
Parallel Computing
I: Concurrency,  Amdahl’s Law, and Locality



Why Parallel 
Computing?

Faster: 
At any given time, there is a limit 
as to how fast one computer 
can compute.
So use more computers!



Why Parallel 
Computing?

Bigger: 
At any given time, there is a limit 
as to how much memory, disk 
space, etc can be put on one 
computer.
So use more computers!



Why Parallel 
Computing?

More: 
You have a program that runs in 
reasonable time one one 
processor but you want to run it 
thousands of times.

So use more computers!



Concurrency
• Must be something for the 

‘more computers’ to do.

• Must be able to find 
concurrency in your problems

• Many Tasks

• Order Unimportant

http://flickr.com/photos/splorp/

http://flickr.com/photos/splorp/
http://flickr.com/photos/splorp/


Data Dependancies Limit 
Concurrency



Parameter Study: 
Ideal case

• Want to know all results as 
model parameter varies

• Can run serial code on up to 
as many processors as 
parameter sets

• ‘More’

µ = 1 µ = 2 µ = 3 µ = 4

Answer Answer Answer Answer



Throughput = 
Tasks/Time

How long it takes to process the 
N tasks you want done

For completely independent 
tasks, P processors can increase 

throughput by factor P!

vs

throughput =
N

time



Scaling with P
How a problem scales: how 
throughput behaves as 
processor number increases
In this case, the throughput 
scales linearly with the number 
of processors

This is the best case:
‘Perfect scaling’
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Scaling with P
Another way to look at it: time 
it takes to get some fixed 
amount of work done

More usual (and more 
important!)

Perfect scaling: time to 
completion ~ 1/P

P processors - P times faster
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Scaling with P
Another way to look at it: time 
it takes to get some fixed 
amount of work done

More usual (and more 
important!)

Perfect scaling: time to 
completion ~ 1/P

P processors - P times faster
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Parameter Study: 
‘Embarrassingly 

Parallel’
• Scales perfectly up to P=N
• Speedup = P: ‘linear scaling’, 

ideal case.

µ = 1 µ = 2 µ = 3 µ = 4

Answer Answer Answer Answer



Problems Differ in 
amount of 

Concurrency
Integrate (or some other simple 
processing) tabulated 
experimental data

Integration of different regions 
can be summed by each 
processor

But first need to get data to 
processor, then bring together 
all the sums 

Region
1

Region
2

Region 
3

Region 
4

Reduction

Answer

Partition Data



Region
1

Region
2

Region 
3

Region 
4

Reduction

Answer

Partition Data

Parallel Portion:
Perfectly Parallel (as 

long as there is 
enough work)

T ~ 1/P



Region
1

Region
2

Region 
3

Region 
4

Reduction

Answer

Partition Data

Serial Portion:
Sum has to be 

done; if done on one 
processor, just same 

as serial:
T ~ const



Answer

Region
1

Region
2

Region 
3

Region 
4

Reduction

Partition Data

Parallel Overhead:
Data has to be sent to 

appropriate processor, a 
cost of the parallel 

implementation

T const (best case)
or increasing fn of P



Total Time: Serial 
+ Parallel

Ignoring data-moving costs (for 
now):

Typically linear in P (sum)
Eventually, as problem becomes 

increasingly scaled up, serial 
term dominates

Answer

Region
1

Region
2

Region 
3

Region 
4

Reduction

Partition Data

time(N, P ) =
�

N

P

�
Twork + Treduction(P )



Timing of 
simple case

Ignore data transfer costs; say:
100 s to sum up numbers
5 s in assembling the parts

How does this behave on many 
processors?



More processors per 
run don’t always help

Given timing data, how do we 
choose P to run on if we have N 
programs to run?

Ideal case, timing goes down 1/P - 
doesn’t matter

Serial part (5%!) becomes a 
bottleneck

Can improve throughput by 
running on fewer processors

Note: t(50) = 7s
t(25) = 9s

Can run 2 jobs on 25 procs each
in about same time as one on 50!



