
Scientific Computing (PHYS 2109/Ast 3100 H)
I. Scientific Software Development

SciNet HPC Consortium
University of Toronto

Winter 2014

Lecture 8

Data

File Systems and I/O

Storage

Summary

Data Management

To much of a good thing?

I Increase in computing power makes simulations larger/more
frequent

I Increase in sensor technology makes experiments/observations
larger

I Large Hadron: ∼ 50-100 PB to date (4 years)
I Square Kilometer Array: ∼ 1 EB /day !

I Data sizes that used to be measured in MB/GB now
measured in TB/PB.

I Easier to make big data than to do something useful with it!

I Data access is the now the bottleneck.

Big Data

Big Data

Big Data

Big Data

Big Data

Big Data

Data

Things to think about

I Big is Relative
I Too Big to Fit in Memory (16-256 GB today)
I Too Big to Fit on Disk (1-100 TB today)

I Plan for Data Analysis
I Don’t just save everything.
I On the fly analysis, post-processing automation.
I Is it worth storing or just recomputing?

Disk I/O

Common Uses

I Checkpoint/Restart Files

I Data Analysis

I Data Organization

I Time accurate and/or Optimization Runs

I Batch and Data processing

I Database

Disk I/O

Common Bottlenecks

I Mechanical disks are slow!

I System call overhead (open, close, read, write)

I Shared file system (nfs, lustre, gpfs, etc)

I HPC systems typically designed for high bandwidth (GB/s)
not IOPs

I Uncoordinated independent accesses

Disk Access Rates over Time

Figure by R. Ross, Argonne National Laboratory, CScADS09

Memory/Storage Latency

Figure by R. Freitas and L Chiu, IBM Almaden Labs, FAST’10

Definitions

IOPs
Input/Output Operations Per Second (read,write,open,close,seek)

I/O Bandwidth

Quantity you read/write (think network bandwidth)

Comparisons
Device Bandwidth (MB/s) per-node IOPs per-node

SATA HDD 100 100 100 100
SSD HDD 250 250 4000 4000
SciNet 5000 1.25 30000 7.5

Storege Formats

Formats

I ASCII

I Binary

I MetaData (XML)

I Databases

I Standard Library’s (HDF5,NetCDF)

ASCII

American Standard Code for Information Interchange

Pros

I Human Readable

I Portable (architecture independent)

Cons

I Inefficient Storage

I Precision

I Expensive for Read/Write (conversions)

Native Binary

100100100
Pros

I Efficient Storage (256 x floats @4bytes takes 1024 bytes)

I Efficient Read/Write (native)

Cons

I Have to know the format to read

I Portability (Endianness)

ASCII vs. binary

Writing 128M doubles

Format /scratch (GPCS) /dev/shm (RAM) /tmp (disk)

ASCII 173s 174s 260s
Binary 6s 1s 20s

Syntax

Format C/C++ FORTRAN

ASCII fprintf() open(6,file=’test’,form=’formatted’)
file << write(6,*)

Binary fwrite() open(6,file=’test’,form=’unformatted’)
file.write() write(6)

C++ Writing Binary

Read

#include <fstream>

std::ifstream inFile ("data.in", std::ifstream::binary);

std::ifstream& read(char *, int);

Write

#include <fstream>

std::ofstream outFile ("data.out", std::ofstream::binary);

std::ofstream& write(const char *, int n);

C++ Writing Binary

#include <fstream>

int main() {

int num=100; char a='t';

char *obuffer = new char [num];

char *ibuffer = new char [num];

for (int i=0; i<num; i++) obuffer[i]=a;

//--------- write to outfile -----------

std::ofstream outfile ("file.bin", std::ofstream::binary);

outfile.write (obuffer,num);

outfile.close();

//--------- read infile ----------------

std::ifstream infile ("file.bin", std::ifstream::binary);

infile.read (ibuffer,num);

infile.close();

delete [] ibuffer, obuffer;

return 0;

}

C++ Writing Binary

#include <fstream>

int main() {

int num=100; double a=44.0;

double *obuffer = new double [num];

double *ibuffer = new double [num];

for (int i=0; i<num; i++) obuffer[i]=a;

//--------- write to outfile -----------

std::ofstream outfile ("file.bin", std::ofstream::binary);

outfile.write ((char *)obuffer,num*sizeof(double));

outfile.close();

//--------- read infile ----------------

std::ifstream infile ("file.bin", std::ifstream::binary);

infile.read ((char *)ibuffer,num*sizeof(double));

infile.close();

delete [] ibuffer, obuffer;

return 0;

}

Data Management

File(s)

I Human-interpretable filenames lose their charm after few
dozen files (or even after a few months pass)...

I Need to avoid thousands of files in a flat directory.

I A few big files are more efficient that many little ones.

I Keep parallel I/O in mind.

I Rigorously maintained metadata becomes essential.

I Possibly use a database or version control (i.e. git-annex).

Data Management

http://www.phdcomics.com/comics/archive.php?comicid=1323

Metadata

What is Metadata?
Data about Data

I File System: size, location, date, owner, etc.

I App Data: File format, version, iteration, etc.

Example: XML

<?xml version="1.0" encoding="UTF-8" ?>
<slice_data>

<format>UTF1000</format>
<verstion>6.8</version>

<date> January 15th, 2010 </date>
<loc> 47 23.516 -122 02.625 </loc>

</slice_data>

“Standard” Formats

File Formats

I CGNS (CFD General Notation System)

I IGES/STEP (CAD Geometry)

I HDF5 (Hierarchical Data Format)

I NetCDF (Network Common Data Format)

I disciplineX version

Benefits

I Most provided with as libraries.

I Self Describing (imbedded metadata).

I Many are binary agnostic, so portable.

I Many support Parallel I/O and native FS support.

I Broader tool support (visualization, etc.)

Databases

Beyond flat files

I Very powerful and flexible storage approach

I Data organization and analysis can be greatly simplified

I Enhanced performance over seek/sort depending on usage
I Open Source Software

I SQLite (serverless)
I PostgreSQL
I mySQL
I mongoDB (NoSQL)

Data Management Summary

Summary

I Have a Plan for Data.

I Automate and reduce/post process on the fly.

I Start small and plan for scalability.

	Data
	File Systems and I/O
	Storage
	Summary

