
High-Performance Scientific Computing:
Parallel Computing Paradigms

Erik Spence

SciNet HPC Consortium

13 March 2014

Erik Spence (SciNet HPC Consortium) Parallel Computing Paradigms 13 March 2014 1 / 28

Today’s class

In today’s class we will cover:

The different types of HPC hardware that you might encounter, and
their advantages and disadvantages.

Parallel programming approaches, and how they relate to hardware.

A mini-introduction to using SciNet’s GPC.

Assignment 9.

Erik Spence (SciNet HPC Consortium) Parallel Computing Paradigms 13 March 2014 2 / 28

Supercomputer architectures
Supercomputer architectures comes in a number of different types:

Clusters, or distributed memory machines, are in essence a bunch of
desktops linked together by a network (“interconnect”). Easy and
cheap.

Multi-core machines, or shared-memory machines, are a collection of
processors that can see and use the same memory. Limited number of
cores, typically, and much more $$$ when the machine is large. Your
desktop is such a machine.

Vector machines were the early supercomputers, and could do the
same operation on a large number of numbers at the same time. Very
$$$$$$, especially at scale. These days most chips have some
low-level vectorization, but you rarely need to worry about it.

Most supercomputers are a hybrid combo of these different
architectures.

Erik Spence (SciNet HPC Consortium) Parallel Computing Paradigms 13 March 2014 3 / 28

Distributed Memory: Clusters

Clusters are the simplest type
of parallel computer to build:

Take existing powerful
standalone computers,

and network them.

(source: http://flickr.com/photos/eurleif)

Erik Spence (SciNet HPC Consortium) Parallel Computing Paradigms 13 March 2014 4 / 28

Distributed Memory: Clusters

Each Processor is independent!
Parallel code consists of
programs running on separate
processors, communicating with
each other when necessary;
could be entirely different
programs.

Each processor has its own
memory! Whenever it needs
data from another processor,
that processor needs to send it.

The usual model is ’message
passing’.

CPU1

CPU2

CPU3

CPU4

Erik Spence (SciNet HPC Consortium) Parallel Computing Paradigms 13 March 2014 5 / 28

Distributed Memory: Clusters

Each Processor is independent!
Parallel code consists of
programs running on separate
processors, communicating with
each other when necessary;
could be entirely different
programs.

Each processor has its own
memory! Whenever it needs
data from another processor,
that processor needs to send it.

The usual model is ’message
passing’.

CPU1

CPU2

CPU3

CPU4

Erik Spence (SciNet HPC Consortium) Parallel Computing Paradigms 13 March 2014 5 / 28

Distributed Memory: Clusters

Hardware:
Easy to build (harder to build
well), easy to expand. One can
build larger and larger clusters
relatively easily.

Software:
Every communication needs to
be hand-coded: harder to
program.

CPU1

CPU2

CPU3

CPU4

Erik Spence (SciNet HPC Consortium) Parallel Computing Paradigms 13 March 2014 6 / 28

Shared Memory
Different processors acting on
one large bank of memory. All
processors ‘see’ the same data.

All coordination is done through
memory.

Could use message passing, but
there is no need.

Each core is assigned a thread
of execution of a single program
that acts on the data.

Your workstation uses this
architecture, if it’s multi-core.

Can also use hyper-threading:
assigning more than one thread
to a given core.

Core 1 Core 2

Core 3

Core 4

Memory

Erik Spence (SciNet HPC Consortium) Parallel Computing Paradigms 13 March 2014 7 / 28

Threads versus Processes
Threads: Threads of
execution within one
process, with access
to the same memory
etc.

Processes:
Independent tasks
with their own
memory and
resources

Erik Spence (SciNet HPC Consortium) Parallel Computing Paradigms 13 March 2014 8 / 28

Shared memory: NUMA

Non-uniform memory access:

Each core typically has
some memory of its own.

Cores have cache too.

Keeping this memory
coherent is extremely
challenging.

Memory

Erik Spence (SciNet HPC Consortium) Parallel Computing Paradigms 13 March 2014 9 / 28

NUMA coherency

Non-uniform memory access:

The different levels of
memory imply multiple
copies of some regions.

Multiple cores mean that
memory can be updated
unpredictably.

Very expensive hardware.

Hard to scale up to lots of
processors, very $$$.

Very simple to program!!

Memory

x[10] = 5

x[10] = ?