Speedup: How 
much faster 

with P procs?
An important concept is the 
speedup of a given parallel 

implementation

speedup(P ) =
t(N, P = 1)

t(N, P )



Efficiency: 
Speedup should 

be ~ P
Related concept: Parallel 
Efficiency (compared to serial 
code)

Efficiency(P ) =
t(N,P = 1)
Pt(N, P )

=
speedup(P )

P



Amdahl’s Law
Any serial part of 
computation will 

eventually dominate
If serial fraction is f, even if 
parallel component goes to 

zero, speedup can only be 1/f

time(N, P ) ∼
�

f +
1− f

P

�

Speedup =
1�

f + 1−f
P

�

lim
P→∞

Speedup =
1
f

lim
P→∞

Efficiency = 0

(perfectly)
parallel fraction

serial
fraction



Amdahl’s Law
• Any serial part of 

computation will 
eventually dominate

• If serial fraction is f, even if 
parallel component goes to 
zero, speedup can only be 1/f



Avoiding 
Amdahl

In some cases, may not matter.
If will run in reasonable time on 

some small number of  
processor, asymptotic arguments 

may not matter.

Answer

Region
1

Region
2

Region 
3

Region 
4

Reduction

Partition Data



Trying to Beat 
Amdahl, #1

Rewrite serial portions to take 
into account parallelism

eg, many reductions can be done 
in parallel that will cost log2(P) 
(not 1, but much better than 

serial = P...)

Answer

Region
1

Region
2

Region 
3

Region 
4

Partition Data



Big Lesson #1

Optimal Serial Algorithm for your problem 
may not be the P→1 limit of your optimal 

Parallel algorithm



Trying to Beat Amdahl, #2 - 
Upsize

Desktop problem isn’t a 
supercomputer problem!

Reason to run on big machines is 
size as well as speed

Amdahl’s law assumes constant size 
problem

More work; f goes down.

Gustafson’s law: any sufficiently 
large problem can be efficiently 
parallelized.



Weak Scaling
How does problem behave if 
you expand problem size as 
number of processors? 

Strong Scaling - on how many 
processors can you efficiently 
run given problem

Weak Scaling - how large a 
problem can you efficiently run



More on 
Concurrency

Most problems are not pure 
concurrency 

Some level of synchronization, 
exchange of information needed 
between tasks

This needs to be minimized

Increases Amdahl’s ‘f ’

Are themselves costly

µ = 1 µ = 2 µ = 3 µ = 4

Synchronization

Synchronization

Synchronization



Concurrency
Makes possible lots of wasted 
time (‘load balancing’, about 

which more later)
µ = 1 µ = 2 µ = 3 µ = 4

Synchronization

Synchronization

Synchronization



Locality
Information needed by the task 
should be as local as possible.

When tasks do need to interact, 
best that those interactions be as 
local as possible, and with as few 
others as possible

Communications cost lower

Fewer processes have are locked up 
during the necessary 
synchronization

µ = 1



Big Lesson #2

Parallel algorithm design is about finding as 
much concurrency as possible, and arranging 

it in a way that maximizes locality.



Finding 
Concurrency

Identify tasks that can be done 
independently, order doesn’t 

matter 

PDEs: parts of domain

N-body: particles (or 
interactions)



Maintaining 
Locality

Now have to lump the 
concurrent bits into tasks

Choosing that re-aggregation 
can greatly effect locality.

perimeter 
= 9L

L

perimeter 
= 4L



Parallel Computing
II: Parallel Computers



Top500.org:

List updated every
6 months of the
worlds 500 largest
supercomputers.

Info about 
architecture, ...

1 Petaflop (1015 flop/s); 
126,600 cores



Computer 
Architectures

How the computers work shape 
how best to progam them

Shared Memory vs Distributed 
Memory.
Vector computers...



