
Introduction to the Unix Shell
Mike Nolta, SciNet

July 13, 2015

1 / 83

What is a shell?
A shell is a meta-program.

It's a program to run other programs.

All general purpose computers have a shell of some sort.

2 / 83

For example, the main screen of a smartphone can
be considered a kind of shell. It lists the available
programs, which you tap to start.

(However, most people would call this a launcher,
not a shell.)

Graphical "shell"

3 / 83

Text shells
The first shells were written in the early 1970s, when you talked to computers
like this:

00:00 -17:26

4 / 83

So why still use text shells?
We don't use teletypes anymore, so why isn't everything graphical?

A graphical user interface is pretty, but limited. The only thing you can do is
start a program, and that's pretty much it.

As we'll see, a text interface allows you to combine simple programs together
in powerful ways.

A shell is not just a program to launch programs, but a language to launch
programs. We use text shells for the same reason we still write code in text --
it's more expressive.

5 / 83

Getting setup
Linux:

Look for a Terminal application (gnome-terminal, konsole, xterm, ...)

OS X:

Open Applications/Utilities/Terminal

Windows:

Start MobaXterm;
Go to Settings > Configuration and set "persistent HOME directory" to
a permanent location.

6 / 83

The shell prompt
You should now see the shell prompt, awaiting input:

Linux:

[username@hostname ~]$

OS X:

hostname:~ username$

Windows (MobaXterm):

[username.hostname]

In these slides i'll use

$

as the shell prompt.

7 / 83

Running a program
Instead of tapping an icon, in a text shell you type the name of the program
you want to run and hit Enter. Let's run the date program:

$ date
Thu 9 Jul 2015 11:55:48 EDT

date is the name of the program we want to run, which prints the current
time.

8 / 83

Program arguments
The first word is the command, and any subsequent words are passed to the
command as arguments, where the words are separated by whitespace.

The echo program prints the arguments you give it:

$ echo a b c
a b c

Here we've passed three arguments: "a", "b", and "c".

The seq program prints a sequence of integers:

$ seq 3
1
2
3
$ seq 4 2
4
3
2

9 / 83

Getting help
Use the man command (short for manual) to get help

$ man echo

ECHO(1) BSD General Commands Manual ECHO(1)

NAME
 echo -- write arguments to the standard output

SYNOPSIS
 echo [-n] [string ...]

DESCRIPTION
 The echo utility writes any specified operands, separated by single blank (` ')
 characters and followed by a newline (`\n') character, to the standard output.
...

10 / 83

Let's write our own echo
// print_args.c : print command line arguments

#include <stdio.h>

int main(int argc, char *argv[])
{
 for (int i = 0; i < argc; i++)
 printf("arg $d is %s\n", i, argv[i]);
 return 0;
}

$ gcc -o print_args print_args.c
$./print_args a b c
arg 0 is ./print_args
arg 1 is a
arg 2 is b
arg 3 is c

11 / 83

String literals
String literals are delimited by single quotes:

$ echo 'the cake cost $10 dollars'
the cake cost $10 dollars

If a single-quoted string is preceded by a $, standard C character escape
sequences are expanded:

$ echo 'a\nb\nc'
a\nb\nc
$ echo $'a\nb\nc'
a
b
c

\n is a newline, \t is a tab, etc.

12 / 83

Field Splitting
Quotes prevent argument splitting, allowing you to pass spaces in a single
argument:

$./print_args a b
arg 0 is ./print_args
arg 1 is a
arg 2 is b

$./print_args 'a b'
arg 0 is ./print_args
arg 1 is a b

13 / 83

Variables
If you want to pass the same argument to multiple commands, you can define
a variable:

$ var='a b'

Valid variable names start with a letter, and consist only of letters, numbers,
and underscores.

Note that there can be no spaces around the equal sign -- var = x is
interpreted as "run the 'var' command with arguments '=' and 'x'".

To get a variable's value, prefix with a dollar sign:

$ echo $var
a b

14 / 83

String literals (2)
There's another form of string literal, delimited by double-quotes. It's like a
single-quoted string, but interpolates variables:

$ var='a b'
$ echo 'the value of var is $var'
the value of var is $var
$ echo "the value of var is $var"
the value of var is a b

When ambiguous, surround the variable name with braces:

$ echo "the value of var is $vars"
the value of var is
$ echo "the value of var is ${var}s"
the value of var is a bs

15 / 83

Field Splitting (2)
Newlines and tabs can also delimit arguments, unless protected by quotes.

