
Parallel Computing
I: Concurrency, Amdahl’s Law, and Locality

Why Parallel
Computing?

Faster:
At any given time, there is a limit
as to how fast one computer
can compute.
So use more computers!

Why Parallel
Computing?

Bigger:
At any given time, there is a limit
as to how much memory, disk
space, etc can be put on one
computer.
So use more computers!

Why Parallel
Computing?

More:
You have a program that runs in
reasonable time one one
processor but you want to run it
thousands of times.

So use more computers!

Concurrency
• Must be something for the

‘more computers’ to do.

• Must be able to find
concurrency in your problems

• Many Tasks

• Order Unimportant

http://flickr.com/photos/splorp/

http://flickr.com/photos/splorp/
http://flickr.com/photos/splorp/

Data Dependancies Limit
Concurrency

Parameter Study:
Ideal case

• Want to know all results as
model parameter varies

• Can run serial code on up to
as many processors as
parameter sets

• ‘More’

µ = 1 µ = 2 µ = 3 µ = 4

Answer Answer Answer Answer

Throughput =
Tasks/Time

How long it takes to process the
N tasks you want done

For completely independent
tasks, P processors can increase

throughput by factor P!

vs

throughput =
N

time

Scaling with P
How a problem scales: how
throughput behaves as
processor number increases
In this case, the throughput
scales linearly with the number
of processors

This is the best case:
‘Perfect scaling’

0

2

4

6

8

P=1 2 3 4 5 6 7 8

Ta
sk

s
pe

r
U

ni
t T

im
e

Scaling with P
Another way to look at it: time
it takes to get some fixed
amount of work done

More usual (and more
important!)

Perfect scaling: time to
completion ~ 1/P

P processors - P times faster

0

2

4

6

8

0 2 4 6 8
T

im
e

Pe
r T

as
k

Scaling with P
Another way to look at it: time
it takes to get some fixed
amount of work done

More usual (and more
important!)

Perfect scaling: time to
completion ~ 1/P

P processors - P times faster

1

10

1 10
T

im
e

Pe
r T

as
k

Parameter Study:
‘Embarrassingly

Parallel’
• Scales perfectly up to P=N
• Speedup = P: ‘linear scaling’,

ideal case.

µ = 1 µ = 2 µ = 3 µ = 4

Answer Answer Answer Answer

Problems Differ in
amount of

Concurrency
Integrate (or some other simple
processing) tabulated
experimental data

Integration of different regions
can be summed by each
processor

But first need to get data to
processor, then bring together
all the sums

Region
1

Region
2

Region
3

Region
4

Reduction

Answer

Partition Data

Region
1

Region
2

Region
3

Region
4

Reduction

Answer

Partition Data

Parallel Portion:
Perfectly Parallel (as

long as there is
enough work)

T ~ 1/P

Region
1

Region
2

Region
3

Region
4

Reduction

Answer

Partition Data

Serial Portion:
Sum has to be

done; if done on one
processor, just same

as serial:
T ~ const

Answer

Region
1

Region
2

Region
3

Region
4

Reduction

Partition Data

Parallel Overhead:
Data has to be sent to

appropriate processor, a
cost of the parallel

implementation

T const (best case)
or increasing fn of P

Total Time: Serial
+ Parallel

Ignoring data-moving costs (for
now):

Typically linear in P (sum)
Eventually, as problem becomes

increasingly scaled up, serial
term dominates

Answer

Region
1

Region
2

Region
3

Region
4

Reduction

Partition Data

time(N, P) =
�

N

P

�
Twork + Treduction(P)

Timing of
simple case

Ignore data transfer costs; say:
100 s to sum up numbers
5 s in assembling the parts

How does this behave on many
processors?

More processors per
run don’t always help

Given timing data, how do we
choose P to run on if we have N
programs to run?