Erik Spence (SciNet HPC Consortium) Parallel Computing Paradigms 13 March 2014 10 / 28

Share memory communication cost

Latency Bandwidth

GigE
10µs

(10,000 ns)
1 Gb/s

(60 ns/double)

Infiniband
2µs

(2,000 ns)
2-10 Gb/s

(10 ns/double)

NUMA
(shared memory)

0.1µs
(100 ns)

10-20 Gb/s
(4 ns/double)

Processor speed: O(GFlop) ∼ a few ns or less.

Erik Spence (SciNet HPC Consortium) Parallel Computing Paradigms 13 March 2014 11 / 28

Hybrid architectures

Multicore machines or
nodes linked together
with an interconnect
(such as the GPC).

Many cores have modest
vector capabilities.

Machines with GPU: GPU
is multi-core, but the
amount of shared memory
is limited.

Memory Memory

Memory Memory

Memory Memory

Erik Spence (SciNet HPC Consortium) Parallel Computing Paradigms 13 March 2014 12 / 28

Choosing your programming approach

The programming approach you use depends on the type of problem you
have, and the type of machine that you will be using:

Embarrassingly parallel applications: scripting, GNU Parallel1.

Shared memory machine: OpenMP, threads, Automated
parallelization.

Distributed memory machine: MPI, Files.

Graphics computing: CUDA, OpenCL

Hybrid combinations.

We will discuss OpenMP, MPI and hybrid coding in this course.

1O. Tange (2011): GNU Parallel - The Command-Line Power Tool, ;login; The USENIX
Magazine, February 2011:42-47.

Erik Spence (SciNet HPC Consortium) Parallel Computing Paradigms 13 March 2014 13 / 28

Data or computation bound?

The programming approach you use also depends upon the type of
problem that is being solved:

Computation bound, requires task parallelism
I Need to focus on parallel processes/threads.
I These processes may have very different computations to do.
I Bring the data to the computation.

Data bound, requires data parallelism
I There focus here is the operations on a large dataset.
I The dataset is often an array, partitioned and tasks act on separate

partitions.
I Bring the computation to the data.

Erik Spence (SciNet HPC Consortium) Parallel Computing Paradigms 13 March 2014 14 / 28

Granularity

The degree to which parallelizing your algorithm makes sense affects the
approach used:

Fine-grained parallelism
I Small individual tasks.
I The data is transferred among processors frequently.
I OpenMP is often used, to overlap different hardware functions.

Coarse-grained parallelism
I Data communicated infrequently, after large amounts of computation.
I MPI is often used, because of network latency.

Too fine-grained→ overhead issues.
Too coarse-grained→ load imbalance issues.

The balance depends upon the architecture, access patterns and the
computation.

Erik Spence (SciNet HPC Consortium) Parallel Computing Paradigms 13 March 2014 15 / 28

The General Purpose Cluster

3780 nodes with 2 x 2.53GHz quad-core Intel Xeon
5500 64-bit processors.

30,912 cores

328 TFlops

16 GB RAM per node (∼14GB for user jobs)

16 threads per node

Operating system: CentOS 6

Interconnect: InfiniBand

#16 on the June 2009 TOP500 (Now at #116)

#2 in Canada

Erik Spence (SciNet HPC Consortium) Parallel Computing Paradigms 13 March 2014 16 / 28

The General Purpose Cluster

3780 nodes with 2 x 2.53GHz quad-core Intel Xeon
5500 64-bit processors.

30,912 cores

328 TFlops

16 GB RAM per node (∼14GB for user jobs)

16 threads per node

Operating system: CentOS 6

Interconnect: InfiniBand

#16 on the June 2009 TOP500 (Now at #116)

#2 in Canada

Erik Spence (SciNet HPC Consortium) Parallel Computing Paradigms 13 March 2014 16 / 28

Mini-intro to SciNet - getting started

SciNet accounts:

Need to have an account to access SciNet.

If you don’t have an account, get one:
(wiki.scinethpc.ca/wiki/index.php/Essentials)

If you can’t, for whatever reason, email us:
(support@scinet.utoronto.ca).

Before you do anything else, read the SciNet Tutorial and the GPC
quick start on the wiki:
(wiki.scinethpc.ca/wiki/index.php/GPC Quickstart).

Erik Spence (SciNet HPC Consortium) Parallel Computing Paradigms 13 March 2014 17 / 28

http://wiki.scinethpc.ca/wiki/index.php/Essentials
mailto:support@scinet.utoronto.ca
http://wiki.scinethpc.ca/wiki/index.php/GPC_Quickstart

Mini-intro to SciNet - accessing SciNet

gpc01
gpc02
gpc03
gpc04

 gpc−f101n001
 gpc−f101n002
 gpc−f101n003
 gpc−f101n004
 gpc−f101n005

 gpc−f146n084

scinet01
scinet02
scinet03
scinet04

Devel nodesLogin nodes Compute nodes

First open a terminal and ssh into a login node (not part of clusters):

ejspence@mycomp ~>
ejspence@mycomp ~> ssh -X -l ejspence login.scinet.utoronto.ca

ejspence@scinet01 ~>

The login nodes are gateways:

only to be used for small data transfer.

and to proceed logging into one of the devel nodes.

