Parallel 1/0

SciNet
www.scinet.utoronto.ca
University of Toronto
Toronto, Canada

September 21, 2015

Scilet

Outline / Schedule

© Introduction

@ File Systems and 1/0
© Parallel 1/0

O MPLIO

© HDF5/NETCDF

Scilet

Disk 1/0

Common Uses
Checkpoint/Restart Files
Data Analysis

Time accurate and/or Optimization Runs

°
°

e Data Organization
°

@ Batch and Data processing
°

Database

Scilet

Disk 1/0

Common Bottlenecks
@ Mechanical disks are slow!
@ System call overhead (open, close, read, write)
@ Shared file system (nfs, lustre, gpfs, etc)

e HPC systems typically designed for high bandwidth (GB/s)
not I0OPs

@ Uncoordinated independent accesses

Scilet

Disk Access Rates over Time

1000 —
g L Cheetah |5K.
E 100 = Savvio 15K.1
& r Ultrastar 73LZX A%,
g L Ultrastar 18ZX
Y oL Ultrastar 18ES& Ujtragtar A7K1000
k] r Spitfi
o _ongire
@ 3380 A— 90
¢ I 3504
< [pu-
g g
£
a [
T o0l
b
£ f perf
F The rate of performance
[RAMAC P
& 00l In 1956 IBM produced the improvement in supercomputing
;)’ r first computer to include a systems, as measured by
L disk drive. Linpack, since 1993.
0.001 ‘ ! I | | |
1950 1960 1970 1980 1990 2000 2010
Figure by R. Ross, Argonne National Laboratory, CScADS09

Scilet

Century oS
10°
108
Year
107
2
s Month 108
2
=) on 10°
£ |Day c
= £ 10
s o
Hour e 103
[
102
— Lo
Second U

TAPE access (40s)

> Storage

DISK (5ms)

FLASH read (20 us)

Phase Change Memory (100 — 1000 ns)

DRAM (60ns)
L2 cache (10ns) Memory
CPU operations (1ns) Freitas & Chu, FAST'10

et

Figure by R. Freitas and L Chiu, IBM Almaden Labs, FAST'10

IOPs
Input/Output Operations Per Second (read,write,open,close,seek)

y

|/O Bandwidth
Quantity you read/write (think network bandwidth)

Comparisons

Device Bandwidth (MB/s) | per-node | IOPs | per-node
SATA HDD 100 100 100 100
SSD HDD 250 250 4000 4000
SciNet 5000 1.25 30000 7.5

SciNet

SciNet File system

{ File System

: @ 1,790 1TB SATA disk drives, for a total
of 1.4PB

Two DCS9900 couplets, each delivering:

o 4-5 GB/s read/write access (bandwidth)
e 30,000 IOPs max (open, close, seek, ...)

Single GPFS file system across 4000+ nodes

File system is parallel!

Scilet

|/O Software Stack

110 Software Stack

Application

High Level I/O Library

/10 Middleware

Parallel File System

1I0 Hardware

1

Maps application abstractions to storage
abstractions and provides data portability.
(HDF5, Parallel netCDf, ADIOS)

Organizes accesses from many processes,
especially collective /0. (MPI-10)

Maintains logical space and provides
efficient access to data.
(GPFS, Lustre, PVFS)

QCtNet

Parallel File System

Parallel File System Characteristics

@ Most parallel file systems use locks to manage concurrent file
access.

@ Optimized for large shared files.
@ Optimized for bandwidth not IOPs.

@ Behaves poorly under many small reads and writes, high 10Ps.
@ Shared resource across entire system.
o A few jobs doing heavy |/O can adversely affect all jobs.

Scilet

|/O Best Practices

Make a plan

@ Make a plan for your data needs:
e How much will you generate,
e How much do you need to save,
e And where will you keep it?

o Note that /scratch is temporary storage for 3 months or less.

v

Options?
@ Save on your departmental/local server/workstation
(it is possible to transfer TBs per day on a gigabit link);

@ Apply for a project space allocation at next RAC call
(but space is very limited);

© Archive data using HPSS (tape)
@ Change storage format.

