
CITA|ICAT

Blocks, Grids, and
Shared Memory

GPU Course, Fall 2012

CITA|ICAT

Last week: ax+b
Homework

CITA|ICAT

Threads, Blocks, Grids

• CUDA threads are
organized into blocks

• Threads operate in
SIMD(ish) manner -- each
executing same
instructions in lockstep.

• Only difference are
thread ids

• Can have a grid of
multiple blocks

CUDA Thread

Block of
CUDA Threads

Grid of
CUDA Blocks

CITA|ICAT

CUDA - H/W mapping
• Blocks are assigned to a

particular SM

• Executed there one
‘warp’ at a time
(typically 32 threads)

• Multiple blocks may be on
SM concurrently

• Good; latency hiding

• Bad - SM resources
must be divided
between blocks

• If only use 1 Block - 1 SM

GPU

SM#1 SM#2

CITA|ICAT

Multi-block y=ax+b

• Break input, output
vectors into blocks

• Within each block, thread
index specifies which
item to work on

• Each thread does one
update, puts results in y[i]

x}
y

y[i] = a*x[i]+b

}

CITA|ICAT

Multi-block y=ax+b

x}
y

y[i] = a*x[i]+b

}

block-saxpb.cu

CITA|ICAT

More blocks →more
SMs → more FLOPs

• On newer cards, where
we can use 1024 threads/
block:

GPU

SM#1 SM#2

Multiple calcs, so timing not
dominated by memory copy

CITA|ICAT

Multi-block y=ax+b

x}
y

y[i] = a*x[i]+b

}

Index within block
(0..blocksize-1)

CITA|ICAT

Multi-block y=ax+b

x}
y

y[i] = a*x[i]+b

}

Index of block
(0..nblocks-1)

Size of block
(blocksize)

CITA|ICAT

Multi-block y=ax+b

x}
y

}

i = 10 + 2*100 = 210
yd[210] = a*xd[210] + b

Block 2

Thread 10

Blocksize
= 100

CITA|ICAT

How many threads/
block?

• Should be integral
multiple of warp (32)

• No more than max
allowed by scheduling
hardware

• Can get last number from
hardware specs

• But what if will be needed
on several machines?

• API can return it:

CITA|ICAT

cudaGetDeviceProperty

querydevs.cu

CITA|ICAT

cudaGetDeviceProperty

All CUDA calls return cudaSuccess on successful completion.

GPU hardware does not try very hard to catch errors/notify
you; testing return codes important!

Common to see simple automation like this wrapping all
CUDA calls; bare minimum for sensible operation.

Test early, fail often.

CITA|ICAT

Why the .xs?
• For convenience, CUDA

allows thread, block indicies
to be multidimensional

• Thread blocks can be 3
dimensional (512,512,64)

• Grids of blocks can be 2
dimensional (64k, 64k, 1)

• These variables are of type
dim3 or uint3

• CUDA has int1, int2, int3,
int4, float1, float2, float3,
float4, etc.

CITA|ICAT

Why the .xs?

• threadIdx.{x,y,z} - thread index

• blockDim.{x,y,z} - size of block
(# of threads in each dim)

• blockIdx.{x,y,z} - block index

• gridDim.{x,y,z} - size of grid
(# of blocks in each dim)

• warpsize - size of warp (int)

CITA|ICAT

Why the .xs?
• __global__ - device code

that can be seen (invoked) from
host.

• __host__ - default. Not
usually interesting.

• __device__ - device code.
Can be called only from other
device code.

• __host__ __device__ -
compiled for both host and
device.

CITA|ICAT

Compilation process
.cu file

nvcc
host
obj

code

PTX code device
 code

Intermediate,
device-independent

2nd
compilation

stage
Executable

CITA|ICAT

Restrictions
• __global__ functions can’t

recurse, neither can
__device__ on non-Fermis

• No function pointers to
__device__ functions on
non-fermis, can’t take address
of __device__ function

• Can’t have static variables in
__global__, __device__
functions

• Can’t use varargs with device
code

CITA|ICAT

2-Dimensional Blocks

• Use of 2/3d thread
blocks, or 2d grids, never
strictly necessary...

• But can make code
clearer, shorter.