Distributed 
Memory: 
Clusters

Simplest type of parallel 
computer to build

http://flickr.com/photos/eurleif/

• Take existing powerful 
standalone computers

• And network them

+

http://flickr.com/photos/eurleif/
http://flickr.com/photos/eurleif/


Each Node is 
Independent
Parallel code consists of 

programs running on separate 
computers, communicating with 

each other 
Could be entirely different 

programs

CPU1

CPU2

CPU3

CPU4



Each node has 
independent 

memory
Locally stores its own portion of 

problem
Whenever it needs information 
from another region, requests it 

from appropriate CPU
Usual model: ‘message passing’

CPU1

CPU2

CPU3

CPU4

Memory



Clusters 
+Message 
Passing

HW: Easy to build (harder to 
build well)

HW: Can build larger and larger 
clusters relatively easily

SW: Every communication has 
to be hand coded -- hard to 

program

CPU1

CPU2

CPU3

CPU4

Memory



Latency Bandwidth

GigE

Infiniband

~10 µs
(10,000 ns)

1 Gb/s
(~60 ns/double)

~2 µs
(2,000 ns)

2-10 Gb/s
(~10 ns/double)

Processor speed: 1 FLOP ~ few ns or less



Shared Memory
One large bank of memory, 
different computing cores acting 
on it.  All ‘see’ same data

Any coordination done through 
memory.

Could do like before, but why?
Each core is assigned a thread of 
execution of a single program that 
acts on the data

Core1

Core2

Core3

Memory



Thread Vs. 
Process

Processes: Independent tasks 
with their own memory, 
resources

Threads: Threads of execution 
within one process, ‘seeing’ the 
same memory, etc.

MPI
Procs

OMP
Threads



Shared 
Memory:NUMA
Complicating things: each core 
typically has some of its own 

memory
Non-Uniform Memory Access

Locality still matters
Cores have cache, too.

Keeping this memory coherent is 
extremely challenging

Memory



Coherency
The different levels of memory 
imply multiple copies of some 

regions
Multiple cores mean can update 

unpredictably
Very expensive hardware
Hard to scale up to lots of 

processors, very $$$
Very simple to program!!

x[20] = 3

x[20] = ?



Latency Bandwidth

GigE

Infiniband

NUMA 
Shared Mem

~10 µs
(10,000 ns)

1 Gb/s
(~60 ns/double)

~2 µs
(2,000 ns)

2-10 Gb/s
(~10 ns/double)

~0.1 µs
(100 ns)

10-20 Gb/s
(~4 ns/double)

Processor speed: 1 FLOP ~ ns or less



Big Lesson #3

The best approach to parallelizing your 
problem will depend on both details of your 

problem and of the hardware available.



Hybrid 
Architectures

Almost all of the biggest computers 
are now clusters of shared memory 

nodes
Generally just use message passing 
across all cores, but as P(1 node) 

goes up, hybrid approaches start to 
make sense.



Before we start 
with MPI:

• login as instructed and ensure this works:

• cp -R ~ljdursi/course/parCFD ~/

• source ~/parCFD/setup

• cd  ~/parCFD/gettingstarted/

• make mpi_hello_world

• mpirun -np 8 ./mpi_hello_world



An introduction to MPI



• Not built in to compiler

• Function calls that can be 
made from any compiler, 
many languages

• Just link to it

• Wrappers: mpicc, mpif77

MPI is a Library for 
 Message-Passing

C

Fortran



MPI is a Library for 
 Message-Passing

• Communication/coordination 
between tasks done by 
sending and receiving 
messages.

• Each message involves a 
function call from each of the 
programs.

CPU1

CPU2

CPU3

CPU0



MPI is a Library for 
 Message-Passing

• Three basic sets of 
functionality:

• Pairwise communications via 
messages

• Collective operations via 
messages

• Efficient routines for getting 
data from memory into 
messages and vice versa

CPU1

CPU2

CPU3

CPU0



Messages
• Messages have a sender and 

a receiver

• When you are sending a 
message, don’t need to specify 
sender (it’s the current 
processor),

• A sent message has to be 
actively received by the 
receiving process

CPU1 CPU3

count of MPI_SOMETYPE

tag



Messages
• MPI messages are a string of 

length count all of some 
fixed MPI type 

• MPI types exist for 
characters, integers, floating 
point numbers, etc.

