have
to address many use cases.

Special purpose co-processors (accelerators) can be connected
to the CPU to handle particular tasks more efficiently.

Long history of different accelerator architectures (and
processors themselves) focusing on SIMD (single instruction,
multiple data; vector) operations.

Graphics processors (GPUs) have been extended such that
they are flexible enough to handle these workloads (and
they’re relatively cheap).

GPGPU

GPUs trade-off single thread performance and memory caching for
SIMD parallel performance.

GPGPU

GPUs communicate with the CPU via PCI Express bus.

GPUs are driven by a host process running on the CPU, which
invokes computational kernels.

Extreme parallelism to get good speedup and hide latency,
high arithmetic intensity.

Data has to be explicitly sent back and forth to the GPU

Fine-grained parallelism complements other parallel methods
(MPI, threads, etc.)

Programming is typically more involved (but tools and
frameworks are constantly improving)

GPGPU

An array of streaming
multiprocessors attached to
a global memory.

Computational kernels are
executed using many
threads, which are
organized in a grid of
thread blocks.

Threads within a block
have a pool of shared
memory, as well as local,
private memory.

Focus on leveraging massive
parallelism in algorithms
while working within the
constraints of limited
shared-memory.

SHARCNET - monk

54 nodes with two 2.26 GHz quad-core Intel Xeon
E5607 (432 cores total)

48GB RAM per node

2x Nvidia M2070 Tesla GPU’s per node

QDR Inifiniband interconnect

SHARCNET - monk

54 nodes with two 2.26 GHz quad-core Intel Xeon
E5607 (432 cores total)

48GB RAM per node

2x Nvidia M2070 Tesla GPU’s per node

QDR Inifiniband interconnect

HPC Lesson #4

The best approach to parallelizing your
problem will depend on both details of your

problem and of the hardware available.

Program Structure

Structure of the problem dictates the ease with which we can
implement parallel solutions easy

Parallel Granularity

Granularity

A measure of the amount of processing performed before
communication between processes is required.

Parallelism

Fine Grained

constant communication necessary
best suited to shared memory environments

Coarse Grained

significant computation performed before communication is
necessary
ideally suited to message-passing environments

Perfect

no communication necessary

Batching Serail Jobs

SciNet is primarily a parallel computing resource. (Parallel
here means OpenMP and MPI, not many serial jobs.)

You should never submit purely serial jobs to the GPC queue.
The scheduling queue gives you a full 8-core node. Per-node
scheduling of serial jobs would mean wasting 7 cpus.

Nonetheless, if you can make efficient use of the resources
using serial runs and get good science done, that’s good too.

Users need to utilize whole nodes by running at least 8 serial
runs at once.

Batching Serail Jobs

SciNet is primarily a parallel computing resource. (Parallel
here means OpenMP and MPI, not many serial jobs.)

You should never submit purely serial jobs to the GPC queue.
The scheduling queue gives you a full 8-core node. Per-node
scheduling of serial jobs would mean wasting 7 cpus.

Nonetheless, if you can make efficient use of the resources
using serial runs and get good science done, that’s good too.

Users need to utilize whole nodes by running at least 8 serial
runs at once.

Batching Serail Jobs

SciNet is primarily a parallel computing resource. (Parallel
here means OpenMP and MPI, not many serial jobs.)

You should never submit purely serial jobs to the GPC queue.
The scheduling queue gives you a full 8-core node. Per-node
scheduling of serial jobs would mean wasting 7 cpus.

Nonetheless, if you can make efficient use of the resources
using serial runs and get good science done, that’s good too.

Users need to utilize whole nodes by running at least 8 serial
runs at once.

Batching Serail Jobs

SciNet is primarily a parallel computing resource. (Parallel
here means OpenMP and MPI, not many serial jobs.)

You should never submit purely serial jobs to the GPC queue.
The scheduling queue gives you a full 8-core node. Per-node
scheduling of serial jobs would mean wasting 7 cpus.

Nonetheless, if you can make efficient use of the resources
using serial runs and get good science done, that’s good too.

Users need to utilize whole nodes by running at least 8 serial
runs at once.

Easy case: serial runs of equal duration

#PBS -l nodes=1:ppn=8,walltime=1:00:00

cd $PBS O WORKDIR

(cd rundir1; ./dorun1) &

(cd rundir2; ./dorun2) &

(cd rundir3; ./dorun3) &

(cd rundir4; ./dorun4) &

(cd rundir5; ./dorun5) &

(cd rundir6; ./dorun6) &

(cd rundir7; ./dorun7) &

(cd rundir8; ./dorun8) &

wait # or all runs get killed immediately

Hard case: serial runs of unequal duration

Different runs may not take the same time: load imbalance.

Want to keep all 8 cores on a node busy.

Or even 16 virtual cores on a node (HyperThreading).

⇒ GNU Parallel can do this

Hard case: serial runs of unequal duration

Different runs may not take the same time: load imbalance.

Want to keep all 8 cores on a node busy.