\"Il)qet

|/O Best Practices

Monitor and control usage
@ Minimize use of filesystem commands like 1s and du.

@ Regularly check your disk usage using
/scinet/gpc/bin/diskUsage.
@ Warning signs which should prompt careful consideration:
@ More than 100,000 files in your space
o Average file size less than 100 MB

@ Monitor disk actions with top and strace

@ RAM is always faster than disk; think about using ramdisk.

@ Use gzip and tar to compress files to bundle many files into
one

e Try gziping your data files. 30% not atypical!
@ Delete files that are no longer needed

@ Do "housekeeping” (gzip, tar, delete) regularly. et

|/O Best Practices

Do's
@ Write binary format files
Faster I/O and less space than ASCII files.
@ Use parallel 1/0 if writing from many nodes
@ Maximize size of files. Large block /0O optimal!

@ Minimize number of files. Makes filesystem more responsive!

o’

Don'ts
@ Don't write lots of ASCII files. Lazy, slow, and wastes space!

@ Don't write many hundreds of files in a 1 directory. (File
Locks)

@ Don't write many small files (< 10MB).
System is optimized for large-block 1/0.

‘acinet

Data Management

Formats
e ASCII
@ Binary
e MetaData (XML)
@ Databases
e Standard Library’s (HDF5,NetCDF)

Scilet

ASCII

American Standard Code for Information Interchange
Pros

@ Human Readable

@ Portable (architecture independent)
Cons

@ Inefficient Storage

e Expensive for Read/Write (conversions)

Scilet

100100100

Pros
o Efficient Storage (256 x floats @4bytes takes 1024 bytes)
o Efficient Read/Write (native)

Cons

@ Have to know the format to read

e Portability (Endianness)

Scilet

ASCII vs. binary

Writing 128M doubles

Format || /scratch (GPCS) | /dev/shm (RAM) | /tmp (disk)

ASCII 173s 174s 260s

Binary 6s 1s 20s

Syntax

Format || C FORTRAN

ASCIl || fprintf () | open(6,file="test',form="'formatted")
write(6,%)

Binary || fwrite() | open(6,file="test’,form="unformatted’)
write(6)

Scilet

Metadata

What is Metadata?
Data about Data
@ File System: size, location, date, owner, etc.

@ App Data: File format, version, iteration, etc.

Example: XML

<?7xml version="1.0" encoding="UTF-8" 7>
<slice_data>
<format>UTF1000</format>
<verstion>6.8</version>

<date> January 15th, 2010 </date>
<loc> 47 23.516 -122 02.625 </loc>
</slice_data>

— -__‘4et

Beyond flat files
@ Very powerful and flexible storage approach
e Data organization and analysis can be greatly simplified
@ Enhanced performance over seek/sort depending on usage

@ Open Source Software

e SQLite (serverless)
o PostgreSQL
e mySQL

Scilet

“Standard” Formats

CGNS (CFD General Notation System)
IGES/STEP (CAD Geometry)

HDF5 (Hierarchical Data Format)
NetCDF (Network Common Data Format)

disciplineX version

Scilet

@ Parallel 1/0

Scilet

Common Ways of Doing Parallel 1/0

Sequential I/O (only proc 0 Writes/Reads)

e Pro
e Trivially simple for small I/O
e Some /O libraries not parallel
e Con
e Bandwidth limited by rate one client can sustain

e May not have enough memory on node to hold all data
o Won't scale (built in bottleneck)

Common Ways of Doing Parallel 1/0

N files for N Processes
e Pro

e No interprocess communication or coordination necessary
o Possibly better scaling than single sequential 1/0

e Con

o As process counts increase, lots of (small) files, won't scale
e Data often must be post-processed into one file
e Uncoordinated 1/0O may swamp file system (File LOCKS!)

