
Scientific Computing (Phys 2109/
Ast 3100H)

I. Scientfic Software Development
SciNet HPC Consortium

HW3 Issues

• How to do the timesteping (in what sense
does the coupling operate?)

• Tracer Theory doesn’t know about
diffusion?

Makefile:
multiple executables

• Convention, like with “clean”, is an “all”
target which lists all targets

• Make everything at once:
CC=gcc
CFLAGS=...

all: main interpolation_test

main:

interpolation_test:

clean:
...

Makefile:
Run tests

• Easier it is to run tests, more often you test

• Can make a target (typically, ‘check’) which
runs any/all tests you have:

CC=gcc
CFLAGS=...

all: main interpolation_test

check: interpolation_test
./interpolation_test

main:

interpolation_test:

Development Tools
• By HW3, code is already starting to get

nontrivial

• Coupled physics - 400-900 lines of interacting C
code

• Sometimes non-obvious decisions needed to be
made about where one module stopped and
one started

• Without modularity, would be a tangled, un-
debugable mess

Development Tools

• Going to talk a little more about some
tools to help you develop faster/smarter/
better

• One is already mentioned - debugger (gdb)

• One is for software performance - profiler
(gprof)

• Other debuggers, profilers similar

Debuggers
• Debugging is the worst thing in the

world.

• Time-sucking, demoralizing,
horrible, slow, awkward, waste of
time.

• Worse than that, really.

• We’ll talk about using gdb or
similar debuggers, but first want to
give a crash course on debugging

Debuggers

• Debugging is something you want to (in this
order!):

• Avoid

• Make easier

• Get good at -- which means finding the
problem quickly, and solving it correctly

Write Code
Professionally

•Even a `one off ’ program will hang around
for a long time.

•ALWAYS
•Make assumptions explicit
•Test for them (assert())

•Test for error conditions/return codes
•Write modular code

Defensive Programming

• Fail early, fail
often.

• If your function
assumes n>0, or
only works for
even input, or..

• Document it

• Test for it

if (n<0) {
! fprintf(stderr,"Error in myfunc(); ");
! fprintf(stderr," n = %d <0 !\n",n);
! return;
}

#include <assert.h>
.
.
assert(n>=0);

Test for errors
•Related to making your assumptions explicit
•Did you:

•make sure malloc() didn’t return
NULL?

•Make sure you aren’t at EOF?
•Make sure fopen() opened the file?
•Make sure scanf() read in the right number
of variables?

Test your code

•For every non-trivial section of your code,
write tests
•And then run them regularly!

•Much easier with properly modular code
•Test special cases (passed in too small an
array) and real cases.

Compiler is your friend

•Always turn on warnings in compiler
• -Wall, -warn all
•And fix all the things it complains about!
•Have debugging flags turned on during
development - eg, -fcheck=bounds in
gfortran

All of this takes time..

• But much, much less time than debugging

• Debugging - hours of work spent just to
get the code back into the shape it should
have been in the first place.

• Not a journey of personal growth - just a
collossal waste of time.

• Avoid it.

But a bug happened
anyway...

• Five steps to debugging:

• Find out you have a bug

• Find out roughly where that bug is

• Examine section of code

• Find and understand the problem, and any
related problems

• Fix it.

A futile slide?
 Don't ever, ever see a bug and

immediately rush in with the editor
to change things until it goes away.

 Really only learn this the hard way
- night before a deadline, need to
`save time' by leaping in and fixing
things.

 Life lesson: 10+ hours of
panicked programming can often
save you from one hour of careful
thought.

Finding you have a bug

• Test, test, test.

• Only thing worse than debugging is not
realizing you have a bug.

• Test with invalid inputs, valid inputs, etc.

• Once you know you have a bug, find
simplest, fastest case which
demonstrates the bug

Finding where bug is

• Need to bisect.

• Figure out where wrong answer happens.

• Look at results half way through
computation. Is it wrong?

• If so, problem is in first half

• Otherwise, in second half

• Repeat

Git is your friend

• If you have version control, and had a known
working version earlier, can hugely simplify
finding bug.