Ideal case, timing goes down 1/P -
doesn’t matter

Serial part (5%!) becomes a
bottleneck

Can improve throughput by
running on fewer processors

Note: t(50) = 7s
t(25) = 9s

Can run 2 jobs on 25 procs each
in about same time as one on 50!

Speedup: How
much faster

with P procs?
An important concept is the
speedup of a given parallel

implementation

speedup(P) =
t(N, P = 1)

t(N, P)

Efficiency:
Speedup should

be ~ P
Related concept: Parallel
Efficiency (compared to serial
code)

Efficiency(P) =
t(N,P = 1)
Pt(N, P)

=
speedup(P)

P

Amdahl’s Law
Any serial part of
computation will

eventually dominate
If serial fraction is f, even if
parallel component goes to

zero, speedup can only be 1/f

time(N, P) ∼
�

f +
1− f

P

�

Speedup =
1�

f + 1−f
P

�

lim
P→∞

Speedup =
1
f

lim
P→∞

Efficiency = 0

(perfectly)
parallel fraction

serial
fraction

Amdahl’s Law
• Any serial part of

computation will
eventually dominate

• If serial fraction is f, even if
parallel component goes to
zero, speedup can only be 1/f

Avoiding
Amdahl

In some cases, may not matter.
If will run in reasonable time on

some small number of
processor, asymptotic arguments

may not matter.

Answer

Region
1

Region
2

Region
3

Region
4

Reduction

Partition Data

Trying to Beat
Amdahl, #1

Rewrite serial portions to take
into account parallelism

eg, many reductions can be done
in parallel that will cost log2(P)
(not 1, but much better than

serial = P...)

Answer

Region
1

Region
2

Region
3

Region
4

Partition Data

Big Lesson #1

Optimal Serial Algorithm for your problem
may not be the P→1 limit of your optimal

Parallel algorithm

Trying to Beat Amdahl, #2 -
Upsize

Desktop problem isn’t a
supercomputer problem!

Reason to run on big machines is
size as well as speed

Amdahl’s law assumes constant size
problem

More work; f goes down.

Gustafson’s law: any sufficiently
large problem can be efficiently
parallelized.

Weak Scaling
How does problem behave if
you expand problem size as
number of processors?

Strong Scaling - on how many
processors can you efficiently
run given problem

Weak Scaling - how large a
problem can you efficiently run

More on
Concurrency

Most problems are not pure
concurrency

Some level of synchronization,
exchange of information needed
between tasks

This needs to be minimized

Increases Amdahl’s ‘f ’

Are themselves costly

µ = 1 µ = 2 µ = 3 µ = 4

Synchronization

Synchronization

Synchronization

Concurrency
Makes possible lots of wasted
time (‘load balancing’, about

which more later)
µ = 1 µ = 2 µ = 3 µ = 4

Synchronization

Synchronization

Synchronization

Locality
Information needed by the task
should be as local as possible.

When tasks do need to interact,
best that those interactions be as
local as possible, and with as few
others as possible

Communications cost lower

Fewer processes have are locked up
during the necessary
synchronization

µ = 1

Big Lesson #2

Parallel algorithm design is about finding as
much concurrency as possible, and arranging

it in a way that maximizes locality.

Finding
Concurrency

Identify tasks that can be done
independently, order doesn’t

matter

PDEs: parts of domain

N-body: particles (or
interactions)

Maintaining
Locality

Now have to lump the
concurrent bits into tasks

Choosing that re-aggregation
can greatly effect locality.

perimeter
= 9L

L

perimeter
= 4L

Parallel Computing
II: Parallel Computers

Top500.org:

List updated every
6 months of the
worlds 500 largest
supercomputers.

Info about
architecture, ...

1 Petaflop (1015 flop/s);
126,600 cores

Computer
Architectures

How the computers work shape
how best to progam them

Shared Memory vs Distributed
Memory.
Vector computers...

