N-Body With CUDA

CUDA in General

CUDA likes lots of threads. Many more threads than
processors.

Context switching in CUDA is fast, so one team of threads can
work on hardware while another waits for memory.

Access to main memory very slow - threads have small (~48k)
blocks of shared memory split between ~16 compute units.

For fast CUDA code, must work on data while in shared
memory (essentially cache).

Unlike w/ CPU’s you have to manually manage cache.

N-Body w/ CUDA

CUDA likes lots of threads - so, one thread

Will process particles in blocks. A team of t
block of particles it owns, then loops throug

ber particle.

nreads loads the

n other blocks.

Atomic add isn’t supported for floating-point math, so we wiill
end up doing double work. Unless any of you have clever

ideas...

assert{cudaMal loc {{void *¥) &vec,
cudaMemset {vec,a,) ;

Getting Set Up

J/Routine to tﬂké in input float vector, allocate space on the GPU for it, and copy the contents over.

J/Returns a pointed to the device vector.

d

* oo =cuda_vector{n);

assert{cudaMemcpy {dvec,vec, Y¥n ,cudaMemcpyHost ToDevice)==cudaSuccess);

dvec;

calculate_forces_gpu(l

*ymal loc(
*ymal loc(
*mal loc(

x*= X x
nnnu
e T T

{ *mal loc(
* {71 *mal loc(
* {71 *¥ymal loc(
{ =B3ian;ie+) {
x[1]=data[i].x[8];
y[i]=data[1].x[1];
z[i]=data[i].x[2];
W
Z/Copy the particle positions over
¥ =cuda_copy{x,n);
¥ =cuda_copy{y,n);
. ¥ =cuda_copy{z,n);
J/allocate space for the forces on the GPU.
¥ =cuda_vector(n);
=cuda_vector(n);
¥ C=cuda_vector{n);

=n/BLOCK ;
assert {(nb*BLOCK==n);

Need to copy particle positions over
to the GPU. First extract them from
the structure into vectors, then make
space on the GPU for positions and
forces, and copy positions over.

Note on notation: variables that live
on GPU are just regular pointers. To
keep them straight, start all device
variables w/ extra d, so dy is device
vector containing .

Calling the Kernel

CUDA needs to know how many
threads to fire up. The call
func<<<a,b>>> (c,d,...)

Wncke sure all the data is over before continuing. runs function func on the GPU, starting

cudaThreadSynchronize();

J/Now calculate the forces. We will start up nb blocks of threads, each of size BLOCK .
get_forces<<<nb, BLOCK=>> { n,dx,dy,dz,dfx,dfy,dfz); a bIOCkS Of threa’ds’ ea’Ch Of WhICh haS b

J/Make sure everybody is done calculating before we try to copy off the device. in i

kiThasadsmeonieal): threads in it. a and b can also be 2- and
J/Now copy the forces off of the GPU. 3_D

assert (cudaMemcpy {fx,dfx, {1 Lloat y*n,cudaMemcpyDeviceToHost)==cudaSuccess) ; *

assert {cudaMemcpy {fy ,dfy, { y¥n ,cudaMemcpyDeviceToHost)==cudaSuccess);

assert{cudaMemcpy{fz,dfz, {f Lot y¥n,cudaMemcpyDeviceToHost)==cudaSuccess);

int 1eBzi<nsie) £ cudaThreadSynchronize() waits for all

data[i].f [@]=-fx[1]* GRAVCONST*data[i].mass *data[i].mass ; 1 ’ 1
data[1].f[1]=-fy[1] * GRAVCONST*data[i].mass *data[i].mass ; threads to ﬁnISh What the)’ re dOIng

data[i].f[2]=-fz[1] * GRAVCONST*data[i].mass *data[i].mass ; t)faft)lﬁfa rT]()\/ir]E; on
1 .

cudaFree(dx);

cudaFree(dy); Use cudaFree to free memory allocated

cudaFree{dz);
cudaFree{dfx);
cudaFree{dfy); on the GPU
cudaFree{dfz);

Setting Up Inside the Kernel

Jffunction to calculate forces on the GPU, to be called from the host.
—-global__ get_forces(. ¥, *

d

/fThe

*

* *

shared__ memory is a small block of cache shared between a block of threads.