• If know when bug was introduced, know
what changes were made!

•Greatly reduces lines of code you’re sifting
through.

Git is your friend
• git diff will show you all changes between
your last commit and current files

• (Look into git difftool for nice graphical
version)

•You can use git reset --hard or similar to
revert back to working version

• If correct version was much further back and
you want to find where problem happened,
“git bisect” will help you find where problem
was introduced.

Graphical diffs

• tkdiff, xxdiff, kompare, etc - will change
your life.

Finding bug: debugger
•Typical scientist way of finding bugs -
inserting printf()s into code.

• Slow, error-prone, and only shows what you
print.

•Much better - debugger.
•We’ll walk through gdb (lowest common
denominator).

•Graphical debuggers - Linux, ddd, eclipse, ddt;
Mac - Xcode; Windows - Visual studio

gdb hands-on

•Edit your HW3 makefile and add -g to
compile, link line

• Includes information in the executable about
source code

•Disables some optimizations
•make clean, then make
•gdb [programname]

Running program
• at (gdb) prompt,

type “run”

• Runs program as
usual (slightly
slower)

• If program required
command-line
arguments, “set args
[args]”, then run

$ gdb ./main
GNU gdb 6.3.50-20050815 (Apple version gdb-1705) (Fri Jul 1 10:50:06 UTC 2011)
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "x86_64-apple-darwin"...Reading symbols for shared libraries ..
done

(gdb) run
.....

Program exited normally.
(gdb)

Breakpoints
• Insert a breakpoint

into the code

• Program will run
until it hits
breakpoint, then
stop

• can use function
name, or
filename:line number

$ gdb ./main
GNU gdb 6.3.50-20050815 (Apple version gdb-1705) (Fri Jul 1 10:50:06 UTC 2011)
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "x86_64-apple-darwin"...Reading symbols for shared libraries ..
done

(gdb) run
.....

Program exited normally.
(gdb) break tracer_compute_force_and_velocity
Breakpoint 1 at 0x100002238: file tracer.c, line 35

Breakpoints
• Put breakpoint at

tracer_compute_forc
e_and_velocity

• Then run

• “list” lists the next
few lines of code (you
can “list 25” to list
starting at 25)

• print c - why is it not
0?

(gdb) break tracer_compute_force_and_velocity
Breakpoint 1 at 0x100002238: file tracer.c, line 35

Starting program: /Users/ljdursi/Desktop/NovClass/foo/main
0.000000 0.000000 0.000000

Breakpoint 1, tracer_compute_force_and_velocity (tracer=0x7fff5fbff600) at tracer.c:35
35 for (int c=0; c<DIM; ++c) {

step/next
• Can step through

code, looking at results

• Much more powerful
than printf

• step - do next line of
code regardless of
where it is

• next - next line of code
in this routine (eg, step
over function calls)

(gdb) list
30 tracer->alpha = tracer->alpha0*(1+tracer->a*interpolation(rho, xgrid, nx, xgrid, nx,
tracer->r[0], tracer->r[1]));
31 }
32
33 void tracer_compute_force_and_velocity(struct Tracer* tracer)
34 {
35 for (int c=0; c<DIM; ++c) {
36 tracer->v[c] = (tracer->r[c] - tracer->rprev[c])/tracer->dt;
37 tracer->f[c] = -tracer->alpha*tracer->v[c];
38 }
39 tracer->f[0] += tracer->qE;
(gdb) step
36 tracer->v[c] = (tracer->r[c] - tracer->rprev[c])/tracer->dt;
(gdb) step
37 tracer->f[c] = -tracer->alpha*tracer->v[c];
(gdb) print c
$2 = 0
(gdb) print *tracer
$3 = {
 m = 1,
 x1 = 0,
 x2 = 10,
 qE = 1,

Conditional breakpoints
• Delete previous

breakpoint (delete 1)

• Let’s say we want to
examine periodic
boundaries

• Put a breakpoint in
tracer_timestep on line
where L is calculated if
need periodic in x
direction

• cont continues run

(gdb) delete 1
(gdb) break tracer.c:51 if tracer->r[0] >
 tracer->x2 || tracer->r[0]
 < tracer->x1
Breakpoint 2 at 0x1000015e3: file tracer.c, line 51.
(gdb) cont
...
Breakpoint 2, tracer_time_step (tracer=0x7fff5fbff600) at tracer.c:51
51 float L = tracer->x2 - tracer->x1;

Conditional breakpoints

• When stepping
through, you can set
variables:

• eg, ‘set var L=5.’

