
Predictability and Interactive Visualization

Ramses van Zon

SciNet HPC Consortium

12 February 2015

Ramses van Zon (SciNet HPC Consortium) Predictability and Interactive Visualization 12 February 2015 1 / 21

Introduction

In previous session, we have talk about

Computing for Modeling

Analyzing Data to fit a model

Using randomness

Errors

Lots of Python

Using Public Data: Twitter API, Geocode, Exoplanets

Today, we’ll focus on computation per se: when or why do we need it, and
what are the limits of computability?

Ramses van Zon (SciNet HPC Consortium) Predictability and Interactive Visualization 12 February 2015 2 / 21

When must we compute?
Or more precisely, when must we calculate numbers using a computer?

Sometimes just handy:
E.g. what’s the total after tax of a $45 item?
By hand:

113
× 45

565
+ 4520

5085

Using a calculator: $45 × 1.13 = $50.85
Still, the latter isn’t really what we think of as ’computing’.

Sometimes not a straightforward computation.

Sometimes just a lot: ‘Big Data’

Sometimes complex.

Ramses van Zon (SciNet HPC Consortium) Predictability and Interactive Visualization 12 February 2015 3 / 21

Example that requires computation

Okay, so a parachuter jump out of a plane 1 km above the ground.

Let’s say he’s eager, draws the cord right away, so the drag coefficient
is the same all the way down.

Using a bit of math and physics, the height as a function of time is
found to be given by

h(t) = h0 − gst + gs2(1 − e−t/s)

(g=9.8, s=characteristic time to reach terminal velocity ≈ 1 sec)

How long does it take to reach the ground?

0 = h0 − gst + gs2(1 − e−t/s)

Even with parameters given, we can’t solve this exactly. Must do so
numerically (or try many, many times).

Ramses van Zon (SciNet HPC Consortium) Predictability and Interactive Visualization 12 February 2015 4 / 21

Counter example

We ignore the drag, then

h(t) = h0 −
1

2
gt2

This, we can solve, since it’s just a quadratic equation.

Also at the end, we’d punch in numbers to compute a square root,
but, again, this isn’t really computing.

Ramses van Zon (SciNet HPC Consortium) Predictability and Interactive Visualization 12 February 2015 5 / 21

Counter-counter example

Let’s replace the parachuter with a ball (for his sake).

Once the ball has hit the ground (at the time we just computed), it
bounces up at some fraction of the incoming velocity.

What’s the next collision, and the next, and the next, . . .

Definitely do not want to do this by hand: automate = compute.

This example is a ‘dynamical system’. Such models can be used for
predictions. E.g. in this case: what is the maximum height in the 20th
bounce?

Ramses van Zon (SciNet HPC Consortium) Predictability and Interactive Visualization 12 February 2015 6 / 21

Predictability

Will introduce a model of a ball bouncing on a vibrating plate

Use an interactive, visual implementation to explore how predictable
this is.

Since there are several bounces, this definitely requires computation.

To investigate predictability, will use nearby starting conditions.

Experimental realization: http://arxiv.org/abs/1405.3482

Ramses van Zon (SciNet HPC Consortium) Predictability and Interactive Visualization 12 February 2015 7 / 21

Predictability

Will introduce a model of a ball bouncing on a vibrating plate

Use an interactive, visual implementation to explore how predictable
this is.

Since there are several bounces, this definitely requires computation.

To investigate predictability, will use nearby starting conditions.

Experimental realization: http://arxiv.org/abs/1405.3482

Ramses van Zon (SciNet HPC Consortium) Predictability and Interactive Visualization 12 February 2015 7 / 21

How to get this Python App

Python Script for Interactive Ball on Vibrating Plate

Downloadable from: http://support.scinet.utoronto.ca/bounce.py

Requires modules pyglet and pyprocessing

pip install pyglet
pip install pyprocessing

On Window 7, I’ve had to do the following:

pip install pyglet
pip install --upgrade http://pyglet.googlecode.com/archive/tip.zip
DOWNLOAD AND RUN
https://pyprocessing.googlecode.com/files/
pyprocessing-0.1.3.22.linux-x86_64.exe

Ramses van Zon (SciNet HPC Consortium) Predictability and Interactive Visualization 12 February 2015 8 / 21

Play with it

What do we see?

Ramses van Zon (SciNet HPC Consortium) Predictability and Interactive Visualization 12 February 2015 9 / 21

Model

The bouncing ball motion: h(t) = at2 + bt + c
a = −g/2 always, but b and c depend vary from bounce to bounce

The floor: moves up and down either as a sawtooth or near-sinusoidal

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

Sawtooth

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

Near-sinusoidal

Near-sinusoidal actually means piecewise quadratic, so also of the
form: z(t) = At2 + Bt + C

computation of the bounce time: solve a quadratic equation.

Ramses van Zon (SciNet HPC Consortium) Predictability and Interactive Visualization 12 February 2015 10 / 21

Some theory

Each bounce can be computed, but as we see from the collection of
green trajectories, nearby situations diverge.

Sawtooth and sinusoidal behave quite differently.

I For sawtooth, clumps of trajectories stay together, but there are a
couple different clumps.

I For sinusoidal, at first the trajectories smoothly diverge, before going
all over the place.