Distributed
Memory:
Clusters

Simplest type of parallel
computer to build

http://flickr.com/photos/eurleif/

• Take existing powerful
standalone computers

• And network them

+

http://flickr.com/photos/eurleif/
http://flickr.com/photos/eurleif/

Each Node is
Independent
Parallel code consists of

programs running on separate
computers, communicating with

each other
Could be entirely different

programs

CPU1

CPU2

CPU3

CPU4

Each node has
independent

memory
Locally stores its own portion of

problem
Whenever it needs information
from another region, requests it

from appropriate CPU
Usual model: ‘message passing’

CPU1

CPU2

CPU3

CPU4

Memory

Clusters
+Message
Passing

HW: Easy to build (harder to
build well)

HW: Can build larger and larger
clusters relatively easily

SW: Every communication has
to be hand coded -- hard to

program

CPU1

CPU2

CPU3

CPU4

Memory

Latency Bandwidth

GigE

Infiniband

~10 µs
(10,000 ns)

1 Gb/s
(~60 ns/double)

~2 µs
(2,000 ns)

2-10 Gb/s
(~10 ns/double)

Processor speed: 1 FLOP ~ few ns or less

Shared Memory
One large bank of memory,
different computing cores acting
on it. All ‘see’ same data

Any coordination done through
memory.

Could do like before, but why?
Each core is assigned a thread of
execution of a single program that
acts on the data

Core1

Core2

Core3

Memory

Thread Vs.
Process

Processes: Independent tasks
with their own memory,
resources

Threads: Threads of execution
within one process, ‘seeing’ the
same memory, etc.

MPI
Procs

OMP
Threads

Shared
Memory:NUMA
Complicating things: each core
typically has some of its own

memory
Non-Uniform Memory Access

Locality still matters
Cores have cache, too.

Keeping this memory coherent is
extremely challenging

Memory

Coherency
The different levels of memory
imply multiple copies of some

regions
Multiple cores mean can update

unpredictably
Very expensive hardware
Hard to scale up to lots of

processors, very $$$
Very simple to program!!

x[20] = 3

x[20] = ?

Latency Bandwidth

GigE

Infiniband

NUMA
Shared Mem

~10 µs
(10,000 ns)

1 Gb/s
(~60 ns/double)

~2 µs
(2,000 ns)

2-10 Gb/s
(~10 ns/double)

~0.1 µs
(100 ns)

10-20 Gb/s
(~4 ns/double)

Processor speed: 1 FLOP ~ ns or less

Big Lesson #3

The best approach to parallelizing your
problem will depend on both details of your

problem and of the hardware available.

Hybrid
Architectures

Almost all of the biggest computers
are now clusters of shared memory

nodes
Generally just use message passing
across all cores, but as P(1 node)

goes up, hybrid approaches start to
make sense.

Before we start
with MPI:

• login as instructed and ensure this works:

• cp -R ~ljdursi/course/parCFD ~/

• source ~/parCFD/setup

• cd ~/parCFD/gettingstarted/

• make mpi_hello_world

• mpirun -np 8 ./mpi_hello_world

An introduction to MPI

• Not built in to compiler

• Function calls that can be
made from any compiler,
many languages

• Just link to it

• Wrappers: mpicc, mpif77

MPI is a Library for
 Message-Passing

C

Fortran

MPI is a Library for
 Message-Passing

• Communication/coordination
between tasks done by
sending and receiving
messages.

• Each message involves a
function call from each of the
programs.

CPU1

CPU2

CPU3

CPU0

MPI is a Library for
 Message-Passing

• Three basic sets of
functionality:

• Pairwise communications via
messages

• Collective operations via
messages

• Efficient routines for getting
data from memory into
messages and vice versa

CPU1

CPU2

CPU3

CPU0

Messages
• Messages have a sender and

a receiver

• When you are sending a
message, don’t need to specify
sender (it’s the current
processor),

• A sent message has to be
actively received by the
receiving process

CPU1 CPU3

count of MPI_SOMETYPE

tag

Messages
• MPI messages are a string of

length count all of some
fixed MPI type

• MPI types exist for
characters, integers, floating
point numbers, etc.