• See if that alters
behaviour...

(gdb) delete 1
(gdb) break tracer.c:51 if tracer->r[0] >
 tracer->x2 || tracer->r[0]
 < tracer->x1
Breakpoint 2 at 0x1000015e3: file tracer.c, line 51.
(gdb) run
...
Breakpoint 2, tracer_time_step (tracer=0x7fff5fbff600) at tracer.c:51
51 float L = tracer->x2 - tracer->x1;

Watchpoints
• Can break anywhere in

program if a variable
changes

• Very useful for tracking
changes to a variable
you think should be
same!

• delete (deletes all
breakpoints)

• break main; run

(gdb) delete
Delete all breakpoints? (y or n) y
(gdb) break main
Breakpoint 3 at 0x1000009b4: file main.c, line 12.
(gdb) run
Breakpoint 2, main () at main.c:12
12 float m = 1.0;

Watchpoints

• Set a watchpoint for
your tracer particle’s
r[0]

• continue

• Should stop in
tracer_init

(gdb) delete
Delete all breakpoints? (y or n) y
(gdb) break main
Breakpoint 3 at 0x1000009b4: file main.c, line 12.
(gdb) run
Breakpoint 2, main () at main.c:12
12 float m = 1.0;
(gdb) watch tracer->r[0]
Hardware watchpoint 3: tracer->r[0]
(gdb) cont
Continuing.
Hardware watchpoint 3: tracer->r[0]

Old value = 4.59163468e-41
New value = 0
tracer_init (tracer=0x7fff5fbff600, r0=0x7fff5fbff5a8, v0=0x7fff5fbff5a0) at tracer.c:22
22 tracer->rprev[c] = r0[c] - v0[c]*tracer->dt;

Stack frame
• where - Shows where you

are in the code and how
you got there

• eg, line 68 of main.c called
tracer_init at line 22

• Can go between callees
and callers with “frame”
command

• Lets you see values in
caller, undersand why it
was called with values it
was.

Old value = 4.59163468e-41
New value = 0
tracer_init (tracer=0x7fff5fbff600, r0=0x7fff5fbff5a8, v0=0x7fff5fbff5a0) at tracer.c:22
22 tracer->rprev[c] = r0[c] - v0[c]*tracer->dt;

(gdb) where
#0 tracer_init (tracer=0x7fff5fbff600, r0=0x7fff5fbff5a8, v0=0x7fff5fbff5a0) at tracer.c:22
#1 0x0000000100000e16 in main () at main.c:68
(gdb) frame 1
#1 0x0000000100000e16 in main () at main.c:68
68 tracer_init(&tracer,r0,v0);
(gdb) print r0
$1 = {0, 0}
(gdb) print v0
$2 = {0, 10}
(gdb) print tracer
$3 = {
 m = 1,
 x1 = 0,
 x2 = 10,

Graphical debuggers

• Show source all at
once, allow you to
manipulate/view
data in other
windows

• Easier to use

• Same basic
functionality

ddd

• ddd (http://
www.gnu.org/s/
ddd/) is
particularly nice
for scientists:

• free

• Built-in plotting
of arrays

http://www.gnu.org/s/ddd/
http://www.gnu.org/s/ddd/
http://www.gnu.org/s/ddd/
http://www.gnu.org/s/ddd/
http://www.gnu.org/s/ddd/
http://www.gnu.org/s/ddd/

Performance

• Get things right before
getting them fast

• Once your program is
working correctly (and
has tests so you can
make sure it’s still
working correctly after
changes), can work on
making it go faster

How to improve
Performance?