. o . &ﬁ\let

Common Ways of Doing Parallel 1/0

All Processes Access One File
e Pro
e Only one file

e Data can be stored canonically, avoiding post-processing
e Will scale if done correctly

e Con

o Uncoordinated I/O WILL swamp file system (File LOCKS!)
e Requires more design and thought

Parallel 1/0

What is Parallel 1/07?

Multiple processes of a parallel program accessing data (reading or
writing) from a common file.

FILE
| |
N —
PO P1 P2 P(n-1)

Scilet

Parallel 1/0

Why Parallel 1/07

@ Non-parallel 1/0 is simple but:
e Poor performance (single process writes to one file)
o Awkward and not interoperable with other tools (each process
writes a separate file)

e Parallel 1/0
o Higher performance through collective and contiguous |/0

o Single file (visualization, data management, storage, etc)
e Works with file system not against it

Scilet

Contiguous and

Memory

File

Contiguous ig
in Both in File in Memory in Both

iguous Noncontiguous

Contiguous |/O move from a single memory block into a single file block

Noncontiguous 1/O has three forms:
@ Noncontiguous in memory, in file, or in both

@ Structured data leads naturally to noncontiguous 1/0
(e.g. block decomposition)

Describing noncontiguous accesses with a single operation passes more

knowledge to I/O system

Independent and Collective |

Indepedent 1/0 Collective 110

@ Independent 1/O operations specify only what a single process will do
o calls obscure relationships between 1/0O on other processes
@ Many applications have phases of computation and 1/0

o During /O phases, all processes read/write data
@ We can say they are collectively accessing storage

@ Collective I/O is coordinated access to storage by a group of processes

o functions are called by all processes participating in 1/0O
o Allows file system to know more about access as a whole, more
optimization in lower software layers, better performance et

Parallel 1/0

Available Approaches
e MPI-IO: MPI-2 Language Standard
e HDF (Hierarchical Data Format)
o NetCDF (Network Common Data Format)
@ Adaptable 10 System (ADIOS)

Scilet

@ VvPLIO

Scilet

MPI-10

MPI
@ MPI: Message Passing Interface

@ Language-independent communications protocol used to
program parallel computers.

MPI-10: Parallel file access protocol
@ MPI-10: The parallel 1/O part of the MPI-2 standard (1996).
@ Many other parallel 1/0 solutions are built upon it.

o Versatile and better performance than standard unix I/O.

@ Usually collective 1/0O is the most efficient.

v

Scilet

MPI-10

Advantages MPI-10
@ noncontiguous access of files and memory
collective 1/0
individual and shared file pointers
explicit offsets
portable data representation

can give hints to implementation /file system

no text/formatted output!

Scilet

MPI-10

MPI concepts
@ Process: An instance of your program, often 1 per core.

@ Communicator: Groups of processes and their topology.
Standard communicators:

e MPI_COMM_WORLD: all processes launched by mpirun.
e MPI_COMM_SELF: just this process.

@ Size: the number of processes in the communicator.
@ Rank: a unique number assigned to each process in the

communicator group.

When using MPI, each process always call MPI_INIT at the
beginning and MPT _FINALIZE at the end of your program.

SciNet

MPI-10

Basic MPI code example

in C:
#include <mpi.h>
int main(int argc,char**argv)
{
int rank,nprocs;
MPI_Init(&argc,&argv);
MPI Comm size
(MPI_COMM _WORLD,&nprocs) ;
MPI_Comm_rank
(MPI_COMM_WORLD,&rank) ;

MPI Finalize();
return O;

}

in Fortran:

program main

include ’mpif.h’

integer rank,nprocs

integer ierr

call MPI _INIT(ierr)

call MPI_COMM _SIZE &
(MPI_COMM_WORLD,nprocs,ierr)

call MPI_COMM_RANK &

(MPI_COMM WORLD,rank,ierr)

call MPI FINALIZE(ierr)
return

end

Nt Gs B NN\

MPI-10

MPI-10O exploits analogies with MPI

Writing < Sending message

Reading < Receiving message
File access grouped via communicator: collective operations

User defined MPI datatypes for e.g. noncontiguous data layout

IO latency hiding much like communication latency hiding
(IO may even share network with communication)

@ All functionality through function calls.