$ X=$'a\nb\nc'

$ echo $X
a b c

$ echo "$X"
a
b
c

16 / 83

Where are these programs?
The which command shows you the location a program:

$ which echo
/bin/echo
$ which seq
/usr/bin/seq

But what does /bin/echo mean?

17 / 83

The Filesystem

18 / 83

The Unix Filesystem
Like Windows and OS X, the Unix filesystem is hierarchical, with files stored
in nested directories (folders). Directories can hold both files and other
directories (called subdirectories).

A path is a string representing a route through the filesystem, tracing a path
through the directories, with the names separated by /.

There are two kinds of paths: absolute and relative.

absolute paths start with a /, and refer to a fixed location;

relative paths do not start with a /, and are relative to the current
working directory.

Unlike Windows, the Unix filesystem is unified, every file and directory
descends from /, the root. There are no drive letters, e.g., C:\Folder\File.txt.

19 / 83

Filesystem layout
/ is the root of the filesystem

/usr holds system software:

/usr/bin holds system programs (aka binaries)
/usr/lib holds system libraries

/etc holds system configuration files.

/home holds user home directories

/tmp holds temporary files

20 / 83

Navigating the Filesystem: pwd & cd
Print current (working) directory:

$ pwd
/Users/nolta

This is my home directory (on OS X).

Change current directory with cd:

$ cd /usr
$ pwd
/usr
$ cd bin
$ pwd
/usr/bin

Note the cd bin command is interpreted relative to our current location (i.e.,
"change to the 'bin' subdirectory").

21 / 83

Navigating the Filesystem: ls
List the files in the current directory:

$ ls
Desktop Library Pictures chime
Documents Movies Public julia
Downloads Music asciinema talks

List the files in a specific directory:

$ ls /
bin dev home lib64 media mnt nixon proc run scratch sys usr
boot etc lib lost+found misc net opt root sbin srv tmp var

22 / 83

Creating & Removing Directories
Make a new directory:

$ mkdir tmp

Remove directory:

$ rmdir tmp

rmdir will fail if the directory contains any files or directories.

23 / 83

Removing files
$ rm filename

Adding the -r option lets you recursively remove a directory and all its
subdirectories & files.

$ rm -r dir

24 / 83

Renaming Files & Directories
$ mv oldname newname

25 / 83

Copy a File
$ cp original copy

26 / 83

Special directories: ., .., ~
. refers to the current directory, so ls and ls . are equivalent.

.. refers to the parent directory.

$ cd /usr/local/bin
$ cd ../../lib
$ pwd
/usr/lib

~ refers to your home directory.

$ cd ~/data
$ pwd
/Users/nolta/data

27 / 83

Recap
cp copy file
cp -r copy directory
mkdir make new directory
mv move file or directory
rm remove file
rm -r remove directory
rmdir remove empty directory

28 / 83

The Environment

29 / 83

Environment Variables
Ok, where were we? Right,

$ which seq
/usr/bin/seq

So the seq program is located in the /usr/bin directory. When the shell sees
seq, it runs /usr/bin/seq.

But how did the shell know to run /usr/bin/seq?

There's a special environment variable called PATH that lists the directories the
shell searches for programs.

$ echo $PATH
/opt/local/bin:/opt/local/sbin:/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:/opt/X11/bin

30 / 83

Other interesting environment variables
HOME: user home directory

$ echo $HOME
/Users/nolta

PWD: current working directory (same as pwd command)

PS1: prompt string

$ PS1=" yo: "
yo:

31 / 83

Wildcards (aka Globbing)

32 / 83

File globbing
Say you have a directory with thousands of files, but only a few files have the
extension .html. You can list only those files using the * pattern:

$ ls *.html
index.html
intro_to_unix_shell.html

Before the command is run, the shell expands *.html into a list of filenames
ending in .html, and then passes that list as arguments to ls.

As usual, quoting protects arguments from globbing

$ ls "*.html"
ls: *.html: No such file or directory

33 / 83

Globbing patterns
* matches any sequence of zero-or-more characters

? matches any single character

[...] matches any single character in ...