Erik Spence (SciNet HPC Consortium) Parallel Computing Paradigms 13 March 2014 18 / 28

~
~
~

Mini-intro to SciNet - working on SciNet

gpc01
gpc02
gpc03
gpc04

 gpc−f101n001
 gpc−f101n002
 gpc−f101n003
 gpc−f101n004
 gpc−f101n005

 gpc−f146n084

scinet01
scinet02
scinet03
scinet04

Devel nodesLogin nodes Compute nodes

Once logged into a login node, ssh into a devel node. On GPC that
means: gpc01 - gpc04. These are aliases for longer node names.

ejspence@scinet01 ~>
ejspence@scinet01 ~> ssh -X gpc03

ejspence@gpc-f103n084 ~>

gpc03 is an alias for the node named gpc-f103n084. All work (editting,
compiling, job submission, etc.) is done from the devel nodes.

Erik Spence (SciNet HPC Consortium) Parallel Computing Paradigms 13 March 2014 19 / 28

~
~
~

Mini-intro to SciNet - compiling

Once you have logged into a devel node you need to load the
compiler.

Other than essentials, all software is loaded using the module

command.

ejspence@gpc-f103n084 ~>
ejspence@gpc-f103n084 ~> module load gcc

ejspence@gpc-f103n084 ~>

You can now compile using g++.

In general, the Intel compilers are preferred on the GPC, but for the
purpose of this course g++ is fine too.

Erik Spence (SciNet HPC Consortium) Parallel Computing Paradigms 13 March 2014 20 / 28

~
~
~

Mini-intro to SciNet - how to run

You do not run on login nodes, or devel nodes.

You run on compute nodes.

Compute nodes are reserved for your use through a queuing system.

You can get an interactive session on a compute node by making the
following request to the queuing system.

ejspence@gpc-f103n084 ~>
ejspence@gpc-f103n084 ~> qsub -I -X -qdebug -l nodes=1:ppn=8,walltime=2:00:00

This gives you a dedicated compute node, in the ’debug’ queue, for
two hours. There is a two hour limit when you use this queue.

Alternatively, submit a job script.

Erik Spence (SciNet HPC Consortium) Parallel Computing Paradigms 13 March 2014 21 / 28

~
~

Mini-intro to SciNet - how to run,
continued

You do not run on login nodes, or devel nodes.

You run on compute nodes.

Compute nodes are reserved for your use through a queuing system.

Compute nodes do not have write access to the /home. All write
access is on the /scratch file system.

You can get to your scratch directory thus:

ejspence@gpc-f103n084 ~> pwd

/home/s/scinet/ejspence

ejspence@gpc-f103n084 ~> cd $SCRATCH

ejspence@gpc-f103n084 .../ejspence> pwd

/scratch/s/scinet/ejspence

ejspence@gpc-f103n084 .../ejspence>

Erik Spence (SciNet HPC Consortium) Parallel Computing Paradigms 13 March 2014 22 / 28

~
~

GNU Parallel

What if you need to keep all 8 cores on a node busy, but you have a
serial code?

GNU Parallel can help you with that!

GNU parallel is a really nice tool to run multiple serial jobs in parallel.
It allows you to keep the processors on each 8-core node busy, if you
provide enough jobs to do.

GNU parallel is accessible on the GPC in the module gnu-parallel.

ejspence@gpc-f103n084 ~> module load gnu-parallel/20130422

Note that we recommend the newer version of gnu-parallel over the
(default) 2010 one.

Erik Spence (SciNet HPC Consortium) Parallel Computing Paradigms 13 March 2014 23 / 28

~

GNU Parallel Example
ejspence@gpc-f103n084 ~> g++ -O3 mycode.cc -o mycode

ejspence@gpc-f103n084 ~> cp mycode $SCRATCH/example

ejspence@gpc-f103n084 ~> cd $SCRATCH/example

ejspence@gpc-f103n084 .../example> cat joblist.txt

mkdir run1; cd run1; ../mycode 1 > out

mkdir run2; cd run2; ../mycode 2 > out

...

ejspence@gpc-f103n084 .../example> cat myjob.pbs

#!/bin/bash

#PBS -l nodes=1:ppn=8,walltime=24:00:00

#PBS -N GPJob

cd $PBS O WORKDIR

module load gcc gnu-parallel/20130422

parallel -j 8 < joblist.txt

ejspence@gpc-f103n084 .../example> qsub myjob.pbs

2961985.gpc-sched

ejspence@gpc-f103n084 .../example> ls

GPJob.e2961985 GPJob.o2961985 joblist.txt

mycode myjob.pbs run1/

...