• An arbitrary non-negative 
integer tag is also included - 
helps keep things straight if 
lots of messages are sent.

CPU1 CPU3

count of MPI_SOMETYPE

tag



Size of MPI 
Library

• Many, many functions (>200)

• Not nearly so many concepts

• We’ll get started with just 
10-12, use more as needed.

MPI_Init()
MPI_Comm_size()
MPI_Comm_rank()
MPI_Ssend()
MPI_Recv()
MPI_Finalize()



Hello World
• The obligatory starting point

• cd ~/parCFD/mpi-intro

• Type it in, compile and run it 

Fortran

edit hello-world.c or .f90
$ mpif90 hello-world.f90 
         -o hello-world
or
$ mpicc hello-world.c 
         -o hello-world
$ mpirun -np 1 hello-world
$ mpirun -np 2 hello-world
$ mpirun -np 8 hello-world

C



What mpicc/
mpif90 do

• Just wrappers for the system 
C, Fortran compilers that have 
the various -I, -L clauses in 
there automaticly

•  --showme (OpenMPI) shows 
which options are being used

$ mpicc --showme hello-world.c 
-o hello-world

gcc -I/usr/local/include
 -pthread hello-world.c -o 
hello-world -L/usr/local/lib 
-lmpi -lopen-rte -lopen-pal
-ldl -Wl,--export-dynamic -lnsl 
-lutil -lm -ldl



What mpirun 
does

• Launches n processes, assigns 
each an MPI rank and starts 
the program

• For multinode run, has a list of 
nodes, ssh’s to each node and 
launches the program

ssh node1

ssh node2

ssh node3

hello-world

hello-world

hello-world

hello-world



Number of 
Processes

• Number of processes to use is 
almost always equal to the 
number of processors

• But not necessarily.

• On your nodes, what happens 
when you run this?

$ mpirun -np 24 hello-world



mpirun runs 
any program

• mpirun will start that process-
launching procedure for any 
progam

• Sets variables somehow that 
mpi programs recognize so 
that they know which process 
they are

$ hostname
$ mpirun -np 4 hostname
$ ls
$ mpirun -np 4 ls



What the code 
does

• (FORTRAN version; C 
is similar)



use mpi : imports declarations for MPI 
function calls

call MPI_INIT(ierr): 
initialization for MPI library.  
Must come first. 
ierr: Returns any error code.

call MPI_FINALIZE(ierr): 
close up MPI stuff.  
Must come last. 
ierr: Returns any error code.



call MPI_COMM_RANK,
call MPI_COMM_SIZE: 

requires a little more exposition.



Communicators

• MPI groups processes into 
communicators.

• Each communicator has some 
size -- number of tasks.

• Each task has a rank 0..size-1

• Every task in your program 
belongs to 
MPI_COMM_WORLD

0

1

2

3
MPI_COMM_WORLD: 

size=4, ranks=0..3



Communicators
• Can create our own 

communicators over the same 
tasks

• May break the tasks up into 
subgroups

• May just re-order them for 
some reason

0

1

2

3

MPI_COMM_WORLD: 
size=4, ranks=0..3

2

0

1

new_comm
size=3, ranks=0..2



call MPI_COMM_RANK,
call MPI_COMM_SIZE: 

get the size of communicator, 
the current tasks’s rank within 
communicator.

put answers in rank and 
size



C Fortran

• #include <mpi.h> vs use mpi

• C - functions return ierr;

• Fortran - pass ierr

• MPI_Init



Our first real 
MPI program 
- but no Ms 

are P’ed!
• Let’s fix this

• mpicc -o firstmessage 
firstmessage.c

• mpirun -np 2 ./firstmessage

• Note: C - MPI_CHAR



Fortran
version

• Let’s fix this

• mpif90 -o 
firstmessage 
firstmessage.f90

• mpirun -np 2 ./
firstmessage

• FORTRAN - 
MPI_CHARACTER



MPI_Status status;

ierr = MPI_Ssend(sendptr, count, MPI_TYPE, destination,
                 tag, Communicator);

ierr = MPI_Recv(rcvptr, count, MPI_TYPE, source, tag,
                 Communicator, status);

C - Send and Receive



integer status(MPI_STATUS_SIZE)

call MPI_SSEND(sendarr, count, MPI_TYPE, destination,
                 tag, Communicator, ierr)

call MPI_RECV(rcvarr, count, MPI_TYPE, source, tag,
                 Communicator, status, ierr)

Fortran - Send and Receive



Special Source/Dest: 
MPI_PROC_NULL

MPI_PROC_NULL basically ignores the relevant 
operation; can lead to cleaner code.

