
Numerical Tools for Physical Scientists:
Fourier Transform

Erik Spence

SciNet HPC Consortium

4 March 2014

Erik Spence (SciNet HPC Consortium) FFT 4 March 2014 1 / 20

Today’s class

Today we will discuss the following topics:

The Fourier transform, and introduction.

The discrete Fourier transform.

The fast Fourier transform.

Examples using FFTW.

Erik Spence (SciNet HPC Consortium) FFT 4 March 2014 2 / 20

The Fourier Transform

Let f be a function of some
variable x. Then the Fourier
transform can be defined as:

f̂(k) = A
∫
f(x)e±ikxdx

The transformation can be
inverted. If k is continuous:

f(x) = 1
A

∫
f̂(k)e∓ikxdk

Where A is a normalization
constant.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-4 -2 0 2 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-4 -2 0 2 4

Erik Spence (SciNet HPC Consortium) FFT 4 March 2014 3 / 20

The Fourier Transform

Fourier claimed that any function can be expressed as a harmonic
series (series of sines and cosines).

He was wrong.

The Fourier transform is the continuous implementation of this claim.

It constitutes a linear (basis) transformation in function space.

Transforms from spatial (x) to wave-number (k), or time (t) to
frequency (ω), etc.

The constants and signs are just convention (some restrictions apply).

Erik Spence (SciNet HPC Consortium) FFT 4 March 2014 4 / 20

Application of the Fourier transform

Many equations become simpler in the Fourier basis.

Reason:

eikx is an eigenfunction of the
∂

∂x
operator

Partial differential equations become algebraic, or ODEs.

This avoids matrix operations.

Examples:

Periodic phenomena.

Spectral analysis.

Signal processing/filtering.

PDEs: virtually anything (linear) with a Laplacian.

Erik Spence (SciNet HPC Consortium) FFT 4 March 2014 5 / 20

Examples

Heat equation:

∂u

∂t
= α∇2u →

∂û

∂t
= −α |k|2 û

Schrödinger equation:

i~
∂Ψ

∂t
= −

~2

2m
∇2Ψ → i~

∂Ψ̂

∂t
=

~2 |k|2

2m
Ψ̂

Erik Spence (SciNet HPC Consortium) FFT 4 March 2014 6 / 20

Discrete Fourier transform (DFT)
Given a set of n function values on a regular grid:

fj = f (j∆x) ,

where ∆x is the grid spacing, transform these to n other values f̂k:

f̂k =
n−1∑
j=0

fje
±2πijk/n.

This is easily back-transformed:

fj =
1

n

n−1∑
k=0

f̂ke
∓2πijk/n

The solution is periodic: f̂−k = f̂n−k; you run the risk of aliasing: k is
equivalent to k + `n. Consequently the max frequency you can
resolve is k = n/2 (the Nyquist frequency).

Erik Spence (SciNet HPC Consortium) FFT 4 March 2014 7 / 20

Slow Fourier transform

The discrete Fourier transform is a linear transformation.

In particular, it is a matrix-vector multiplication.

Naively, this scales as O(n2). Slow!

Same scaling as many solvers.

Erik Spence (SciNet HPC Consortium) FFT 4 March 2014 8 / 20

Slow DFT

#include <complex>

#include <cmath>

typedef std::complex<double> complex;

void fftn2(int n, complex *f, complex *fhat, int dir) {

complex *w = new complex[n];

double v = (dir < 0 ? -2 : 2) * M PI / n;

for(int i = 0; i < n; i++) w[i] = complex(cos(v * i), sin(v * i));

for(int i = 0; i < n; i++) {
fhat[i] = 0.0;

for(int j = 0; j < n; j++) fhat[i] += w[(i * j) % n] * f[j];

}
delete [] w;

};

Even Gauss realized O(n2) was too slow and came up with...

Erik Spence (SciNet HPC Consortium) FFT 4 March 2014 9 / 20

Fast Fourier transform

Derived in partial form several times before and even after Gauss, because
he’d just written it in his diary in 1805 (published later).

Rediscovered (in general form) by Cooley and Tukey in 1965.

Basic idea:

Write each n-point FT as a sum of two n/2 point FTs.

Do this recursively log2 n times.

Each level requires ∼ n computations, which means O(n logn)
instead of O(n2).

Could have as easily split the problem into 3, 5, 7, ..., parts.

Because it is based on base 2, it is ALWAYS faster to use a number of
points that is a power of two (1024 is way way faster than 1023).

Erik Spence (SciNet HPC Consortium) FFT 4 March 2014 10 / 20

O(n log2 n) vs O(n2) doesn’t impress you?

Recall that n is the size of the problem.

n n log2 n n2 ratio
32 160 1,024 6

128 896 16,384 18
512 4,608 262,144 57

2,048 22,528 4,194,304 186
8,192 106,496 67,108,864 630

Erik Spence (SciNet HPC Consortium) FFT 4 March 2014 11 / 20

How does it work, exactly?

Define ωn = e2πi/n. Note that ω2
n = ωn/2.