Scilet

MPI-10

Basic /0O Operations - C

int MPI_File open(MPI Comm comm,char*filename,int amode,
MPI_Info info, MPI File* fh)

int MPI_File_seek (MPI File fh,MPI Offset offset,int to)

int MPI File set view(MPI File fh, MPI Offset disp,
MPI Datatype etype,
MPI Datatype filetype,
char* datarep, MPI_Info info)

int MPI_File_read (MPI File fh, void* buf, int count,
MPI Datatype datatype,MPI Status*status)

int MPI_File_write (MPI File fh, void#* buf, int count,
MPI Datatype datatype,MPI_Status*status)

int MPI_File_close (MPI_File* fh) &m t

MPI-10

Basic 1/O Operations - Fortran

MPI_FILE_OPEN (comm,filename,amode,info,fh,ierr)
character*(*) filename

integer comm,amode,info,fh,ierr
MPI_FILE_SEEK(fh,offset,whence,ierr)

integer (kind=MPI OFFSET KIND) offset

integer fh,whence,ierr

MPI_FILE SET VIEW(fh,disp,etype,filetype,datarep,info,ierr)
integer (kind=MPI_OFFSET_KIND) disp

integer fh,etype,filetype,info,ierr

character*(*) datarep

MPI_FILE READ(fh,buf,count,datatype,status,ierr)

(type) buf (x)

integer fh,count,datatype,status(MPI_STATUS_SIZE),ierr
MPI FILE WRITE(fh,buf,count,datatype,status,ierr)

(type) buf (x)

integer fh,count,datatype,status(MPI_STATUS_SIZE),ierr

MPI _FILE CLOSE(fh)

MPI-10

Opening and closing a file

Files are maintained via file handles. Open files with MPI_File_open.
The following codes open a file for reading, and close it right away:

in C:

MPI FILE fh;

MPI File open(MPI _COMM WORLD,'"test.dat" ,MPI_MODE RDONLY,
MPI_INFO_NULL,&fh) ;

MPI File close(&fh);

Scilet

MPI-10

Opening a file requires...

@ communicator,

@ file name,

@ file handle, for all future reference to file,
@ file mode, made up of combinations of:

MPI_MODE_RDONLY read only

MPI_MODE_RDWR reading and writing
MPI_MODE_WRONLY write only

MPI_MODE_CREATE create file if it does not exist
MPI_MODE_EXCL error if creating file that exists
MPI_MODE DELETE ON _CLOSE | delete file on close
MPI_MODE_UNIQUE_OPEN file not to be opened elsewhere
MPI_MODE_SEQUENTIAL file to be accessed sequentially
MPI_MODE_APPEND position all file pointers to end

@ info structure, or MPI_INFO_NULL,
@ In Fortran, error code is the function’s last argument
In C, the function returns the error code.

et

MPI-10

etypes, filetypes, file views
To make binary access a bit more natural for many applications,
MPI-10 defines file access through the following concepts:
Q etype: Allows to access the file in units other than bytes.
Some parameters have to be given in bytes.
@ filetype: Each process defines what part of a shared file it uses.

o Filetypes specify a pattern which gets repeated in the file.
e Useful for noncontiguous access.
e For contiguous access, often etype=filetype.

© displacement: Where to start in the file, in bytes.

Together, these specify the file view, set by MPI_File_set_view.
Default view has etype=filetype=MPI BYTE and displacement 0.