[!...] matches any single character not in ...

any other character just matches itself

34 / 83

Globbing examples
*.pdf matches any string ending in .pdf

??? matches any 3-character string

[a-z]* matches any string starting with a lowercase letter

[!a-z]* matches any string not starting with a lowercase letter

[A-Za-z0-9_] matches any letter (upper or lower), digit, or underscore

35 / 83

Standard I/O & Redirection

36 / 83

Redirect Output to a File
Often you want to save the output of a command to a file, not dump it to the
screen:

$ seq 4 2
4
3
2

This is accomplished via the > operator:

$ ls
$ seq 4 2 > output
$ ls
output
$ cat output
4
3
2

Here the output of the seq 3 command has been redirected to the new file
output. The cat program dumps files to the screen.

37 / 83

Append Output to a File
> clobbers the file:

$ echo a > output
$ echo b > output
$ cat output
b

Use >> to append to the file, if it exists:

$ echo a > output
$ echo b >> output
$ cat output
a
b

38 / 83

Redirect Input from a File
Similarly, you can redirect the input of a command to come from a file, not the
terminal, with <:

$ seq 4 2 > output
$ sort < output
2
3
4

The sort command sorts the lines of its input.

39 / 83

Pipelines
This pattern is so common

$ cmd1 > tmpfile
$ cmd2 < tmpfile

that there's a special pipeline syntax to connect the output of one command to
the input of another command:

$ seq 4 2
4
3
2
$ seq 4 2 | sort
2
3
4

40 / 83

Behind the Scenes
Don't worry if you don't understand this material -- it's optional!

41 / 83

Files
A file is a source and/or sink of bytes, which supports the following API:

fd = open(filename, mode)

read(fd, buf, n), read at most n bytes from fd into buf;

write(fd, buf, n), write n bytes from buf to fd;

close(fd)

This is a powerful abstraction. Files are typically thought of, e.g., a PDF on a
disk drive, but they can be anything you can read and/or write to. For
example, a network connection can be thought of as a file.

42 / 83

Standard I/O
Each process starts life with 3 open files:

standard input (aka stdin)
standard output (aka stdout)
standard error (aka stderr)

Their file ids are 0, 1, 2 respectively.

Not surprisingly, the process reads from stdin, writes to stdout, and writes
errors to stderr.

43 / 83

Redirection
For a shell, stdin/stdout/stderr are typically the same file, a terminal:

$ tty
/dev/ttys009

When the shell runs a program, by default the program reads & writes to the
same stdin, stdout, and stderr as the shell.

However, you can redirect I/O, i.e., read/write from different files.

44 / 83

Under the hood
> filename is the same as 1> filename, i.e., "redirect the output of file
descriptor 1 to filename".

n> filename gets translated into something like

close(n);
open(filename, O_WRONLY|O_CREATE);

Because open is called immediately after close, it's guaranteed to return the
same file descriptor (in this case, n).

45 / 83

Stupid redirection tricks
// write_to_3.c : write a short message to file descriptor 3

#include <stdio.h>
#include <string.h>
#include <unistd.h>

int main(int argc, char *argv[])
{
 const char *s = "this is file descriptor 3";
 if (write(3, s, strlen(s)) == -1)
 fprintf(stderr, "error: couldn't write to file descriptor 3\n");
 return 0;
}

$./write_to_3
error: couldn't write to file descriptor 3

$./write_to_3 3>output
$ cat output
this is file descriptor 3

46 / 83

Here Documents: <<
$ sort <<EOF
> pear
> apple
> tophat
> EOF
apple
pear
tophat

EOF is an arbitrary string. It marks the beginning and end of the input.

47 / 83

Here Documents: <<<
<<< lets you pass cmd-line strings to stdin.

Example -- let:

$ X=$'pear\napple\ntophat'

So instead of

$ echo "$X" | sort
apple
pear
tophat

you can write

$ sort <<<"$X"
apple
pear
tophat

48 / 83

Redirecting output to another stream:
>&
$ ls *.nope
ls: *.nope: No such file or directory
$ ls *.nope >output
ls: *.nope: No such file or directory

The error message is still printed to the terminal because it's written to stderr,
not stdout.