• Can’t improve what
you don’t measure

• Have to be able to
quantify where your
problem spends its
time.

Measure

Find
bottlenecks

Make
improvements

Profiling

Tuning

Profiling A Code

• Where in your
program is time being
spent?

• Find the expensive
parts

• Don’t waste time
optimizing parts
that don’t matter

Profiling A Code

• Timing vs. Sampling
vs. Tracing

• Instrumenting the
code vs.
Instrumentation-free

Timing whole program

• Very simple; can
run any
command

• In serial, real =
user+sys

• In parallel,
ideally user =
(nprocs)x (real)

$ time ./a.out

[your job output]

real 0m2.448s
user 0m2.383s
sys 0m0.027s

Elapsed
“walltime”

System time:
Disk, I/O...

Actual user
time

Running “top”

• Run top in
another terminal
window while
program runs

• Tells CPU usage,
amount of
memory, status

• Lots of D/S status
- waiting for I/O

Insert timers into
regions of code

• Instrumenting code

• Simple, but
incredibly useful

• Runs every time
your code is run

• Can trivially see if
changes make

C

Matrix-Vector multiply

• Can get an overview
of the time spent
easily, because we
instrumented our
code (~12 lines!)

• I/O huge bottleneck.

mat-vec-mult.c

$ mvm --matsize=2500

Timing summary:
 Init: 0.00952 sec
 Calc: 0.06638 sec
 I/O : 5.07121 sec

Sampling for Profiling

• How to get finer-grained information about
where time is being spent?

• Can’t instrument every single line.

• Compilers have tools for sampling
execution paths.

Program Counter
Sampling

• As program
executes, every so
often (~100ms) a
timer goes off, and
the current location
of execution is
recored

• Shows where time is

Program Counter
Sampling

• Advantages:

• Very low overhead

• No extra
instrumentation

• Disadvantages:

• Don’t know why
code is there

gprof for sampling
$ gcc -O3 -pg -g mat-vec-mult.c --std=c99
$ icc -O3 -pg -g mat-vec-mult.c -c99

$./mvm-profile --matsize=2500
[output]
$ ls
Makefile Mat-vec.dat gmon.out
mat-vec-mult.c mvm-profile

turn on
profiling

debugging symbols
(optional, but more info)

gprof examines
gmon.out

$ gprof mvm-profile gmon.out | more
Flat profile:

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls Ts/call Ts/call name
100.24 0.41 0.41 main
 0.00 0.41 0.00 3 0.00 0.00 tick
 0.00 0.41 0.00 3 0.00 0.00 tock
 0.00 0.41 0.00 2 0.00 0.00 alloc1d
 0.00 0.41 0.00 2 0.00 0.00 free1d
 0.00 0.41 0.00 1 0.00 0.00 alloc2d
 0.00 0.41 0.00 1 0.00 0.00 free2d
 0.00 0.41 0.00 1 0.00 0.00 get_options
[...]

Gives data by function -- usually handy

gprof --line examines
gmon.out by line

gpc-f103n084-$ gprof --line mvm-profile gmon.out | more
Flat profile:

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls Ts/call Ts/call name
 68.46 0.28 0.28 main (mat-vec-mult.c:82 @ 4010d8)
 14.67 0.34 0.06 main (mat-vec-mult.c:113 @ 40137e)
 7.33 0.37 0.03 main (mat-vec-mult.c:63 @ 401048)
 4.89 0.39 0.02 main (mat-vec-mult.c:112 @ 401350)
 4.89 0.41 0.02 main (mat-vec-mult.c:113 @ 401360)
 0.00 0.41 0.00 3 0.00 0.00 tick (mat-vec-mult.c:159 @ 400d50)
 0.00 0.41 0.00 3 0.00 0.00 tock (mat-vec-mult.c:164 @ 400d00)
 0.00 0.41 0.00 2 0.00 0.00 alloc1d (mat-vec-mult.c:152 @ 400d70)
 0.00 0.41 0.00 2 0.00 0.00 free1d (mat-vec-mult.c:171 @ 400cb0)
 0.00 0.41 0.00 1 0.00 0.00 alloc2d (mat-vec-mult.c:130 @ 400da0)
 0.00 0.41 0.00 1 0.00 0.00 free2d (mat-vec-mult.c:144 @ 400cd0)
 0.00 0.41 0.00 1 0.00 0.00 get_options (mat-vec-mult.c:177 @
400a30)

gprof hands-on

• Edit your makefile to include -g -pg lines,
rebuild your code

• Where does your code spend most of its
time -- by function? By line?