DFT takes the form of a matrix-vector multiplication:

f̂k =
n−1∑
j=0

ωkjn fj

With a bit of rewriting (assuming n is even):

f̂k =
n/2−1∑
j=0

ωkjn/2f2j︸ ︷︷ ︸
FT of even samples

+ωkn

n/2−1∑
j=0

ωkjn/2f2j+1︸ ︷︷ ︸
FT of odd samples

Repeat for all k.

Note that a fair amount of shuffling is involved.

Erik Spence (SciNet HPC Consortium) FFT 4 March 2014 12 / 20

Fast Fourier transform: it’s already been
done!

We’ve said it before and we’ll say it again: don’t write your own
implementation! Why?

Because getting all the pieces correct is tricky.

Beause getting it run fast requires intimate knowledge of how
processors work and access memory.

Because it’s already been done for you:
I FFTW3 (Fastest Fourier Transform in the West, version 3).
I Intel MKL.
I IBM ESSL.

Because you have better things to do.

Erik Spence (SciNet HPC Consortium) FFT 4 March 2014 13 / 20

Example of using FFTW

#include <complex>

#include <fftw3.h>

typedef std::complex<double> complex;

void fftw(int n, complex *f, complex *fhat, int dir) {

fftw plan p = fft plan dft 1d(n, (fftw complex*)f, (fftw complex*)fhat,

dir < 0 ? FFTW BACKWARD : FFTW FORWARD, FFTW ESTIMATE);

fftw execute(p);

fftw destroy plan(p);

};

Erik Spence (SciNet HPC Consortium) FFT 4 March 2014 14 / 20

Inverse DFT

Inverse DFT is similar to the forward DFT, up to a normalization;
almost as fast.

fj =
1

n

n−1∑
k=0

f̂ke
∓2πijk/n

Almost all implementations leave out the 1/n normalization.

FFT allows quick transformations between the x and k domains
(time and frequency, for example).

Allows parts of the computation or analysis to be done in the most
convenient of efficient domain.

Erik Spence (SciNet HPC Consortium) FFT 4 March 2014 15 / 20

Working example

Create a 1D input signal: a discretized
f(x) = sinc(x) = sin(x)/x, with 16384 points on the interval
[-30:30].

Perform the forward transform.

Write to standard out.

Compile and link to the FFTW3 library.

Continuous FT of sinc(x) is

f̂(k) = rect(k) =

{
0.5, if |k| ≤ 1
0, if |k| > 1

up to a normalization.

Does it match?

Erik Spence (SciNet HPC Consortium) FFT 4 March 2014 16 / 20

Working example, continued
// sincfftw.cpp

#include <iostream>

#include <complex>

#include <cmath>

#include <fftw3.h>

typedef std::complex<double> complex;

int main() {
int n = 16384;

double len = 60, dx = len / n;

complex *f = new complex[n];

complex *g = new complex[n];

for(int i = 0; i < n; i++) {
double x = (i - n/2 + 1.0e-5) * dx;

f[i] = sin(x) / x;

}

fftw plan p =

fft plan dft 1d(n,

(fftw complex*)f, (fftw complex*)g,

FFTW FORWARD, FFTW ESTIMATE);

fftw execute(p);

fftw destroy plan(p);

for(int i = 0; i < n; i++)

std::cout << f[i] << ","

<< g[i] << std::endl;

delete [] f;

delete [] g;

return 0;

}

ejspence@mycomp ~> g++ -O2 -Wall sincfftw.cpp -lfftw3 -o sincfftw

ejspence@mycomp ~> ./sincfftw | tr -d ’()’ > output.dat

Erik Spence (SciNet HPC Consortium) FFT 4 March 2014 17 / 20

~
~

Plot the output

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 500 1000 1500

200

400

600

800

ejspence@mycomp ~> ipython --pylab

In [1]: data = genfromtxt(’output.dat’, delimiter = ’,’)

In [2]: plot(data[:,0])

In [3]: figure()

In [4]: k = scipy.arange(0, scipy.size(data[:,2])) * 2 * pi / 60.

In [5]: plot(k, abs(data[:,2]))

Erik Spence (SciNet HPC Consortium) FFT 4 March 2014 18 / 20

~

Plot the output

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

100

200

300

400

500

600

700

800

900

In [6]: xlim(0,3)

Erik Spence (SciNet HPC Consortium) FFT 4 March 2014 19 / 20

Discretization, aliasing, shifting effects

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k

1000

500

0

500

1000

R
e
a
l
p
a
rt

 o
f

FF
T

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k

0.00003

0.00002

0.00001

0.00000

0.00001

0.00002

0.00003

Im
a
g
in

a
ry

 p
a
rt

 o
f

FF
T

In [7]: figure()

In [8]: plot(k, data[:,2])

In [9]: xlim(0,3)

In [10]: figure()

In [11]: plot(k, data[:,3])

In [12]: xlim(0,3)

Erik Spence (SciNet HPC Consortium) FFT 4 March 2014 20 / 20

	The Fourier transform
	Applications of the FT
	The discrete FT

	The fast Fourier transform
	How does it work?
	Example using FFTW
	Inverse DFT
	Another example

