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Today’s class

Today we will discuss the following topics:

The Fourier transform, and introduction.

The discrete Fourier transform.

The fast Fourier transform.

Examples using FFTW.
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The Fourier Transform

Let f be a function of some
variable x. Then the Fourier
transform can be defined as:

f̂(k) = A
∫
f(x)e±ikxdx

The transformation can be
inverted. If k is continuous:

f(x) = 1
A

∫
f̂(k)e∓ikxdk

Where A is a normalization
constant.
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The Fourier Transform

Fourier claimed that any function can be expressed as a harmonic
series (series of sines and cosines).

He was wrong.

The Fourier transform is the continuous implementation of this claim.

It constitutes a linear (basis) transformation in function space.

Transforms from spatial (x) to wave-number (k), or time (t) to
frequency (ω), etc.

The constants and signs are just convention (some restrictions apply).
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Application of the Fourier transform

Many equations become simpler in the Fourier basis.

Reason:

eikx is an eigenfunction of the
∂

∂x
operator

Partial differential equations become algebraic, or ODEs.

This avoids matrix operations.

Examples:

Periodic phenomena.

Spectral analysis.

Signal processing/filtering.

PDEs: virtually anything (linear) with a Laplacian.
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Examples

Heat equation:

∂u

∂t
= α∇2u →

∂û

∂t
= −α |k|2 û

Schrödinger equation:

i~
∂Ψ

∂t
= −

~2

2m
∇2Ψ → i~

∂Ψ̂

∂t
=

~2 |k|2

2m
Ψ̂
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Discrete Fourier transform (DFT)
Given a set of n function values on a regular grid:

fj = f (j∆x) ,

where ∆x is the grid spacing, transform these to n other values f̂k:

f̂k =
n−1∑
j=0

fje
±2πijk/n.

This is easily back-transformed:

fj =
1

n

n−1∑
k=0

f̂ke
∓2πijk/n

The solution is periodic: f̂−k = f̂n−k; you run the risk of aliasing: k is
equivalent to k + `n. Consequently the max frequency you can
resolve is k = n/2 (the Nyquist frequency).
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Slow Fourier transform

The discrete Fourier transform is a linear transformation.

In particular, it is a matrix-vector multiplication.

Naively, this scales as O(n2). Slow!

Same scaling as many solvers.
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Slow DFT

#include <complex>

#include <cmath>

typedef std::complex<double> complex;

void fftn2(int n, complex *f, complex *fhat, int dir) {

complex *w = new complex[n];

double v = (dir < 0 ? -2 : 2) * M PI / n;

for(int i = 0; i < n; i++) w[i] = complex(cos(v * i), sin(v * i));

for(int i = 0; i < n; i++) {
fhat[i] = 0.0;

for(int j = 0; j < n; j++) fhat[i] += w[(i * j) % n] * f[j];

}
delete [] w;

};

Even Gauss realized O(n2) was too slow and came up with...
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Fast Fourier transform

Derived in partial form several times before and even after Gauss, because
he’d just written it in his diary in 1805 (published later).

Rediscovered (in general form) by Cooley and Tukey in 1965.

Basic idea:

Write each n-point FT as a sum of two n/2 point FTs.

Do this recursively log2 n times.

Each level requires ∼ n computations, which means O(n logn)
instead of O(n2).

Could have as easily split the problem into 3, 5, 7, ..., parts.

Because it is based on base 2, it is ALWAYS faster to use a number of
points that is a power of two (1024 is way way faster than 1023).
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O(n log2 n) vs O(n2) doesn’t impress you?

Recall that n is the size of the problem.

n n log2 n n2 ratio
32 160 1,024 6

128 896 16,384 18
512 4,608 262,144 57

2,048 22,528 4,194,304 186
8,192 106,496 67,108,864 630
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How does it work, exactly?

Define ωn = e2πi/n. Note that ω2
n = ωn/2.

DFT takes the form of a matrix-vector multiplication:

f̂k =
n−1∑
j=0

ωkjn fj

With a bit of rewriting (assuming n is even):

f̂k =
n/2−1∑
j=0

ωkjn/2f2j︸ ︷︷ ︸
FT of even samples

+ωkn

n/2−1∑
j=0

ωkjn/2f2j+1︸ ︷︷ ︸
FT of odd samples

Repeat for all k.

Note that a fair amount of shuffling is involved.
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Fast Fourier transform: it’s already been
done!

We’ve said it before and we’ll say it again: don’t write your own
implementation! Why?

Because getting all the pieces correct is tricky.

Beause getting it run fast requires intimate knowledge of how
processors work and access memory.

Because it’s already been done for you:
I FFTW3 (Fastest Fourier Transform in the West, version 3).
I Intel MKL.
I IBM ESSL.

Because you have better things to do.
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Example of using FFTW

#include <complex>

#include <fftw3.h>

typedef std::complex<double> complex;

void fftw(int n, complex *f, complex *fhat, int dir) {

fftw plan p = fft plan dft 1d(n, (fftw complex*)f, (fftw complex*)fhat,

dir < 0 ? FFTW BACKWARD : FFTW FORWARD, FFTW ESTIMATE);

fftw execute(p);

fftw destroy plan(p);

};
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Inverse DFT

Inverse DFT is similar to the forward DFT, up to a normalization;
almost as fast.

fj =
1

n

n−1∑
k=0

f̂ke
∓2πijk/n

Almost all implementations leave out the 1/n normalization.

FFT allows quick transformations between the x and k domains
(time and frequency, for example).

Allows parts of the computation or analysis to be done in the most
convenient of efficient domain.
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Working example

Create a 1D input signal: a discretized
f(x) = sinc(x) = sin(x)/x, with 16384 points on the interval
[-30:30].

Perform the forward transform.

Write to standard out.

Compile and link to the FFTW3 library.

Continuous FT of sinc(x) is

f̂(k) = rect(k) =

{
0.5, if |k| ≤ 1
0, if |k| > 1

up to a normalization.

Does it match?
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Working example, continued
// sincfftw.cpp

#include <iostream>

#include <complex>

#include <cmath>

#include <fftw3.h>

typedef std::complex<double> complex;

int main() {
int n = 16384;

double len = 60, dx = len / n;

complex *f = new complex[n];

complex *g = new complex[n];

for(int i = 0; i < n; i++) {
double x = (i - n/2 + 1.0e-5) * dx;

f[i] = sin(x) / x;

}

fftw plan p =

fft plan dft 1d(n,

(fftw complex*)f, (fftw complex*)g,

FFTW FORWARD, FFTW ESTIMATE);

fftw execute(p);

fftw destroy plan(p);

for(int i = 0; i < n; i++)

std::cout << f[i] << ","

<< g[i] << std::endl;

delete [] f;

delete [] g;

return 0;

}

ejspence@mycomp ~> g++ -O2 -Wall sincfftw.cpp -lfftw3 -o sincfftw

ejspence@mycomp ~> ./sincfftw | tr -d ’()’ > output.dat
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Plot the output
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ejspence@mycomp ~> ipython --pylab

In [1]: data = genfromtxt(’output.dat’, delimiter = ’,’)

In [2]: plot(data[:,0])

In [3]: figure()

In [4]: k = scipy.arange(0, scipy.size(data[:,2])) * 2 * pi / 60.

In [5]: plot(k, abs(data[:,2]))
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Plot the output
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In [6]: xlim(0,3)
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Discretization, aliasing, shifting effects
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In [7]: figure()

In [8]: plot(k, data[:,2])

In [9]: xlim(0,3)

In [10]: figure()

In [11]: plot(k, data[:,3])

In [12]: xlim(0,3)
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