Or even 16 virtual cores on a node (HyperThreading).

⇒ GNU Parallel can do this

GNU Parallel

GNU parallel is a a tool to run multiple (serial) jobs in parallel.
As parallel is used within a GPC job, we’ll call these subjobs.

It allows you to keep the processors on each 8-core node busy,
if you provide enough subjobs.

GNU Parallel can use multiple nodes as well.

On the GPC cluster:

GNU parallel is accessible on the GPC in the module
gnu-parallel, which you can load in your .bashrc.

$ module load gnu-parallel/20121022

There are currently (Nov 2012) three gnu-parallel modules on
the GPC. Although for compatibility gnu-parallel/2010 is the
default, we recommend using gnu-parallel/20121022.

GNU Parallel Example

SETUP

A serial c++ code ’mycode.cc’ needs to be compiled.

It needs to be run 32 times with different parameters, 1
through 32.

The parameters are given as a command line argument.

8 subjobs of this code fit into the GPC compute nodes’s
memory.

Each serial run on average takes ∼ 2 hour.

GNU Parallel Example

SETUP

A serial c++ code ’mycode.cc’ needs to be compiled.

It needs to be run 32 times with different parameters, 1
through 32.

The parameters are given as a command line argument.

8 subjobs of this code fit into the GPC compute nodes’s
memory.

Each serial run on average takes ∼ 2 hour.

GNU Parallel Example

SETUP

A serial c++ code ’mycode.cc’ needs to be compiled.

It needs to be run 32 times with different parameters, 1
through 32.

The parameters are given as a command line argument.

8 subjobs of this code fit into the GPC compute nodes’s
memory.

Each serial run on average takes ∼ 2 hour.

GNU Parallel Example

SETUP

A serial c++ code ’mycode.cc’ needs to be compiled.

It needs to be run 32 times with different parameters, 1
through 32.

The parameters are given as a command line argument.

8 subjobs of this code fit into the GPC compute nodes’s
memory.

Each serial run on average takes ∼ 2 hour.

GNU Parallel Example

SETUP

A serial c++ code ’mycode.cc’ needs to be compiled.

It needs to be run 32 times with different parameters, 1
through 32.

The parameters are given as a command line argument.

8 subjobs of this code fit into the GPC compute nodes’s
memory.

Each serial run on average takes ∼ 2 hour.

GNU Parallel Example

$

cd $SCRATCH/example

$ module load intel

$ icpc -O3 -xhost mycode.cc -o myapp

$ cat > subjob.lst

mkdir run01; cd run01; ../myapp 1 > out
mkdir run02; cd run02; ../myapp 2 > out
. . .
mkdir run32; cd run32; ../myapp 32 > out

$ cat > GPJob

#PBS -l nodes=1:ppn=8,walltime=12:00:00

cd $SCRATCH/example
module load intel gnu-parallel/20121022

parallel --jobs 8 < subjob.lst

$ qsub GPJob

2961985.gpc-sched

$ ls

GPJob GPJob.e2961985 GPJob.o2961985 subjob.lst
myapp run01 run02 run03
...

GNU Parallel Example

$ cd $SCRATCH/example

$

module load intel

$ icpc -O3 -xhost mycode.cc -o myapp

$ cat > subjob.lst

mkdir run01; cd run01; ../myapp 1 > out
mkdir run02; cd run02; ../myapp 2 > out
. . .
mkdir run32; cd run32; ../myapp 32 > out

$ cat > GPJob

#PBS -l nodes=1:ppn=8,walltime=12:00:00

cd $SCRATCH/example
module load intel gnu-parallel/20121022

parallel --jobs 8 < subjob.lst

$ qsub GPJob

2961985.gpc-sched

$ ls

GPJob GPJob.e2961985 GPJob.o2961985 subjob.lst
myapp run01 run02 run03
...

GNU Parallel Example

$ cd $SCRATCH/example

$ module load intel

$

icpc -O3 -xhost mycode.cc -o myapp

$ cat > subjob.lst

mkdir run01; cd run01; ../myapp 1 > out
mkdir run02; cd run02; ../myapp 2 > out
. . .
mkdir run32; cd run32; ../myapp 32 > out

$ cat > GPJob

#PBS -l nodes=1:ppn=8,walltime=12:00:00

cd $SCRATCH/example
module load intel gnu-parallel/20121022

parallel --jobs 8 < subjob.lst

$ qsub GPJob

2961985.gpc-sched

$ ls

GPJob GPJob.e2961985 GPJob.o2961985 subjob.lst
myapp run01 run02 run03
...

GNU Parallel Example

$ cd $SCRATCH/example

$ module load intel

$ icpc -O3 -xhost mycode.cc -o myapp

$

cat > subjob.lst

mkdir run01; cd run01; ../myapp 1 > out
mkdir run02; cd run02; ../myapp 2 > out
. . .
mkdir run32; cd run32; ../myapp 32 > out

$ cat > GPJob

#PBS -l nodes=1:ppn=8,walltime=12:00:00

cd $SCRATCH/example
module load intel gnu-parallel/20121022

parallel --jobs 8 < subjob.lst

$ qsub GPJob

2961985.gpc-sched

$ ls

GPJob GPJob.e2961985 GPJob.o2961985 subjob.lst
myapp run01 run02 run03
...