• An arbitrary non-negative
integer tag is also included -
helps keep things straight if
lots of messages are sent.

CPU1 CPU3

count of MPI_SOMETYPE

tag

Size of MPI
Library

• Many, many functions (>200)

• Not nearly so many concepts

• We’ll get started with just
10-12, use more as needed.

MPI_Init()
MPI_Comm_size()
MPI_Comm_rank()
MPI_Ssend()
MPI_Recv()
MPI_Finalize()

Hello World
• The obligatory starting point

• cd ~/parCFD/mpi-intro

• Type it in, compile and run it

Fortran

edit hello-world.c or .f90
$ mpif90 hello-world.f90
 -o hello-world
or
$ mpicc hello-world.c
 -o hello-world
$ mpirun -np 1 hello-world
$ mpirun -np 2 hello-world
$ mpirun -np 8 hello-world

C

What mpicc/
mpif90 do

• Just wrappers for the system
C, Fortran compilers that have
the various -I, -L clauses in
there automaticly

• --showme (OpenMPI) shows
which options are being used

$ mpicc --showme hello-world.c
-o hello-world

gcc -I/usr/local/include
 -pthread hello-world.c -o
hello-world -L/usr/local/lib
-lmpi -lopen-rte -lopen-pal
-ldl -Wl,--export-dynamic -lnsl
-lutil -lm -ldl

What mpirun
does

• Launches n processes, assigns
each an MPI rank and starts
the program

• For multinode run, has a list of
nodes, ssh’s to each node and
launches the program

ssh node1

ssh node2

ssh node3

hello-world

hello-world

hello-world

hello-world

Number of
Processes

• Number of processes to use is
almost always equal to the
number of processors

• But not necessarily.

• On your nodes, what happens
when you run this?

$ mpirun -np 24 hello-world

mpirun runs
any program

• mpirun will start that process-
launching procedure for any
progam

• Sets variables somehow that
mpi programs recognize so
that they know which process
they are

$ hostname
$ mpirun -np 4 hostname
$ ls
$ mpirun -np 4 ls

What the code
does

• (FORTRAN version; C
is similar)

use mpi : imports declarations for MPI
function calls

call MPI_INIT(ierr):
initialization for MPI library.
Must come first.
ierr: Returns any error code.

call MPI_FINALIZE(ierr):
close up MPI stuff.
Must come last.
ierr: Returns any error code.

call MPI_COMM_RANK,
call MPI_COMM_SIZE:

requires a little more exposition.

Communicators

• MPI groups processes into
communicators.

• Each communicator has some
size -- number of tasks.

• Each task has a rank 0..size-1

• Every task in your program
belongs to
MPI_COMM_WORLD

0

1

2

3
MPI_COMM_WORLD:

size=4, ranks=0..3

Communicators
• Can create our own

communicators over the same
tasks

• May break the tasks up into
subgroups

• May just re-order them for
some reason

0

1

2

3

MPI_COMM_WORLD:
size=4, ranks=0..3

2

0

1

new_comm
size=3, ranks=0..2

call MPI_COMM_RANK,
call MPI_COMM_SIZE:

get the size of communicator,
the current tasks’s rank within
communicator.

put answers in rank and
size

C Fortran

• #include <mpi.h> vs use mpi

• C - functions return ierr;

• Fortran - pass ierr

• MPI_Init

Our first real
MPI program
- but no Ms

are P’ed!
• Let’s fix this

• mpicc -o firstmessage
firstmessage.c

• mpirun -np 2 ./firstmessage

• Note: C - MPI_CHAR

Fortran
version

• Let’s fix this

• mpif90 -o
firstmessage
firstmessage.f90

• mpirun -np 2 ./
firstmessage

• FORTRAN -
MPI_CHARACTER

MPI_Status status;

ierr = MPI_Ssend(sendptr, count, MPI_TYPE, destination,
 tag, Communicator);

ierr = MPI_Recv(rcvptr, count, MPI_TYPE, source, tag,
 Communicator, status);

C - Send and Receive

integer status(MPI_STATUS_SIZE)

call MPI_SSEND(sendarr, count, MPI_TYPE, destination,
 tag, Communicator, ierr)

call MPI_RECV(rcvarr, count, MPI_TYPE, source, tag,
 Communicator, status, ierr)

Fortran - Send and Receive

Special Source/Dest:
MPI_PROC_NULL

MPI_PROC_NULL basically ignores the relevant
operation; can lead to cleaner code.