Special Source:
 MPI_ANY_SOURCE

MPI_ANY_SOURCE is a wildcard; matches any source 
when receiving.



More 
complicated 

example:
• Let’s look at 

secondmessage.f90, 
secondmessage.c



More 
complicated 

example:
• Let’s look at 

secondmessage.f90, 
secondmessage.c



Compile and 
run

• mpi{cc,f90} -o secondmessage 
secondmessage.{c,f90}

• mpirun -np 4 ./secondmessage



0 1 2

“Hello” “Hello”



0 1 2

“Hello” “Hello”

“Hello”Implement 
periodic boundary 

conditions
• cp secondmessage.{c,f90} 

thirdmessage.{c,f90}

• edit so it `wraps around’

• mpi{cc,f90} thirdmessage.
{c,f90} -o thirdmessage

• mpirun -np 3 thirdmessage



0 1 2

Send Send
0 1 2

Send RecvSend

0 1 2

RecvSend

0 1 2



0 1 2

Send Send

Send

0,1,2



0 1 2

Send Send

Send

Deadlock
• A classic parallel bug

• Occurs when a cycle of tasks 
are for the others to finish.

• Whenever you see a closed 
cycle, you likely have (or risk) 
deadlock.



Big MPI 
Lesson #1

All sends and receives must be paired, at 
time of sending



Different 
versions of 

SEND
• SSEND: safe send; doesn’t 

return until receive has 
started.  Blocking, no buffering.

• SEND: Undefined.  Blocking, 
probably buffering

• ISEND : Unblocking, no 
buffering

• IBSEND: Unblocking, buffering

Send

System buffer

Buffering

(Non) Blocking



Buffering is 
dangerous!

• Worst kind of danger: will 
usually work.

• Think voice mail; message 
sent, reader reads when ready

• But voice mail boxes do fill

• Message fails.

• Program fails/hangs 
mysteriously.

• (Can allocate your own 
buffers)

Send

System buffer

Buffering



Without using new MPI 
routines, how can we fix 

this?



• First: evens send, odds receive

• Then: odds send, evens receive

• Will this work with an odd # of processes?

• How about 2?   1?

0 1

Send Recv

2

Send

3

Recv

0 1

SendRecv

2

Send

3

Recv



Evens send first

Then odds

fourthmessage.f90



Evens send first

Then odds

fourthmessage.c



• A blocking send and 
receive built in together

• Lets them happen 
simultaneously

• Can automatically pair 
the sends/recvs!

• dest, source does not 
have to be same; nor do 
types or size. fifthmessage.f90

Something 
new: Sendrecv



• A blocking send and 
receive built in together

• Lets them happen 
simultaneously

• Can automatically pair 
the sends/recvs!

• dest, source does not 
have to be same; nor do 
types or size. fifthmessage.c

Something 
new: Sendrecv



MPI_Status status;

ierr = MPI_Sendrecv(sendptr, count, MPI_TYPE, destination,tag,
                    recvptr, count, MPI_TYPE, source, tag,
                    Communicator, &status);

integer status(MPI_STATUS_SIZE)

call MPI_SENDRECV(sendptr, count, MPI_TYPE, destination,tag,
                    recvptr, count, MPI_TYPE, source, tag,
                    Communicator, status, ierr)

C syntax

FORTRAN syntax

Sendrecv = Send + Recv

Send Args

Recv Args

Why are there two different tags/types/counts?



