
N-Body With CUDA



CUDA in General
• CUDA likes lots of threads.  Many more threads than 

processors.  

• Context switching in CUDA is fast, so one team of threads can 
work on hardware while another waits for memory.

• Access to main memory very slow - threads have small (~48k) 
blocks of shared memory split between ~16 compute units.

• For fast CUDA code, must work on data while in shared 
memory (essentially cache).

• Unlike w/ CPU’s  you have to manually manage cache.



N-Body w/ CUDA

• CUDA likes lots of threads - so, one thread per particle.

• Will process particles in blocks.  A team of threads loads the 
block of particles it owns, then loops through other blocks.

• Atomic add isn’t supported for floating-point math, so we will 
end up doing double work.  Unless any of you have clever 
ideas...



Getting Set Up

Need to copy particle positions over 
to the GPU.  First extract them from 
the structure into vectors, then make 
space on the GPU for positions and 
forces, and copy positions over.

Note on notation:  variables that live 
on GPU are just regular pointers.  To 
keep them straight, start all device 
variables w/ extra d, so dy is device 
vector containing y.



Calling the Kernel
CUDA needs to know how many 
threads to fire up.  The call
func<<<a,b>>> (c,d,...) 
runs function func on the GPU, starting 
a blocks of threads, each of which has b 
threads in it.  a and b can also be 2- and 
3-D.  

cudaThreadSynchronize() waits for all 
threads to finish what they’re doing 
before moving on. 

Use cudaFree to free memory allocated 
on the GPU.



Setting Up Inside the Kernel

We don’t want to work on variables in main memory.  
Instead, copy blocks of data to __shared__ memory.  
This is local cache shared between blocks of threads - 
very fast, and all threads in a team see it.  So, if have 32 
thread blocks, and each thread loads just one #, 
threads can see all 32 #’s.   I have put l(ell) at the 
beginning of __shared__ variable names.

Variables blockIdx, blockDim, threadIdx are 
automatically set by CUDA so threads know which 
ones they are.  0<=threadIdx.x <blockDim.x



Doing the Force Calculations

Each team of threads owns one block of 
particles.  Loop over other blocks.  Process 
by loading another block of particle 
positions in, calculating their forces on me, 
and accumulating.  When done, put the 
forces in __shared__ back in main GPU 
memory.

Different threads accessing shared blocks 
of memory can be tricky.  Think very 
carefully about thread synchronization.  
The __syncthreads() command is a barrier 
for a block of threads, you will need it.



Don’t Forget to Send Things Back

Forces are calculated in __shared__ memory.  Don’t forget to send 
them back to main GPU memory, so the CPU can grab them.

Code lives on SciNet in /scratch/sievers/cuda

And now, watch the GPU in action.