To redirect stderr, use 2>:

$ ls *.nope >output 2>err

What if you want to direct both stdout & stderr to the same file?

$ ls *.nope >output 2>&1
$ cat output
ls: *.nope: No such file or directory

49 / 83

Redirecting output to another stream:
>&
n>filename turns into

close(n);
open(filename, WRITE);

n>&m turns into

close(n);
dup(m);

dup duplicates the file descriptor, and like open it reuses the last closed file
descriptor (i.e., dup(m) == n).

50 / 83

Redirecting output to another stream:
>&
Redirections are processed in order from left to right.

>filename 2>&1

close(1);
open(filename, WRITE);
close(2);
dup(1);

0 /dev/tty --> /dev/tty --> /dev/tty
1 /dev/tty --> filename --> filename
2 /dev/tty --> /dev/tty --> filename

51 / 83

Redirecting output to another stream:
>&
Redirections are processed in order from left to right.

2>&1 >filename

close(2);
dup(1);
close(1);
open(filename, WRITE);

0 /dev/tty --> /dev/tty --> /dev/tty
1 /dev/tty --> /dev/tty --> filename
2 /dev/tty --> /dev/tty --> /dev/tty

52 / 83

Chaining Commands

53 / 83

Command Chains
Commands can be chained together in 4 ways:

command1 ; command2 ; ... run commands in sequence.

command1 & command2 & ... run commands in parallel.

command1 && command2 ... run command only if previous command
succeeded.

command1 || command2 ... run command only if previous command failed.

A command succeeds when it returns 0, any other value indicates failure.

int main(void) { return 0; } // success
int main(void) { return 1; } // failure

The exit status of the last command is stored in the special environment
variable $?.

54 / 83

Pipelines are left-associative
What's the output of

$ false && echo foo || echo bar

and

$ true || echo foo && echo bar

?

55 / 83

Pipelines are left-associative
What's the output of

$ false && echo foo || echo bar

and

$ true || echo foo && echo bar

?

Both output bar.

56 / 83

Job Control

57 / 83

Job Control
Job control refers to managing background processes.

To list all the current background processes, use jobs:

$ sleep 50 & sleep 60 & sleep 70 &
[1] 18383
[2] 18384
[3] 18385
$ jobs
[1] Running sleep 50 &
[2]- Running sleep 60 &
[3]+ Running sleep 70 &

Jobs can be referred to either by their PID (e.g., 18383) or job number (e.g., %1).

58 / 83

Suspending Jobs
If you started a job, but forgot to add &, use Control-Z to suspend it:

$ ping freebsd.org
PING freebsd.org (8.8.178.110) 56(84) bytes of data.
64 bytes from wfe0.ysv.freebsd.org (8.8.178.110): icmp_seq=1 ttl=49 time=69.1 ms
64 bytes from wfe0.ysv.freebsd.org (8.8.178.110): icmp_seq=2 ttl=49 time=68.9 ms
64 bytes from wfe0.ysv.freebsd.org (8.8.178.110): icmp_seq=3 ttl=49 time=68.9 ms
^Z
[1]+ Stopped ping freebsd.org

The job is now stopped, and not executing. Use fg to bring it back to the
foreground.

$ jobs
[1]+ Stopped ping freebsd.org
$ fg
ping freebsd.org
64 bytes from wfe0.ysv.freebsd.org (8.8.178.110): icmp_seq=4 ttl=49 time=68.8 ms
64 bytes from wfe0.ysv.freebsd.org (8.8.178.110): icmp_seq=5 ttl=49 time=68.9 ms
64 bytes from wfe0.ysv.freebsd.org (8.8.178.110): icmp_seq=6 ttl=49 time=68.6 ms
...

59 / 83

Useful Programs

60 / 83

head,tail: first or last lines of file
Take first 3 lines:

$ seq 7 | head -n 3
1
2
3

Take last 3 lines:

$ seq 7 | tail -n 3
5
6
7

61 / 83

head,tail, continued
Drop first 2 lines:

$ seq 7 | tail -n+3
3
4
5
6
7

Drop last 2 lines (doesn't work on OS X):

$ seq 7 | head -n-2
1
2
3
4
5

62 / 83

sort: sort lines
Normal (lexicographic) sort:

$ seq 9 11 | sort
10
11
9

Numerical sort (-n):

$ seq 9 11 | sort -n
9
10
11

Reverse sort (-r):

$ seq 9 11 | sort -n -r
11
10
9

63 / 83

uniq: unique lines
uniq removes consecutive duplicate lines from a stream or file. Usually paired
with sort.

