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Ordinary Differential Equations
I Are equations with derivatives with respect to 1 variable, e.g.

dx

dt
= f(x, t)

I There can be more than one such equation, e.g.

dx1

dt
= f1(x1, x2, t);

dx2

dt
= f2(x1, x2, t)

I The derivative can be of higher order to, e.g.

d2x

dt2
= f(x, t)

But this can be written, by setting x1 = x, x2 = dx/dt, to

dx1

dt
= x2;

dx2

dt
= f(x1, t)

I This class includes Newtonian dynamics (+ some extensions),
which is the what is solved in “Molecular Dynamics.”



Numerical approaches

Start from the general form:

dyi

dx
= f(x, {yj})

I All approaches will evaluate f at discrete points x0, x1, . . . .

I Initial conditions: specify yi(x0) and dyi

dx (x0).

I Consecutive points may have a fixed step size h = xk+1 − xk

or may be adaptive.

I {yj(xi+1)} may be implicitly dependent on f at that value.



Stiff ODEs

I A stiff ODE is one that is hard to solve, i.e. requiring a very
small stepsize h or leading to instabilities in some algoritms.

I Usually due to wide variation of time scales in the ODEs.

I Not all methods equally suited for stiff ODEs



ODE solver algorithms: Euler
To solve:

dy

dx
= f(x, y)

Simple approximation:

yn+1 ≈ yn + hf(xn, yn) “forward Euler′′

Rational:

y(xn + h) = y(xn) + h
dy

dx
(xn) +O(h2)

So:
y(xn + h) = y(xn) + hf(xn, yn) +O(h2)

I O(h2) is the local error.

I For given interval [x1, x2], there are n = (x2 − x1)/h steps

I Global error: n×O(h2) = O(h)

I Not very accurate, nor very stable (next): don’t use.



Stability

Example: solve harmonic oscillator numerically:

dy(1)

dx
= y(2)

dy(2)

dx
= −y(1)

Use Euler (yn+1 ≈ yn + hf(xn, yn)) gives(
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Stability governed by eigenvalues λ± = 1± ih of that matrix.

|λ±| =
√

1 + h2 > 1 ⇒ Unstable for any h!



ODE solver algorithms: implicit mid-point Euler

To solve:
dy

dx
= f(x, y)

Symmetric simple approximation:

yn+1 ≈ yn + hf(xn, (yn + yn+1)/2) “mid-point Euler′′

This is an implicit formula, i.e., has to be solved for yn+1.

Example (Harmonic oscillator)[
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Eigenvalues M are λ± = (1±ih/2)2

1+h2/4
so |λ±| = 1⇒ Stable for all h

Implicit methods often more stable and allow larger step size h.



ODE solver algorithms: Predictor-Corrector

1. Computation of new point

2. Correction using that new point

I Gear P.C.: keep previous values of y to do higher order Taylor
series (predictor), then use f in last point to correct. Can

suffer from catestrophic cancellation at very low h.

I Runge-Kutta: Refines by using mid-points. Workhorse even

behind fancier solvers.

k1 = hf(x, y)

k2 = hf(x + h/2, y + k1/2)

4th order version: k3 = hf(x + h/2, y + k2/2)

k4 = hf(x + h, y + k3)

y′ = y +
k1

6
+

k2

3
+
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3
+
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6



Further ODE solver techniques

Adaptive methods

As with the integration, rather than taking a fixed h, vary h such
that the solution has a certain accuracy.

Don’t code this yourself! Adaptive schemes are implemented
in libraries such as the gsl and boost::numeric::odeint.

Geometric, symplectic and variants

Respects hamiltonian form, better energy conservation.
Will discuss in the context of MD.



Molecular Dynamics



Molecular Dynamics Simulations

N interacting particles

mir̈i = fi({r}, {ṙj}, t)
+ initial conditions

What makes this different from other ODEs?

I Hamiltonian dynamics

I Very expensive evaluation of f if N is large

For both, we will only touch upon some aspects.

Note that N-body simulation fall within this class as well; the
numerics does not case whether the particles are molecules or stars.



Hamiltonian dynamics
I Molecular Dynamics aims to compute equilibrium, dynamical

and transport properties of classical many body systems.
I Many classical systems have Newtonian equations of motion:

ṙ =
1

m
p ṗ = F = −

dU

dr
,

or ẋ = Lx, with LA = {A,H}, where x = (r, p).

I Energy H = |p|2
2m + U(r) is conserved under the dynamics.

I Potential energy is typically a sum of pair potentials:

U(r) =
∑
(i,j)

ϕ(rij) =
N∑

i=1

i−1∑
j=1

ϕ(rij),

which entails the following expression for the forces F:

Fi = −
∑
j6=i

d

dri
ϕ(rij) =

∑
j6=i

ϕ′(rij)
rj − ri

rij︸ ︷︷ ︸
Fij



Hamiltonian dynamics as disguished sampling

I If the system is ergodic then time average equals the
microcanonical average:

lim
tfinal→∞

1

tfinal

∫ tfinal

0
dt A(x(t)) =

∫
dx A(x) δ(E− H(x))∫

dx δ(E− H(x))
.

I For large N, microcanonical and canonical averages are equal
for many quantities A.

I Need long times tfinal!

I Helps to forget initial equilibration time tburnin.



Boundary conditions

I When simulating finite systems, a wall potential would give
finite size effects and destroy translation invariance.

I More benign: Periodic Boundary Conditions

I All particles in box have coordinates between −L/2 and L/2.

I A particle exiting simulation box is put back at the other end.

I The box with thick red boundaries is our simulation box.

I Other boxes are copies, or “periodic images”.