Erik Spence (SciNet HPC Consortium) Parallel Computing Paradigms 13 March 2014 24 / 28

~
~
~

Assignment 9
Please perform the following steps:

1 Make sure you’ve got a SciNet account!

2 Read the SciNet tutorial, at least the part about using the GPC
(support.scinet.utoronto.ca/wiki/images/5/54/SciNet Tutorial.pdf).

3 Read the GPC Quick Start
(support.scinet.utoronto.ca/wiki/index.php/GPC Quickstart).

Now that you’re ready, go get the code for the assignment:

ejspence@gpc-f103n084 ~> cd $SCRATCH

ejspence@gpc-f103n084 .../ejspence> git clone \
/scinet/course/sc3/homework1

Initialized empty Git repository in /scratch/s/scinet/ejspence/homework1/.git/

ejspence@gpc-f103n084 .../ejspence> cd homework1

ejspence@gpc-f103n084 .../homework1> source setup

ejspence@gpc-f103n084 .../homework1> make

Erik Spence (SciNet HPC Consortium) Parallel Computing Paradigms 13 March 2014 25 / 28

https://support.scinet.utoronto.ca/wiki/images/5/54/SciNet_Tutorial.pdf
https://support.scinet.utoronto.ca/wiki/index.php/GPC_Quickstart
~

Assignment 9, continued
The directory homework1 contains a threaded program called ’blurppm’
and 266 ppm images to be blurred. It is used thus:

blurppm INPUTPPM OUTPUTPPM BLURRADIUS NUMBEROFTHREADS

Before you start the rest of the assignment, perform a simple test:

ejspence@gpc-f103n084 ~> qsub -I -X -qdebug -l nodes=1:ppn=8,walltime=2:00:00

ejspence@gpc-f109n001 ~> cd $SCRATCH/homework1

ejspence@gpc-f109n001 .../homework1> ./blurppm 001.ppm new001.ppm 30 1

ejspence@gpc-f109n001 .../homework1> display 001.ppm &

ejspence@gpc-f109n001 .../homework1> display new001.ppm &

Note that you need an X server running on your local machine to see the
results of the ’display’ command. Linux and Mac machines should be fine.
If you’re running Windows, talk to us if you don’t know what to do.

Erik Spence (SciNet HPC Consortium) Parallel Computing Paradigms 13 March 2014 26 / 28

~
~

Assignment 9, continued

The purpose of this assignment is to do timing tests, and explore how
judicious use of threads can improve throughput.

ejspence@gpc-f109n001 .../homework1> time ./blurppm 001.ppm new001.ppm 30 1

real 0m52.900s

user 0m52.881s

sys 0m0.008s

ejspence@gpc-f109n001 .../homework1>

4 Part 1:
I Time blurppm with BLURRADIUS ranging from 1 to 41 in steps of 8,

and NUMBEROFTHREADS ranging from 1 to 8. Record the (real)
duration of each run.

I Make plots of the duration and speed-up as a function of
NUMBEROFTHREADS, for each value of BLURRADIUS.

I Submit your script and plots.

Erik Spence (SciNet HPC Consortium) Parallel Computing Paradigms 13 March 2014 27 / 28

Assignment 9, continued

5 Part 2:
I Use GNU parallel to run blurppm on all 266 images with a radius of 41.
I Investigate different scenarios:

1 Have GNU parallel run 8 at a time with 1 thread.
2 Have GNU parallel run 4 at a time with 2 threads.
3 Have GNU parallel run 2 at a time with 4 threads.
4 Have GNU parallel run 1 at a time with 8 threads.

Record the total time it takes to run each of these scenarios. Comment
on the results.

I Repeat this with a BLURRADIUS of 3.
I Submit scripts, timing data, and comments on results.

Erik Spence (SciNet HPC Consortium) Parallel Computing Paradigms 13 March 2014 28 / 28

	Architectures
	Clusters
	Shared memory
	Hybrids
	Programming approaches

	Intro to SciNet
	GPC
	Accessing SciNet
	Compiling and running

	Assignment 9