Special Source:
 MPI_ANY_SOURCE

MPI_ANY_SOURCE is a wildcard; matches any source
when receiving.

More
complicated

example:
• Let’s look at

secondmessage.f90,
secondmessage.c

More
complicated

example:
• Let’s look at

secondmessage.f90,
secondmessage.c

Compile and
run

• mpi{cc,f90} -o secondmessage
secondmessage.{c,f90}

• mpirun -np 4 ./secondmessage

0 1 2

“Hello” “Hello”

0 1 2

“Hello” “Hello”

“Hello”Implement
periodic boundary

conditions
• cp secondmessage.{c,f90}

thirdmessage.{c,f90}

• edit so it `wraps around’

• mpi{cc,f90} thirdmessage.
{c,f90} -o thirdmessage

• mpirun -np 3 thirdmessage

0 1 2

Send Send
0 1 2

Send RecvSend

0 1 2

RecvSend

0 1 2

0 1 2

Send Send

Send

0,1,2

0 1 2

Send Send

Send

Deadlock
• A classic parallel bug

• Occurs when a cycle of tasks
are for the others to finish.

• Whenever you see a closed
cycle, you likely have (or risk)
deadlock.

Big MPI
Lesson #1

All sends and receives must be paired, at
time of sending

Different
versions of

SEND
• SSEND: safe send; doesn’t

return until receive has
started. Blocking, no buffering.

• SEND: Undefined. Blocking,
probably buffering

• ISEND : Unblocking, no
buffering

• IBSEND: Unblocking, buffering

Send

System buffer

Buffering

(Non) Blocking

Buffering is
dangerous!

• Worst kind of danger: will
usually work.

• Think voice mail; message
sent, reader reads when ready

• But voice mail boxes do fill

• Message fails.

• Program fails/hangs
mysteriously.

• (Can allocate your own
buffers)

Send

System buffer

Buffering

Without using new MPI
routines, how can we fix

this?

• First: evens send, odds receive

• Then: odds send, evens receive

• Will this work with an odd # of processes?

• How about 2? 1?

0 1

Send Recv

2

Send

3

Recv

0 1

SendRecv

2

Send

3

Recv

Evens send first

Then odds

fourthmessage.f90

Evens send first

Then odds

fourthmessage.c

• A blocking send and
receive built in together

• Lets them happen
simultaneously

• Can automatically pair
the sends/recvs!

• dest, source does not
have to be same; nor do
types or size. fifthmessage.f90

Something
new: Sendrecv

• A blocking send and
receive built in together

• Lets them happen
simultaneously

• Can automatically pair
the sends/recvs!

• dest, source does not
have to be same; nor do
types or size. fifthmessage.c

Something
new: Sendrecv

MPI_Status status;

ierr = MPI_Sendrecv(sendptr, count, MPI_TYPE, destination,tag,
 recvptr, count, MPI_TYPE, source, tag,
 Communicator, &status);

integer status(MPI_STATUS_SIZE)

call MPI_SENDRECV(sendptr, count, MPI_TYPE, destination,tag,
 recvptr, count, MPI_TYPE, source, tag,
 Communicator, status, ierr)

C syntax

FORTRAN syntax

Sendrecv = Send + Recv

Send Args

Recv Args

Why are there two different tags/types/counts?