Min, Mean, Max 
of numbers

• Lets try some code that calculates 
the min/mean/max of a bunch of 
random numbers -1..1.   Should go 
to -1,0,+1 for large N.

• Each gets their partial results and 
sends it to some node, say node 0 
(why node 0?)

• minmeanmax.{c,f90}

• How to MPI it?

(min,mean,max)2

(min,mean,max)1

(min,mean,max)0





(min,mean,max)2

(min,mean,max)1

(min,mean,max)0

minmeanmax-mpi.f90

Q: are these sends/recvd
adequately paired?



Inefficient!

• Requires (P-1) messages, 2
(P-1) if everyone then needs 
to get the answer.

sum1
sum2
sum3

sum1
sum2
sum3

sum1
sum2
sum3

CPU1 CPU2 CPU3

total total total

+ + +



Better 
Summing

• Pairs of processors; send 
partial sums 

• Max messages received log2(P)

• Can repeat to send total back

sum1

CPU1 CPU2 CPU3

sum2

sum1+
sum2

sum3

CPU4

sum4

sum3+
sum4

sum1+
sum2+
sum3+
sum4=
total

Reduction; works for
a variety of operators 

(+,*,min,max...)

Tcomm = 2 log2(P )Ccomm



minmeanmax-allreduce.f

MPI_Reduce and
MPI_Allreduce

Performs a reduction
and sends answer to 

one PE (Reduce) 
or all PEs (Allreduce)



Collective 
Operations

• As opposed to the pairwise 
messages we’ve seen

• All processes in the 
communicator must 
participate

• Cannot proceed until all have 
participated

• Don’t necessarily know what 
goes on ‘under the hood’

CPU 1

CPU 2

CPU 3

CPU 0



C syntax
MPI_Status status;

ierr = MPI_Init(&argc, &argv);
ierr = MPI_Comm_{size,rank}(Communicator, &{size,rank});
ierr = MPI_Send(sendptr, count, MPI_TYPE, destination,
                 tag, Communicator);
ierr = MPI_Recv(rcvptr, count, MPI_TYPE, source, tag,
                 Communicator, &status);
ierr = MPI_Sendrecv(sendptr, count, MPI_TYPE, destination,tag,
                    recvptr, count, MPI_TYPE, source, tag,
                    Communicator, &status);
ierr = MPI_Allreduce(&mydata, &globaldata, count, MPI_TYPE,
                     MPI_OP, Communicator);
                     
Communicator -> MPI_COMM_WORLD
status -> MPI_Status
MPI_Type -> MPI_FLOAT, MPI_DOUBLE, MPI_INT, MPI_CHAR...
MPI_OP -> MPI_SUM, MPI_MIN, MPI_MAX,...



FORTRAN syntax

integer status(MPI_STATUS_SIZE)

call MPI_INIT(ierr)
call MPI_COMM_{SIZE,RANK}(Communicator, {size,rank},ierr)
call MPI_SSEND(sendarr, count, MPI_TYPE, destination,
                 tag, Communicator, ierr)
call MPI_RECV(rcvarr, count, MPI_TYPE, destination,tag,
                 Communicator, status, ierr)
call MPI_SENDRECV(sendptr, count, MPI_TYPE, destination,tag,
                    recvptr, count, MPI_TYPE, source, tag,
                    Communicator, status, ierr)
call MPI_ALLREDUCE(&mydata, &globaldata, count, MPI_TYPE,
                     MPI_OP, Communicator, ierr)
                     

Communicator -> MPI_COMM_WORLD
status -> integer(MPI_STATUS_SIZE)
MPI_Type -> MPI_REAL, MPI_DOUBLE_PRECISION, 
           MPI_INTEGER, MPI_CHARACTER
MPI_OP -> MPI_SUM, MPI_MIN, MPI_MAX,...