SciNet

MPI-10

Overview of all read functions

Single task

Collective

Individual

file pointer

blocking
nonblocking

MPI File_ read
MPI File_iread
+(MPI_Wait)

MPI File read_all
MPI File_read_all_begin
MPI File_read_all_end

Explicit offset

blocking MPI File read. at MPI File read at_all
nonblocking|MPI File_iread at MPI File read at_all begin
+(MPI_Wait) MPI_File_read_at_all_end
Shared file pointer
blocking MPI File_read_shared |MPI_File read ordered
nonblocking|MPI File_iread shared |MPI File read ordered begin

+(MPI Wait)

MPI File read ordered_end

Scilet

MPI-10

Overview of all write functions

Single task Collective
Individual file pointer
blocking MPI File write MPI File write_all
nonblocking |MPI File iwrite MPI File write_all begin
+(MPI Wait) MPI File write_all_end
Explicit offset
blocking MPI File write_at MPI File write_at_all
nonblocking|MPI File_ iwrite_at MPI File write_at_all begin
+(MPI_Wait) MPI_File write_at_all_end
Shared file pointer
blocking MPI File write_shared |MPI File write_ordered
nonblocking|MPI File iwrite_shared |MPI File write ordered begin
+(MPI_Wait) MPI_File write_ordered_end

Scilet

MPI-10 Examples
e GPC: /scinet/course/parl0.2015/
@ https://wiki.scinet.utoronto.ca/wiki

$git clone /scinet/course/parI0.2015/
$cd parI0.2015/mpiio

$source setup

$make

$make allf

$mpirun -np 4 ./helloworldc

Scilet

Example: helloworldc.c

{

MPI Dffset offset = (msgsize*rank);
MPI File file;
MPI Status stat;

MPI File open(MPI_COMM_WORLD, "hel-
loworld.txt", MPI MODE CREATE | MPI _MODE WRONLY,
MPI_INFO_NULL, &file);

MPI File_seek(file, offset, MPI_SEEK_SET);
MPI File write(file, msg, msgsize, MPI CHAR,
&stat);

MPI File_close(&file);

} ScCilet

MPI-10

Collective vs. single task

After a file has been opened and a fileview is defined, processes
can independently read and write to their part of the file.

If the 10 occurs at regular spots in the program, which different
processes reach the same time, it will be better to use collective
[/O: These are the _al1 versions of the MPI-IO routines.

Two file pointers
An MPI-IO file has two different file pointers:
@ individual file pointer: one per process.

@ shared file pointer: one per file: _shared/_ordered

‘Shared’ doesn't mean ‘collective’, but does imply synchronization!

SCHet

MPI-10

Strategic considerations

Pros for single task 1/0
@ One can virtually always use only individual file pointers,

@ If timings variable, no need to wait for other processes

Cons

o If there are interdependences between how processes write,
there may be collective 1/O operations may be faster.

@ Collective 1/0 can collect data before doing the write or read.

y

True speed depends on file system, size of data to write and

implementation.
Scifet

Example: writeatc.c

MPI Dffset offset = (msgsize*rank);
MPI File file;
MPI Status stat;

MPI File open(MPI_COMM_WORLD, "hel-
loworld.txt", MPI MODE CREATE | MPI _MODE WRONLY,
MPI_INFO_NULL, &file);

//Coordinated Write MPI_File write_at(file,
offset, msg, msgsize, MPI_CHAR, &stat);
MPI File close(&file);

Scifet

Example: writeatallc.c

{

MPI Dffset offset = (msgsize*rank);
MPI File file;
MPI Status stat;

MPI File open(MPI_COMM_WORLD, "hel-
loworld.txt", MPI MODE CREATE | MPI _MODE WRONLY,
MPI_INFO_NULL, &file);

//Collective Coordinated Write

MPI File write at_all(file, offset, msg, msg-
size, MPI_CHAR, &stat);

MPI File_close(&file);

} ScCilet

MPI-10

Contiguous Data

Processes

P(0) P(2) P@3) |
| ! !