Min, Mean, Max
of numbers

• Lets try some code that calculates
the min/mean/max of a bunch of
random numbers -1..1. Should go
to -1,0,+1 for large N.

• Each gets their partial results and
sends it to some node, say node 0
(why node 0?)

• minmeanmax.{c,f90}

• How to MPI it?

(min,mean,max)2

(min,mean,max)1

(min,mean,max)0

(min,mean,max)2

(min,mean,max)1

(min,mean,max)0

minmeanmax-mpi.f90

Q: are these sends/recvd
adequately paired?

Inefficient!

• Requires (P-1) messages, 2
(P-1) if everyone then needs
to get the answer.

sum1
sum2
sum3

sum1
sum2
sum3

sum1
sum2
sum3

CPU1 CPU2 CPU3

total total total

+ + +

Better
Summing

• Pairs of processors; send
partial sums

• Max messages received log2(P)

• Can repeat to send total back

sum1

CPU1 CPU2 CPU3

sum2

sum1+
sum2

sum3

CPU4

sum4

sum3+
sum4

sum1+
sum2+
sum3+
sum4=
total

Reduction; works for
a variety of operators

(+,*,min,max...)

Tcomm = 2 log2(P)Ccomm

minmeanmax-allreduce.f

MPI_Reduce and
MPI_Allreduce

Performs a reduction
and sends answer to

one PE (Reduce)
or all PEs (Allreduce)

Collective
Operations

• As opposed to the pairwise
messages we’ve seen

• All processes in the
communicator must
participate

• Cannot proceed until all have
participated

• Don’t necessarily know what
goes on ‘under the hood’

CPU 1

CPU 2

CPU 3

CPU 0

C syntax
MPI_Status status;

ierr = MPI_Init(&argc, &argv);
ierr = MPI_Comm_{size,rank}(Communicator, &{size,rank});
ierr = MPI_Send(sendptr, count, MPI_TYPE, destination,
 tag, Communicator);
ierr = MPI_Recv(rcvptr, count, MPI_TYPE, source, tag,
 Communicator, &status);
ierr = MPI_Sendrecv(sendptr, count, MPI_TYPE, destination,tag,
 recvptr, count, MPI_TYPE, source, tag,
 Communicator, &status);
ierr = MPI_Allreduce(&mydata, &globaldata, count, MPI_TYPE,
 MPI_OP, Communicator);

Communicator -> MPI_COMM_WORLD
status -> MPI_Status
MPI_Type -> MPI_FLOAT, MPI_DOUBLE, MPI_INT, MPI_CHAR...
MPI_OP -> MPI_SUM, MPI_MIN, MPI_MAX,...

FORTRAN syntax

integer status(MPI_STATUS_SIZE)

call MPI_INIT(ierr)
call MPI_COMM_{SIZE,RANK}(Communicator, {size,rank},ierr)
call MPI_SSEND(sendarr, count, MPI_TYPE, destination,
 tag, Communicator, ierr)
call MPI_RECV(rcvarr, count, MPI_TYPE, destination,tag,
 Communicator, status, ierr)
call MPI_SENDRECV(sendptr, count, MPI_TYPE, destination,tag,
 recvptr, count, MPI_TYPE, source, tag,
 Communicator, status, ierr)
call MPI_ALLREDUCE(&mydata, &globaldata, count, MPI_TYPE,
 MPI_OP, Communicator, ierr)

Communicator -> MPI_COMM_WORLD
status -> integer(MPI_STATUS_SIZE)
MPI_Type -> MPI_REAL, MPI_DOUBLE_PRECISION,
 MPI_INTEGER, MPI_CHARACTER
MPI_OP -> MPI_SUM, MPI_MIN, MPI_MAX,...