1d diffusion 
equation

$ cd ~/parCFD/heateqn
$ make
$ ./heateqn --method=1 --out="out-serial-GS.txt" 
--log="log-serial-GS.txt"
$ gnuplot
gnuplot> plot ‘out-serial-GS.txt’



Discretizing 
Derivatives

• Done by finite differencing the 
discretized values

• Implicitly or explicitly involves 
interpolating data and taking 
derivative of the interpolant

• More accuracy - larger 
‘stencils’

i-2 i-1 i i+1 i+2

+1 -2 +1

d2Q

dx2

����
i

≈ Qi+1 − 2Qi + Qi−1

∆x2



Guardcells
• How to deal with boundaries?

• Because stencil juts out, need 
information on cells beyond 
those you are updating

• Pad domain with ‘guard cells’ 
so that stencil works even for 
the first point in domain

• Fill guard cells with values 
such that the required 
boundary conditions are met

Global Domain

0 1 2 3 4 5 6 7

ng = 1
loop from ng, N - 2 ng



Solution of 
Linear System

• Gauss Seidel (method=1)

xi =
1
di

(RHSi − lixi−1 − rixi+1)





Solution of 
Linear System

• Jacobi (method=3)

• doesn’t use partial results

• slower (2x) convergence.

x
new
i =

1
di

�
RHSi − lix

old
i−1 − rix

old
i+1

�





Domain 
Decomposition http://www.uea.ac.uk/cmp/research/cmpbio/

Protein+Dynamics,+Structure+and+Function

http://sivo.gsfc.nasa.gov
/cubedsphere_comp.html

http://adg.stanford.edu/aa241
/design/compaero.html

http://www.cita.utoronto.ca/~dubinski
/treecode/node8.html

• A very common approach to 
parallelizing on distributed 
memory computers

• Maintain Locality; need local 
data mostly, this means only 
surface data needs to be sent 
between processes.

http://www.uea.ac.uk/cmp/research/cmpbio/Protein+Dynamics,+Structure+and+Function
http://www.uea.ac.uk/cmp/research/cmpbio/Protein+Dynamics,+Structure+and+Function
http://www.uea.ac.uk/cmp/research/cmpbio/Protein+Dynamics,+Structure+and+Function
http://www.uea.ac.uk/cmp/research/cmpbio/Protein+Dynamics,+Structure+and+Function
http://sivo.gsfc.nasa.gov/cubedsphere_comp.html
http://sivo.gsfc.nasa.gov/cubedsphere_comp.html
http://sivo.gsfc.nasa.gov/cubedsphere_comp.html
http://sivo.gsfc.nasa.gov/cubedsphere_comp.html
http://adg.stanford.edu/aa241/design/compaero.html
http://adg.stanford.edu/aa241/design/compaero.html
http://adg.stanford.edu/aa241/design/compaero.html
http://adg.stanford.edu/aa241/design/compaero.html
http://www.cita.utoronto.ca/~dubinski/treecode/node8.html
http://www.cita.utoronto.ca/~dubinski/treecode/node8.html
http://www.cita.utoronto.ca/~dubinski/treecode/node8.html
http://www.cita.utoronto.ca/~dubinski/treecode/node8.html


Guardcells
• Works for parallel 

decomposition!

• Job 1 needs info on Job 2s 0th 
zone, Job 2 needs info on Job 
1s last zone

• Pad array with ‘guardcells’ and 
fill them with the info from the 
appropriate node by message 
passing or shared memory

n-4 n-3 n-2 n-1 n

-1 0 1 2 3

Global Domain

Job 1

Job 2



Decomposition:
• Gauss Seidel requires xnewi-1

• 2nd processor can’t start until 
1st processor is done?

• One approximation: ignore 
corners; use old data at start 
of 2nd processor’s work.

• At end of each iteration, 
exchange neighbour cells.



Red-Black 
Reordering

• No law that says we have to 
number cells 1,2,3..

• Even/odd

• Now, all red cells can be done 
at once independently 
generating new values

• Black cells now use all-new 
red data

• Exchange neighbour 
information after each 
“colour”.

1 2 3 4 5

Gauss-Seidel

1 4 2 5 3

Red-Black



Decomposition:
• Jacobi only requires xoldi-1

• Easily parallelizable!

• At end of each iteration, 
exchange xnew neighbour cells.