$ uniq <<EOF
> a
> b
> a
> EOF
a
b
a

$ uniq <<EOF
> a
> a
> b
> EOF
a
b

64 / 83

uniq, continued
Add the -c option to get a duplicate count:

$ uniq -c <<EOF
> a
> a
> b
> EOF
 2 a
 1 b

65 / 83

cut: cut columns
$ echo abcdefghijklmnopqrstuvwxyz > alphabet

First 10 columns

$ cut -c-10 alphabet
abcdefghij

Columns 10 and greater

$ cut -c10- alphabet
jklmnopqrstuvwxyz

Columns 10-20

$ cut -c10-20 alphabet
jklmnopqrst

66 / 83

cut, continued
Columns 4-6 and 8-13

$ cut -c4-6,8-13 alphabet
defhijklm

Fields 2-4 and 6, where fields are separated by commas:

$ echo 'a,b,c,d,e,f,g' | cut -d',' -f2-4,6
b,c,d,f

Be careful, multiple delimiters are not combined:

$ echo 'a b c' | cut -d' ' -f2

$ echo 'a b c' | cut -d' ' -f4
b

67 / 83

paste: concatenate lines
Concatenate columns, separated by space

$ paste -d' ' <(seq 3) <(seq 3)
1 1
2 2
3 3

Concatenate lines, separated by comma

$ paste -d, <(seq 3) <(seq 4)
1,1
2,2
3,3
,4

"Transpose" with the -s option

$ paste -s -d, <(seq 3) <(seq 4)
1,2,3
1,2,3,4

68 / 83

tr: translate characters
Convert ASCII lowercase to uppercase

$ cat alphabet | tr 'a-z' 'A-Z'
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Convert arbitrary lowercase to uppercase

$ echo 'αβ' | tr '[:lower:]' '[:upper:]'
ΑΒ

Convert spaces to commas

$ echo 'a b c' | tr ' ' ','
a,,b,,,c

Convert spaces to commas, but squeeze commas together

$ echo 'a b c' | tr -s ' ' ','
a,b,c

69 / 83

tr, continued
Delete characters

$ echo 'a,b,c' | tr -d ','
abc

Delete all characters except

$ echo 'a,b,c' | tr -c -d ','
,,

(-c takes the complement of ',')

70 / 83

sed: stream editor
Substitute "brown" with "red"

$ echo "quick brown fox" | sed -e 's/brown/red/'
quick red fox

Substitute "/bin" with "/usr/local/bin"

$ echo "/bin/bash" | sed -e 's:/bin:/usr/local/bin:'
/usr/local/bin/bash

Replace all occurrences of "a" with "b"

$ echo "a a a" | sed -e 's/a/b/'
b a a
$ echo "a a a" | sed -e 's/a/b/g'
b b b

71 / 83

awk: stream text processing
Named after the initials of its creators.

Invert column 1

$ seq 3 | awk '{print $1, 1/$1}'
1 1
2 0.5
3 0.333333

Unlike bash, where all arithmetic is integer, in awk all arithmetic is floating
point.

72 / 83

More useful programs
diff : file differences
find
rsync
ssh
scp
top
ps
vi
nohup
screen
tee
curl
wget
wc
join
du
mount
chown
chmod
ln
tar

73 / 83

Stupid Shell Tricks

74 / 83

Example: sum fields in XML file
Say we have an XML file,

and we'd like to sum up the "length" fields.

$ curl -O http://www.canfar.phys.uvic.ca/vospace/nodes
$ cat nodes
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="http://www.canfar.phys.uvic.ca/vospace/vospace.xsl"?>
<vos:node xmlns:vos="http://www.ivoa.net/xml/VOSpace/v2.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 <vos:properties>
 <vos:prop uri="ivo://ivoa.net/vospace/core#ispublic" readOnly="false">true</vos:prop
 </vos:properties>
 <vos:nodes>
 <vos:node uri="vos://cadc.nrc.ca!vospace/APASS" xsi:type="vos:ContainerNode">
 <vos:properties>
 <vos:prop uri="ivo://ivoa.net/vospace/core#length" readOnly="true">-532343651495
 <vos:prop uri="ivo://ivoa.net/vospace/core#date" readOnly="true">2015-07-02T19:03:57.837
 <vos:prop uri="ivo://ivoa.net/vospace/core#ispublic" readOnly="false">true</
 <vos:prop uri="ivo://ivoa.net/vospace/core#creator" readOnly="false">CN=welch_43b,OU=CADC,O=HIA,C=CA
 </vos:properties>
 <vos:nodes />
 </vos:node>
...