• Matrix multiplication

= *

Ci,j =
X

k

Ai,kBk,j

CITA|ICAT

2-Dimensional Blocks

= *

Ci,j =
X

k

Ai,kBk,j

matmult.cu

CITA|ICAT

2-Dimensional Blocks

= *

Ci,j =
X

k

Ai,kBk,j

CITA|ICAT

2-Dimensional Blocks

= *

Ci,j =
X

k

Ai,kBk,j

CITA|ICAT

Timings:
$./matmult --matsize=160 --nblocks=10
Matrix size = 160, Number of blocks = 10.
CPU time = 14.093 millisec.
GPU time = 4.416 millisec.
CUDA and CPU results differ by 0.162872

$./matmult --matsize=160 --nblocks=10
Matrix size = 160, Number of blocks = 10.
CPU time = 14.047 millisec.
GPU time = 2.219 millisec.
CUDA and CPU results differ by 0.000000

Orig

Double Prec. sum

Faster, even with double precision sums - why?

CITA|ICAT

CUDA Memories

• All HPC, but especially
GPU, all about planning
memory access to be fast

• Global mem is off the
GPU chip (but on the
card); ~100 cycle latency

• Thread-local variables get
put into registers on each
SM - fast (~1 cycle) but
small

SM#1 SM#2

Global
Mem

(On Card)

Registers
(On Chip)

CITA|ICAT

CUDA Memories

SM#1 SM#2

Global
Mem

(On Card)

Registers
(On Chip)

Memory
On

Chip? Cached? R/W Scope

Register On No R/W Thread

Shared On No R/W Block

Global Off No R/W Kernel, Host

Constant Off Yes R Kernel, Host

Texture Off Yes R(W?) Kernel, Host

‘Local’* Off No R/W Thread

* if you run out of registers, will put ‘local’ mem in global.

CITA|ICAT

Memory usage in
SGEMM

• How can we exploit this?

• N3 multiplies, adds

• 2N2 data

• Regular access

• Opportunity for high
memory re-use

• Need to find ways to
bring data into shared
memory (incurring global
mem overhead once), use
it several times

= *

Ci,j =
X

k

Ai,kBk,j

CITA|ICAT

Memory usage in
SGEMM

• One nice thing about
matrix multiplication -
same as block
multiplication, each sub-
block is a matrix mult

• Neighbouring threads
within block all see
nearby rows, columns

• Pull whole block in

• If b blocks in each dim,
each data only pulled in
2b times, not 2n times

= *

Cbi,bj =
X

k

Abi,bkBbk,bj

CITA|ICAT

Memory usage in
SGEMM

= *

Cbi,bj =
X

k

Abi,bkBbk,bj

CITA|ICAT

__syncthreads()
• Computation must wait until

all threads have brought in
their data

• Not all memory accesses
may take same length of time

• __syncthreads() - waits until
all threads in block are at
same point.

• No equivalent between
blocks

• Loop must similarly wait for
computation

CITA|ICAT

__shared__ arrays

• If declared in device
code, must be sized at
compile time.

• No sharedMalloc (all
threads in block would
have to agree)

• can use consts or
#defines to size array, but
we want to maintain
flexibility

SM#1 SM#2

Global
Mem

(On Card)

Shared mem
(On Chip)

CITA|ICAT

extern __shared__

Optional 3rd argument - size (in bytes)
of shared memory to allocate per block

CITA|ICAT

extern __shared__

Comes in as one array; can type,
name it anything you like

CITA|ICAT

extern __shared__

If you want to use it for 2 things, you
have to deal with that yourself.

CITA|ICAT

Timings (tpb2):
$./matmult --matsize=160 --nblocks=10
Matrix size = 160, Number of blocks = 10.
CPU time = 14.093 millisec.
GPU time = 4.416 millisec.
CUDA and CPU results differ by 0.162872

$./matmult --matsize=160 --nblocks=10
Matrix size = 160, Number of blocks = 10.
CPU time = 14.047 millisec.
GPU time = 2.219 millisec.
CUDA and CPU results differ by 0.000000

$/matmult
Matrix size = 160, Number of blocks = 10.
CPU time = 14.041 millisec.
GPU time = 0.998 millisec.
CUDA and CPU results differ by 0.000000

Orig

Double Prec. sum

Shared

CITA|ICAT

Homework

• Using matmult.cu as a template, look at smoothimage.c
in the code I’ll send out; implements image
convolution.

• Implement a CUDA version using shared memory, and
make sure it gets same answer as CPU version.

• How does data reuse vary as a function of the halo
size?