One file

int bufl...];

MPI Offset bufsize=...;

MPI File open(MPI_COMM_WORLD,"file" ,MPI_MODE_WRONLY,
MPI_INFO_NULL,&fh);

MPI Offset disp=rank*bufsize*sizeof (int);

MPI File set_view(fh,disp,MPI_INT,MPI_INT,"native",

MPI_INFO_NULL) ;
MPI File write(fh,buf,bufsize,MPI_INT,MPI_STATUS_IGNORE);
MPI File_close(&fh);

let

MPI-IO File View

¢ Each process has a view of the file that consists of only of the parts
accessible to it.

¢ For writing, hopefully non-overlapping!
¢ Describing this - how data is laid out in a file - is very similar to
describing how data is laid out in memory...

e int MPI_File_set_view(

MPI-IO File View

MPI_File fh,
MPI_Offset disp,

MPI_Datatype etype,

/* displacement in bytes from start */
/* elementary type */

MPI_Datatype filetype, /*file type; prob different for each proc */
char *datarep,
MPI_Info info)

/* ‘native’ or ‘internal’ */
/* MPI_INFO_NULL for today */

/

disp

||
\I/

etypes

<SGH\| et

MPI-IO File View

e int MPI_File_set_view(
MPI_File fh,
MPI_Offset disp, /* displacement in bytes from start */
MPI_Datatype etype, /*elementary type */
MPI_Datatype filetype, /* file type; prob different for each proc */

char *datarep, [* ‘native’ or ‘internal’ */
MPI_Info info) /* MPI_INFO_NULL */
HEEEEEEEEEEEEEEE e EN
Filetypes (made up of et :
ypes (made up of S9PSG Ciet

repeat as necessary)

Example: sinec.c

int npts=200;
int locnpts = npts/size;

int start = locnpts * rank;
if (rank == size-1)
locnpts = (npts-start);

data = malloc(locnpts * sizeof(float));
for (int i=0; i<locnpts; i++) ¢

datali] = sin((start+i)*1.0*8*atan(1.)/npts);
¥

Scifet

Example: sinec.c

MPI File open(MPI_COMM WORLD, "sine.dat",
MPI_MODE CREATE | MPI _MODE WRONLY,
MPI_INFO_NULL, &file);

MPI File write all(file, data, locnpts,
MPI_FLOAT, &status);
MPI File close(&file);

Scilet

Example: sinec.c

{

MPI File open(MPI_COMM WORLD, "sine.dat",
MPI_MODE CREATE | MPI _MODE WRONLY,
MPI_INFO_NULL, &file);

MPI File write all(file, data, locnpts,
MPI_FLOAT, &status);
MPI File close(&file);

Anything wrong with this code?

Scilet

Example: sinec.c

{

MPI File open(MPI _COMM WORLD, "sine.dat",
MPI_MODE CREATE | MPI _MODE WRONLY,
MPI_INFO_NULL, &file);

MPI Offset offset=rank*(npts/size)*sizeof(float);
MPI File set_view(file,offset,MPI _FLOAT,
MPI_FLOAT,"native" ,MPI_INFO_NULL) ;

MPI File write_all(file, data, locnpts,
MPI_FLOAT, &status);
MPI File_close(&file);

Scifet

MPI-10

Noncontiguous Data

Processes
P(0) P(1) P(2)

yan -
[N T TN T TN TTTT TN T

One file

Filetypes to the rescue!

Define a 2-etype basic MPI_Datatype.
Increase its size to 8 etypes.
Shift according to rank to pick out the right 2 etypes.

Use the result as the filetype in the file view.

Then gaps are automatically skipped. et

MPI-10

Overview of data/filetype constructors

Function

Creates a. ..