Object Oriented
Python

• Interpolation

• Example from http://
software-carpentry.org/
4_0/oop

1d Interpolation

• Take discrete, irregular
timeseries

• Allow sampling at any
time

• For integration, averaging,
etc.

1d Interpolation

• Many ways to do this

• Piecewise constant (step
function)

• Linear interpolation, etc.

Obj. Oriented Python

• Similar to C++

• constructor:
__init__.

• Methods are just
functions ‘in’ the
class

• Local values:
self.values

class StepSignal(Object):

def __init__(self,values):
‘’’Values is ((x0,y0),(x1,y1)...)’’’
self.values = values

def get(self,where):
assert where >= self.values[0][0]
for i in range(len(self.values)-1):

x0, y0 = self.values[i]
x1, y1 = self.values[i+1]
if x0 <= where <= x1:

return y0
assert where < x1

Obj. Oriented Python

• Initialize with the
data

• call .get method to
sample at given
point

class StepSignal(Object):

def __init__(self,values):
‘’’Values is ((x0,y0),(x1,y1)...)’’’
self.values = values

def get(self,where):
if where < self.values[0][0]:

raise IndexError, ‘%f too low’ % where
for i in range(len(self.values)-1):

x0, y0 = self.values[i]
x1, y1 = self.values[i+1]
if x0 <= where <= x1:

return y0
raise IndexError, ‘%f too high’ % where

>>> import stepsignal
>>> interp = stepsignal.StepSignal(((0.,0.),
 (1.,1.), (2.,2.)))

>>> for x in (0.0, 0.5, 1.1, 1.75):
... print x, interp.get(x)
...
0.0 0.0
0.5 0.0
1.1 1.0
1.75 1.0

Obj. Oriented Python

• Error handling
works as expected

• This would be a
reasonable set of
tests for this class

class StepSignal(object):

 def __init__(self,values):
 '''Values is ((x0,y0),(x1,y1)...)'''
 self.values = values

 def get(self,where):
 assert where >= self.values[0][0]
 for i in range(len(self.values)-1):
 x0, y0 = self.values[i]
 x1, y1 = self.values[i+1]
 if x0 <= where <= x1:
 return y0
 assert where < x1

>>> interp.get(-.001)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "stepsignal.py", line 8, in get
 assert where >= self.values[0][0]
AssertionError

>>> interp.get(2.1)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "stepsignal.py", line 14, in get
 assert where < x1
AssertionError

Linear Interpolation

• Different class,
with different
interpolation

• Test this:

class LinearSignal(object):

 def __init__(self,values):
 '''Values is ((x0,y0),(x1,y1)...)'''
 self.values = values

 def get(self,where):
assert where >= self.values[0][0]

 for i in range(len(self.values)-1):
 x0, y0 = self.values[i]
 x1, y1 = self.values[i+1]
 if x0 <= where <= x1:
 return y0 + (y1-y0)*(where-x0)/(x1-x0)

assert where < x1

Linear Interpolation

• Different class,
with different
interpolation

• Test this:

class LinearSignal(object):

 def __init__(self,values):
 '''Values is ((x0,y0),(x1,y1)...)'''
 self.values = values

 def get(self,where):
 assert where >= self.values[0][0]
 for i in range(len(self.values)-1):
 x0, y0 = self.values[i]
 x1, y1 = self.values[i+1]
 if x0 <= where <= x1:
 return y0 + (y1-y0)*(where-x0)/(x1-x0)
 assert where < x1

>>> import linearsignal
>>> interp = linearsignal.LinearSignal(((0.,0.),
 (1.,1.), (2.,2.)))