Force calculations

I A common pair potential is the Lennard-Jones potential

ϕ(r) = 4ε

[(
σ

r

)12

−
(
σ

r

)6
]
,

I σ is a measure of the range of the potential.
I ε is its strength.
I The potential is positive for small r: repulsion.
I The potential is negative for large r: attraction.
I The potential goes to zero for large r: short-range.
I The potential has a minimum of −ε at 21/6σ.

I Computing all forces in an N-body system requires the
computation of N(N− 1)/2 forces Fij

I Force computation often the most demanding part of MD.



Force calculations
I Avoid infinite sums: modify the potential such that it

becomes zero beyond a certain cut-off distance rc:

ϕ′(r) =

{
ϕ(r)− ϕ(rc) if r < rc

0 if r ≥ rc

where the subtraction of ϕ(rc) prevents discontinuities.
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Streamlining the force evaluation

Cell divisions

I Divide the simulation box into cells larger than the cutoff rc.

I Make a list of all particles in each cell.

I In the sum over pairs in the force computation, only sum pairs
of particles in the same cell or in adjacent cells.

Neighbour lists

I Make a list of pairs of particles that are closer than rc + δr.

I Sum over the list of pairs to compute the forces.

I The neighbour lists are to be used in subsequent force
calculations as long as the list is still valid.

I Invalidation criterion: a particle has moved more than δr/2.

For large systems with short-range interactions: O(N2)→ O(N).



Force calculations

Long-range interaction

Electrostatics, gravity, are example of long range interactions that
cannot be cut off without seriously altering the physics.
Requires special techniques such as

I Barnes-Hut

I Particle Mesh Ewald



Desirable qualities for a molecular dynamics integrator

I Accuracy

I Efficiency

I Stability

I Respect physical laws:

I Time reversal symmetry
I Conservation of energy
I Conservation of linear momentum
I Conservation of angular momentum
I Conservation of phase space volume

The most efficient algorithm is then the one that
allows the largest possible time step for a given level
of accuracy, while maintaining stability and preserving
conservation laws.



Symplectic integrators

Momentum Verlet Scheme (first version)

rn+1 = rn +
pn

m
h +

Fn

2m
h2

pn+1 = pn +
Fn+1 + Fn

2
h

The momentum rule appears to pose a problem since Fn+1 is
required. But to compute Fn+1, we need only rn+1, which is
computed in the integration step as well.
Equivalent to position Verlet scheme.



Symplectic integrators

Momentum Verlet Scheme (second version)

The extra storage step can be avoided by introducing the half step
momenta as intermediates:

pn+1/2 = pn +
1

2
Fnh

rn+1 = rn +
pn+1/2

m
h

pn+1 = pn+1/2 +
1

2
Fn+1h

Also nice and symmetric:

1. Half momentum step

2. Full position step

3. Half momentum step

First step the same as the last (with updated F).



Symplectic integrators from Hamiltonian splitting methods

I For sampling, one wants a long trajectory (formally tf →∞).

I It is therefore important that an integration algorithm be
stable.

I The momentum Verlet scheme, on the other hand, is much
more stable than, say, the Euler scheme.

I To see why, one should re-derive the momentum Verlet
scheme from a completely different starting point, using a
so-called Hamiltonian splitting method (also known as
Geometric integration).



Symplectic integrators from Hamiltonian splitting methods

Very, very briefly:

I Any Hamiltonian H a flow on phase space: U(t)

I Split up Hamiltonian in k parts, H1 . . .Hk.

I Gives k flows: U1 . . .UK.

I Baker-Campbell-Hausdorff formula gives approximate
factorization, e.g.
H = H1 + H2 ⇒ U(h) ≈ U1(h/2)U2(h)U1(h/2)

I Symmetric form reduced order and preserves time reversibility.

I This is momentum Verlet!

I Further using BCH, one can derive a shadow Hamiltonian.

I ⇒ simulated system retains all hamiltonian properties.



Where are the MD libraries?

There typically aren’t any. MD packages are usually applications
with a lot of parameters, that used other libraries. Examples:

I Gromacs

I NAMD

I LAMMPS

which all differ in intended usages, available force fields, serial
speed (platform dependent), parallel scalability, etc.

Frameworks
Some MD packages come more as frameworks, which could be
used as a library, within e.g. a C++ program. OpenMM out of
Stanford is a prime example which is still actively maintained
(and in fact used in the GPU implementation of Gromacs).
https://simtk.org/home/openmm



Homework



Homework (page 1/2)

Code, git-log, makefile, and text file describing the results due on Feb 20.

Compute the position (x0, y0) of at least one minimum of the

function:

f(x, y) = (3− e−x2

)(1 + y2)1/2 tanh cosh
[
e−4x2

(1 + y)
]

for x > 0. Also compute the value f(x0, y0).

You are asked to use two different methods:

1. Steepest Descent

2. Conjugate Gradient

Compare the number of function evaluations between the two.

For this assignment, you have to install and use the GNU scientific
library (GSL). You’ll have to study the GSL documentation as well.
Note that the GSL has 2 conjugate gradient routines: use the
Polak-Ribiere variant. . . .



Homework (page 2/2)
Both of these minimizations require derivatives, so here they are.

Let’s define 4 intermediate results first:

A = e−x2

B = (1 + y2)1/2

C = tanh cosh[A4(1 + y)]

D = sinh[A4(1 + y)]

Then

f = (3− A)BC

∂f

∂x
= 2xAB

[
C− 4(3− A)A3(1− C2)D(1 + y)

]
∂f

∂y
= (3− A)

[
yC

B
+ A4B(1− C2)D

]
(the x in the second line is not a multiplication sign).