1d diffusion
equation

$ cd ~/parCFD/heateqn
$ make
$./heateqn --method=1 --out="out-serial-GS.txt"
--log="log-serial-GS.txt"
$ gnuplot
gnuplot> plot ‘out-serial-GS.txt’

Discretizing
Derivatives

• Done by finite differencing the
discretized values

• Implicitly or explicitly involves
interpolating data and taking
derivative of the interpolant

• More accuracy - larger
‘stencils’

i-2 i-1 i i+1 i+2

+1 -2 +1

d2Q

dx2

����
i

≈ Qi+1 − 2Qi + Qi−1

∆x2

Guardcells
• How to deal with boundaries?

• Because stencil juts out, need
information on cells beyond
those you are updating

• Pad domain with ‘guard cells’
so that stencil works even for
the first point in domain

• Fill guard cells with values
such that the required
boundary conditions are met

Global Domain

0 1 2 3 4 5 6 7

ng = 1
loop from ng, N - 2 ng

Solution of
Linear System

• Gauss Seidel (method=1)

xi =
1
di

(RHSi − lixi−1 − rixi+1)

Solution of
Linear System

• Jacobi (method=3)

• doesn’t use partial results

• slower (2x) convergence.

x
new
i =

1
di

�
RHSi − lix

old
i−1 − rix

old
i+1

�

Domain
Decomposition http://www.uea.ac.uk/cmp/research/cmpbio/

Protein+Dynamics,+Structure+and+Function

http://sivo.gsfc.nasa.gov
/cubedsphere_comp.html

http://adg.stanford.edu/aa241
/design/compaero.html

http://www.cita.utoronto.ca/~dubinski
/treecode/node8.html

• A very common approach to
parallelizing on distributed
memory computers

• Maintain Locality; need local
data mostly, this means only
surface data needs to be sent
between processes.

http://www.uea.ac.uk/cmp/research/cmpbio/Protein+Dynamics,+Structure+and+Function
http://www.uea.ac.uk/cmp/research/cmpbio/Protein+Dynamics,+Structure+and+Function
http://www.uea.ac.uk/cmp/research/cmpbio/Protein+Dynamics,+Structure+and+Function
http://www.uea.ac.uk/cmp/research/cmpbio/Protein+Dynamics,+Structure+and+Function
http://sivo.gsfc.nasa.gov/cubedsphere_comp.html
http://sivo.gsfc.nasa.gov/cubedsphere_comp.html
http://sivo.gsfc.nasa.gov/cubedsphere_comp.html
http://sivo.gsfc.nasa.gov/cubedsphere_comp.html
http://adg.stanford.edu/aa241/design/compaero.html
http://adg.stanford.edu/aa241/design/compaero.html
http://adg.stanford.edu/aa241/design/compaero.html
http://adg.stanford.edu/aa241/design/compaero.html
http://www.cita.utoronto.ca/~dubinski/treecode/node8.html
http://www.cita.utoronto.ca/~dubinski/treecode/node8.html
http://www.cita.utoronto.ca/~dubinski/treecode/node8.html
http://www.cita.utoronto.ca/~dubinski/treecode/node8.html

Guardcells
• Works for parallel

decomposition!

• Job 1 needs info on Job 2s 0th
zone, Job 2 needs info on Job
1s last zone

• Pad array with ‘guardcells’ and
fill them with the info from the
appropriate node by message
passing or shared memory

n-4 n-3 n-2 n-1 n

-1 0 1 2 3

Global Domain

Job 1

Job 2

Decomposition:
• Gauss Seidel requires xnewi-1

• 2nd processor can’t start until
1st processor is done?

• One approximation: ignore
corners; use old data at start
of 2nd processor’s work.

• At end of each iteration,
exchange neighbour cells.

Red-Black
Reordering

• No law that says we have to
number cells 1,2,3..

• Even/odd

• Now, all red cells can be done
at once independently
generating new values

• Black cells now use all-new
red data

• Exchange neighbour
information after each
“colour”.

1 2 3 4 5

Gauss-Seidel

1 4 2 5 3

Red-Black

Decomposition:
• Jacobi only requires xoldi-1

• Easily parallelizable!

• At end of each iteration,
exchange xnew neighbour cells.