>>> for x in (0.0, 0.5, 1.1, 1.75):
... print x, interp.get(x)
...
0.0 0.0
0.5 0.5
1.1 1.1
1.75 1.75

Using the class
• Argument “signal”

can be anything
with a get()
method

• Can pass it linear
signal or step
signal, or..

def integrate(signal, x0, x1, num_samples):
 width = (x1 - x0)/num_samples
 total = 0.0
 for i in range(num_samples):
 x = x0 + i*width
 total += signal.get(x)*width
 return total

Using the class
• Argument “signal”

can be anything
with a get()
method

• Can pass it linear
signal or step
signal, or..

class Sinusoid(object):

 def __init__(self, amplitude, frequency):
 self.amp = amplitude
 self.freq = frequency

 def get(self, x):
 return self.amp * math.sin(x * self.freq)

Inheritance
• Two classes are

almost identical

• Want to reduce
code overhead

• Also, make explicit
that they have
same interface

class StepSignal(object):

 def __init__(self,values):
 '''Values is ((x0,y0),(x1,y1)...)'''
 self.values = values

 def get(self,where):
 assert where >= self.values[0][0]
 for i in range(len(self.values)-1):
 x0, y0 = self.values[i]
 x1, y1 = self.values[i+1]
 if x0 <= where <= x1:
 return y0
 assert where < x1

class LinearSignal(object):

 def __init__(self,values):
 '''Values is ((x0,y0),(x1,y1)...)'''
 self.values = values

 def get(self,where):
 assert where >= self.values[0][0]
 for i in range(len(self.values)-1):
 x0, y0 = self.values[i]
 x1, y1 = self.values[i+1]
 if x0 <= where <= x1:
 return y0 + (y1-y0)*(where-x0)/(x1-x0)
 assert where < x1

Inheritance
• Find common

code

• Initialization

• Find routine
(which get will be
based on)

• Not very useful in
and of itself

class InterpolatedSignal(object):

 def __init__(self,values):
 '''Values is ((x0,y0),(x1,y1)...)'''
 self.values = values

 def find(self,where):
 assert where >= self.values[0][0]
 for i in range(len(self.values)-1):
 x0, y0 = self.values[i]
 x1, y1 = self.values[i+1]
 if x0 <= where <= x1:
 return i
 assert where < x1

 def get(self, where):
 raise NotImplementedError('Must provide get')

Inheritance
• Define

implementations
that inherit from
Interpolated Signal

• Just the code that’s
different

• Note get is
overridden

class StepSignal(InterpolatedSignal):

 def get(self, where):
 i = self.find(where)
 return self.values[i][0]

class LinearSignal(InterpolatedSignal):

 def get(self, where):
 i = self.find(where)
 x0 = self.values[i][0]
 x1 = self.values[i+1][0]
 y0 = self.values[i][1]
 y1 = self.values[i+1][1]
 return y0 + (y1-y0)/(x1-x0)*(where-x0)

>>> import interpolatedsignal
>>> interp =
interpolatedsignal.StepSignal(((0.,0.),(1.,1.),
(2.,2.)))
>>> interp.get(1.5)
1.0

Inheritance
• Can put better input

validation into the
base class

• Make sure values are
pairs, increasing in
x...

• Both subclasses get
those improvements
automatically

class StepSignal(InterpolatedSignal):

 def get(self, where):
 i = self.find(where)
 return self.values[i][0]

class LinearSignal(InterpolatedSignal):

 def get(self, where):
 i = self.find(where)
 x0 = self.values[i][0]
 x1 = self.values[i+1][0]
 y0 = self.values[i][1]
 y1 = self.values[i+1][1]
 return y0 + (y1-y0)/(x1-x0)*(where-x0)

>>> import interpolatedsignal
>>> interp =
interpolatedsignal.StepSignal(((0.,0.),(1.,1.),
(2.,2.)))
>>> interp.get(1.5)
1.0