Z/To run fast, each block of threads copies global thread records into a local fast-memory

Jdareaq.
__shared__ [BLOCK], ' [BLOCK], '~ [BLOCK], [BLOCK],
__shared__ [BLOCK], [BLOCK], [BLOCK];

Jfwhich particle do I own?
=blockIdx.x*blockDim.x+threadldx.x;

[BLOCK],

[BLOCK] 3

J/These are now vector calls copying in contiguous chunks of memory into the local shared memory.

Lx[threadldx.x]=x[myind];
ly [threadIdx.x]=y [myind];
lz [threadIdx.x]=z [myind] ;]

J/clear the forces on the particle I own.
[fx[threadldx.x]=8;
[fy[threadldx.x]=8;
[fz[threadldx.x]=8;

J/make sure everybody is done before progressing.
J/syncthreads applies to a single block of threads, so
At 1z extremely fast - something like 4 clock cycles.
__syncthreads();

3 3 33 ;
’

s s
nb lock=n/BLOCK ;

We don’t want to work on variables in main memory.
Instead, copy blocks of data to __shared memory.
This is local cache shared between blocks of threads -
very fast, and all threads in a team see it. So, if have 32
thread blocks, and each thread loads just one #,
threads can see all 32 #’s. | have put I(ell) at the
beginning of __shared__ variable names.

Variables blockldx, blockDim, threadldx are

automatically set by CUDA so threads know which
ones they are. 0<=threadldx.x <blockDim.x

Sci
High Performance Computing

Doing the Force Calculations

/goal is to pull blocks of particles into __shared__ memory, then loop over all
J/of these particles while they're around. I have yet to figure out a good way to take
J/advantage of the force from my particle on other particles, so going to be doing
Jddouble work.

{blck=8;blck<nblock;blck++) {

.-"'.-"".:.'f'lil:ih particle ir:| the new block do I own? Each team Of thr’eads owns one bIOCk Of
myindZ=blck*blockDim.x+threadldx.x;

J/load the particle L'I'llill::li. into cache. Pal’tides. LOOP over Other bIOCI(S. Process
[x2 [threadldx.x]=x[myind2];

Ly2[threadldx.x]=y [nyind2]; | by loading another block of particle
[zZ2[threadIdx.x]=z [myind2]; L. . . .

) | o positions in, calculating their forces on me,
Jé/make sure all the data is loaded before going on.

__syncthreads(); and accumulating. When done, put the
{1=0;1-BLOCK;i++) {

J/everybody calculates the force from particle 1 in the block on for'ces in shared back in main GPU

J/themse lves.

dx=1x[threadldx.x]-1x2[i]; memaory.

dy=1y [threadldx.x]-1¥2[1];

dz=lz[threadldx.x]-1z2[1];

r=cx¥dx+dy*dy+dz*dz+EPS*EPS § . .

//rsart is the reciprocal square root. Different threads accessing shared blocks

r=rsqrt{r);

r3=rkri; of memory can be tricky. Think very
[fx[threadIldx.x]+=r3%dx;

Lfy [threadldx.x]+=r3¥dy carefully about thread synchronization.
[fz[threadldx.x]+=r3%dz;

! J/end loop over particles in the temporary block The _Syncth reads() Command is a bar’r’ier’

Jéwhy do I need a syncthreads here? I get wrong answers without it. for a block Of th reads’)Iou W|” need |t.
__syncthreads();

Jfend loop over blocks.

¥

Don’t Forget to Send Things Back

Jéfnow 1T have all the forces on the particles owned by this block of threads. Send 'em back.
fx[myind]=1fx[threadldx.x];
fy[myind]=1fy[threadldx.x];

fz[myind]=1fz [threadldx.x];}

Forces are calculated in __shared memory. Don’t forget to send
them back to main GPU memory, so the CPU can grab them.

Code lives on SciNet in /scratch/sievers/cuda

And now, watch the GPU in action.