MPI_Type_contiguous
MPI_Type_vector
MPI_Type_indexed
MPI_Type_indexed_block
MPI Type_create_struct
MPI_Type_create _resized
MPI_Type_create_darray
MPI Type_create_subarray

contiguous datatype

vector (strided) datatype

indexed datatype

indexed datatype w/uniform block length
structured datatype

type with new extent and bounds
distributed array datatype

n-dim subarray of an n-dim array

Before using the create type, you have to do MPI_Commit.

Scilet

MPI-10

Accessing a noncontiguous file type

[T AN TTTT TR TTTTRTIT

in C:

MPI Datatype contig, ftype;

MPI Datatype etype=MPI_INT;

MPI Aint extent=sizeof(int)*8; /* in bytes! */

MPI Dffset d=2%sizeof(int)*rank; /* in bytes! */

MPI Type_contiguous(2,etype,&contig) ;

MPI _Type_create_resized(contig,0,extent,&ftype) ;

MPI Type_commit (&ftype) ;

MPI File set _view(fh,d,etype,ftype, ' 'native",
MPI_INFO _NULL);

SCHet

MPI-10

File data representation

native: Data is stored in the file as it is in memory:
no conversion is performed. No loss in
performance, but not portable.
internal: Implementation dependent conversion.

Portable across machines with the same
MPI implementation, but not across
different implementations.

external32: Specific data representation, basically
32-bit big-endian IEEE format. See MPI
Standard for more info. Completely
portable, but not the best performance.

These have to be given to MPI File _set_view as strings.

SCH\et

MPI-10

More noncontiguous data: subarrays J

What if there's a 2d matrix that is distributed across processes?

=)]

Common cases of noncontiguous access — specialized functions:
MPI File create subarray & MPI File create_darray. et

MPI-10

More noncontiguous data: subarrays

int gsizes[2] ={16 s 6} 5

int 1lsizes[2] ={8 s 3} g

int psizes[2]={2,2};

int coords[2] ={ra.n.k'/.ps izes[0] ,rank/psizes[0] } 7

int starts[2]={coords[0]*1sizes[0],coords[1]*1sizes[1]};

MPI Type _create_subarray(2,gsizes,lsizes,starts,,

MPI_ORDER_C,MPI_INT,&filetype);

MPI Type_commit (&filetype) ;

MPI File _set_view(fh,0,MPI_INT,filetype,''native",
MPI_INFO_NULL) ;

MPI File write_all(fh,local _array,local_array size,MPI_INT
MPI_STATUS_IGNORE);

v

Tip

MPI Cart_create can be useful to compute coords for a proc. et

Example: helloworld-noncontigc.c

{
if ((rank % 2) == 0)

strcpy (message, "H+e#l&l;o A");
else

strcpy (message, "WFoQr#l>d ");

MPI Datatype eo0;

MPI offset offset = (msgsize*rank);

MPI Type_vector(msgsize, 1, 2, MPI_CHAR, &eo);
MPI Type_commit (&eo) ;

MPI File open(MPI_COMM_WORLD, "hellonc.txt",

MPI File_seek(file, offset, MPI_SEEK SET);
MPI File write(file, message, 1, eo, &stat);
MPI File close(&file);

MPI_Type_free(&eo) ;
: ScCiNet

MPI-10

Good References on MPI-10

o W. Gropp, E. Lusk, and R. Thakur, Using MPI-2: Advanced
Features of the Message-Passing Interface (MIT Press, 1999).

e J. H. May, Parallel 1/0 for High Performance Computing
(Morgan Kaufmann, 2000).

o W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk,
B. Nitzberg, W. Saphir, and M. Snir, MPI-2: The Complete
Reference: Volume 2, The MPI-2 Extensions
(MIT Press, 1998).

Scilet

© HDF5/NETCDF

Scilet

	Introduction
	File Systems and I/O
	Parallel I/O
	MPI-IO
	HDF5/NETCDF