In dynamical systems parleance, the former is called ‘non-chaotic’, the
latter is call ‘chaotic’

Other prime example of a chaotic system: The Weather.

Ramses van Zon (SciNet HPC Consortium) Predictability and Interactive Visualization 12 February 2015 11 / 21

Object Oriented Programming

This type of simulation lends itself to so-called object programming.

In Python (and most other languages), objects are collections of
variables together with functions that act on this data

Object can be contain other objects.

The bounce.py is a fairly elaborate example: there are objects for the
various balls and a floor object.

Ramses van Zon (SciNet HPC Consortium) Predictability and Interactive Visualization 12 February 2015 12 / 21

Objects

Functional programming: data and the functions that can act on that
data, are defined separatedly.

Object oriented programming, the functions belong to the data
structure.

Better consistency, modularity, and reusability of your code.

Implementation in python using the class construct.

Ramses van Zon (SciNet HPC Consortium) Predictability and Interactive Visualization 12 February 2015 13 / 21

Classes in Python

Classes are used to group together data and code, accessing them
with the . operator.

One could also do this with modules. But there can be only one
instance of a module, and many instances of a class.

Inheritance: multiple base classes, derived class can override any
methods of its base class or classes, and method can call a base class
method with the same name.

Objects can contain arbitrary amounts and kinds of data.

As everything in Python, classes are dynamic: created at runtime, and
can be modified further after creation.

Ramses van Zon (SciNet HPC Consortium) Predictability and Interactive Visualization 12 February 2015 14 / 21

Classes as collections of variables

class Apple:
type = "Delicious"
colour = "Green"

apple1 = Apple()
apple2 = Apple()
Apple.colour = "Golden"
print apple1.colour

Outputs: Golden
.
apple1 and apple2 share colour
(class variable): tricky.

class Apple: pass
apple1 = Apple()
apple1.type = "Delicious"
apple1.colour = "Green"
apple2 = Apple()
apple2.type = "Delicious"
apple2.colour = "Golden"
print apple1.colour

Outputs: Green
.
This works, but now we have to
assign each member.
Anything more workable requires
writing a constructor.

Ramses van Zon (SciNet HPC Consortium) Predictability and Interactive Visualization 12 February 2015 15 / 21

Initializing objects with constructors

Collection of variables

Same def keyword to define
methods.

Constructor name is init

class Apple:
def __init__(self):

self.type="Delicious"
self.colour="Green"

apple1 = Apple()
apple2 = Apple()
print apple1.colour

Outputs Green

Ramses van Zon (SciNet HPC Consortium) Predictability and Interactive Visualization 12 February 2015 16 / 21

Class syntax in Python

Methods take a first argument
that is an instance of the class

This argument is explicit self
in definition but implicit in
calls.

In methods, refer to member
fields as self.field.

No separation
interface/implementation

class Apple:
def __init__(self):

self.type="Delicious"
self.colour="Green"

def describe(self):
print self.type,

self.colour

apple1 = Apple()
apple2 = Apple()
print apple1.colour
[Green]

apple1.describe()
[Delicious Green]

Ramses van Zon (SciNet HPC Consortium) Predictability and Interactive Visualization 12 February 2015 17 / 21

More special methods

del
A kind of destructor.

str
Converts object to a string for output. Used by print. Intended to
be readable by users.

repr
Returns a string representation for the object. Used by python (e.g.,
if you just type the name of an object). Intended to be
understandable by developers.

enter
Called when used in a ‘with’ construct (later)

exit
Called wen a ‘with’ construct is done (later).

Ramses van Zon (SciNet HPC Consortium) Predictability and Interactive Visualization 12 February 2015 18 / 21

Example: Particle

class Particle(object):
def __init__(self,m,x0,v0):

self.t = 0.0
self.m = m
self.x = x0
self.v = v0

def timeStep(self,dt):
self.t += dt
self.x += dt*self.v

def __str__(self):
return str(self.t)+" "+str(self.x)+" "+str(self.v)

p = Particle(2.0,0.0,-1.0)
while p.t <= 10.0:

p.timeStep(0.1)
print p

Ramses van Zon (SciNet HPC Consortium) Predictability and Interactive Visualization 12 February 2015 19 / 21

PyProcessing

The interactive visualization used here is called pyprocessing.

This is a python version of ‘processing’, an interactive visualization
based off of Java.

Other ports exist as well, such as in javascript or even c (partially).

From https://processing.org/:

Free to download and open source

Interactive programs with 2D, 3D or PDF output

OpenGL integration for accelerated 3D

For GNU/Linux, Mac OS X, and Windows

Over 100 libraries extend the core software

Well documented, with many books available

Ramses van Zon (SciNet HPC Consortium) Predictability and Interactive Visualization 12 February 2015 20 / 21

PyProcessing

Fairly simple syntax to do drawing

It’s set up for interactive programming

A ‘draw’ function is called repeatedly

If mouse is moved, key is clicked, etc, a corresponding function can
capture that event.

Can be a nicer intro to programming than full-blown Java.

Btw, it’s on the Kahn Academy too, which some high school teachers
use already, I believe.

Ramses van Zon (SciNet HPC Consortium) Predictability and Interactive Visualization 12 February 2015 21 / 21