75 / 83

Example: sum fields in XML file (2)
First, filter out the "length" lines

grep 'core#length' nodes \

Next, grab just the number

| egrep -o '[0-9]+' \

Finally, sum the entries

| { s=0; while read x; do s=$((s+x)); done; echo $s; }

All together,

$ grep 'core#length' nodes \
> | egrep -o '[0-9]+' \
> | { s=0; while read x; do s=$((s+x)); done; echo $s; }
69189164087043

76 / 83

Example: sum fields in XML file (3)
You can also define a sum function, and use it as the last step of the pipe:

$ sum() {
> local s=0
> while read x; do
> s=$((s+x))
> done
> echo $s
> }
$ grep 'core#length' nodes | egrep -o '[0-9]+' | sum
69189164087043

77 / 83

Example: find the biggest users on
SciNet
$ showstats -u
statistics initialized Thu Jun 25 22:39:14

 |------ Active ------|--------------- Completed --------------|
user Jobs Procs ProcHours Jobs PHDed % FSTgt Effic WCAcc
user001 19 2496 58790.76 503 2.80M 6.44 ----- 97.84 87.43
user002 1 152 5133.38 486 2.31M 5.32 ----- 8.51 52.71
user003 1 512 12941.65 6957 2.06M 4.73 ----- 159.68 55.40
user004 2 16 260.71 868 1.26M 2.90 ----- 96.80 21.12
user005 4 1536 54752.64 213 1.19M 2.74 ----- 98.20 46.37
user006 1 192 9098.40 164 978.8K 2.25 ----- 98.58 76.00
user007 1 128 3316.02 1839 911.1K 2.10 ----- 6.66 9.02
user008 33 1056 32067.62 580 879.0K 2.02 ----- 98.00 97.59
user009 31 732 3118.31 3718 873.9K 2.01 ----- 190.14 82.13
user010 0 0 0.00 5938 871.3K 2.00 ----- 93.36 75.05
user011 0 0 0.00 2073 861.2K 1.98 ----- 11.54 30.07
user012 1 520 4735.32 258 795.1K 1.83 ----- 2.41 66.35
user013 20 480 17312.31 1441 712.3K 1.64 ----- 31.78 52.24
user014 38 1520 30901.51 774 700.0K 1.61 ----- 98.20 45.77
user015 8 320 7443.33 4419 663.1K 1.52 ----- 39.80 12.38
...

78 / 83

Example: find the biggest users on
SciNet (2)
First, multiply columns 7 (percent nodes used) and 9 (efficiency) together. NF is
the number of fields per line.

showstats -u | awk 'NF == 16 {print $1, $7*$9}' \

Next, reverse numeric sort by column 2

| sort -r -n -k 2,2

Finally, just grab the top 10

| head -n 10

79 / 83

Example: find the biggest users on
SciNet (3)
Altogether,

$ showstats -u | awk 'NF == 10 {print $1, $7*$9}' \
 | sort -r -n -k 2,2 | head -n 10
user003 755.286
user001 630.09
user009 382.181
user004 280.72
user005 269.068
user006 221.805
user008 197.96
user024 187.475
user010 186.72
user014 158.102

80 / 83

Writing Scripts

81 / 83

Our first script:
$ cat >script1 <<EOF
> #!/bin/bash
> echo "hello, world!"
> EOF
$ cat script1
#!/bin/bash
echo "hello, world!"

Change permissions

$ ls -l script1
-rw-r--r-- 1 nolta staff 33 13 Jul 08:21 script1
$ chmod +x script1
-rwxr-xr-x 1 nolta staff 33 13 Jul 08:21 script1

Run the script

$./script1
hello, world!

82 / 83

Thanks! Questions?

83 / 83