GNU Parallel Example

$ cd $SCRATCH/example

$ module load intel

$ icpc -O3 -xhost mycode.cc -o myapp

$ cat > subjob.lst

mkdir run01; cd run01; ../myapp 1 > out
mkdir run02; cd run02; ../myapp 2 > out
. . .
mkdir run32; cd run32; ../myapp 32 > out

$

cat > GPJob

#PBS -l nodes=1:ppn=8,walltime=12:00:00

cd $SCRATCH/example
module load intel gnu-parallel/20121022

parallel --jobs 8 < subjob.lst

$ qsub GPJob

2961985.gpc-sched

$ ls

GPJob GPJob.e2961985 GPJob.o2961985 subjob.lst
myapp run01 run02 run03
...

GNU Parallel Example

$ cd $SCRATCH/example

$ module load intel

$ icpc -O3 -xhost mycode.cc -o myapp

$ cat > subjob.lst

mkdir run01; cd run01; ../myapp 1 > out
mkdir run02; cd run02; ../myapp 2 > out
. . .
mkdir run32; cd run32; ../myapp 32 > out

$ cat > GPJob

#PBS -l nodes=1:ppn=8,walltime=12:00:00

cd $SCRATCH/example
module load intel gnu-parallel/20121022

parallel --jobs 8 < subjob.lst

$

qsub GPJob

2961985.gpc-sched

$ ls

GPJob GPJob.e2961985 GPJob.o2961985 subjob.lst
myapp run01 run02 run03
...

GNU Parallel Example

$ cd $SCRATCH/example

$ module load intel

$ icpc -O3 -xhost mycode.cc -o myapp

$ cat > subjob.lst

mkdir run01; cd run01; ../myapp 1 > out
mkdir run02; cd run02; ../myapp 2 > out
. . .
mkdir run32; cd run32; ../myapp 32 > out

$ cat > GPJob

#PBS -l nodes=1:ppn=8,walltime=12:00:00

cd $SCRATCH/example
module load intel gnu-parallel/20121022

parallel --jobs 8 < subjob.lst

$ qsub GPJob

2961985.gpc-sched

$

ls

GPJob GPJob.e2961985 GPJob.o2961985 subjob.lst
myapp run01 run02 run03
...

GNU Parallel Example

$ cd $SCRATCH/example

$ module load intel

$ icpc -O3 -xhost mycode.cc -o myapp

$ cat > subjob.lst

mkdir run01; cd run01; ../myapp 1 > out
mkdir run02; cd run02; ../myapp 2 > out
. . .
mkdir run32; cd run32; ../myapp 32 > out

$ cat > GPJob

#PBS -l nodes=1:ppn=8,walltime=12:00:00

cd $SCRATCH/example
module load intel gnu-parallel/20121022

parallel --jobs 8 < subjob.lst

$ qsub GPJob

2961985.gpc-sched

$ ls

GPJob GPJob.e2961985 GPJob.o2961985 subjob.lst
myapp run01 run02 run03
...

GNU Parallel Example

17 hours
42% utilization

⇒
10 hours

72% utilization

GNU Parallel Example

17 hours
42% utilization

⇒
10 hours

72% utilization

GNU Parallel Details

What else can it do?

Recover from crashes (joblog/resume options)

Span multiple nodes

Using GNU Parallel

wiki.scinethpc.ca/wiki/index.php/User Serial

wiki.scinethpc.ca/wiki/images/7/7b/Tech-talk-gnu-
parallel.pdf

www.gnu.org/software/parallel

www.youtube.com/playlist?list=PL284C9FF2488BC6D1

O. Tange, GNU Parallel – The Command-Line Power Tool,
;login: The USENIX Magazine, February 2011:42-47.

HPC Programming Models

Languages

serial

C, C++, Fortran

threaded (shared memory)

OpenMP, pthreads

message passing (distributed memory)

MPI, PGAS (UPC, Coarray Fortran)

accelerator (GPU, Cell, MIC, FPGA)

CUDA, OpenCL, OpenACC

HPC System

HPC Software Stack

Typically GNU/Linux

non-interactive batch processing using a queuing system
scheduler

software packages and versions usually available as “modules”

Parallel filesystem (GPFS,Lustre)

	HPC Overview
	Parallel Computing
	Amdahl's law
	HPC Lesson #1
	Beating Amdahl's law
	HPC Lesson #2
	Load balancing
	Locality
	HPC Lesson #3

	HPC Hardware
	Distributed Memory
	Shared Memory
	Hybrid Architectures
	HPC Lesson #4

	HPC Programming Models
	GNU Parallel
	HPC System Software

