Scientific Computing (Phys 2109/

Ast 3100H)

. Scientfic Software Development
SciNet HPC Consortium

HWV3 Issues

® How to do the timesteping (in what sense
does the coupling operate!?)

® Tracer Theory doesn’t know about
diffusion?

Makefile:
multiple executables

® Convention, like with “clean’, is an “all”
target which lists all targets

® Make everything at once:

CC=gcc
CFLAGS=...

all: main iInterpolation test

interpolation test:

Sciet

(’ compute «calcul
CANADA

Makefile:
Run tests

® Easier it is to run tests, more often you test

® Can make a target (typically,‘check’) which
runs any/all tests you have:

CC=gcc
CFLAGS=...

all: main Interpolation test

check: interpolation test
./interpolation test

r.nain: _ | MEt

’ compute calcul

Development lools

By HW3, code is already starting to get
nontrivial

Coupled physics - 400-900 lines of interacting C
code

Sometimes non-obvious decisions needed to be
made about where one module stopped and
ohe started

Without modularity, would be a tangled, un-
debugable mess
: SEH\Iet

put al ul

Development lools

® Going to talk a little more about some
tools to help you develop faster/smarter/
better

® One is already mentioned - debugger (gdb)

® One is for software performance - profiler
(gprof)

® Other debuggers, profilers similar

(SQH\' et
(, comszitS: Sailcul

Debuggers

Debugging is the worst thing in the
world.

Time-sucking, demoralizing,
horrible, slow, awkward, waste of
time.

Worse than that, really. s 1.8

We'll talk about using gdb or
similar debuggers, but first want to

give a crash course on debugging _
Sciet
" com;(JuAtS: %ailcul

Debuggers

® Debugging is something you want to (in this
order!):

® Avoid
® Make easier

® Get good at -- which means finding the
problem quickly, and solving it correctly

(SQH\' et
(, comszitS: Sailcul

Write Code
Professionally

*Even a one off’ program will hang around
for a long time.

* ALWAYS
* Make assumptions explicit

 Test for them (assert ())

e Test for error conditions/return codes

* Write modular code

Defensive Programming

® Fail early, fail

often.
if (n<0) {
. fprintf(stderr, "Error in myfunc(); ");
® |f your function fprince(stders,” n = 84 <0 1\a’,n);

assumes n>0, or
only works for
even input, or..

#include <assert.h>

assert(n>=0);

® Document it

® Jest for it Sciet

compute «calcul
CANADA

Test for errors

* Related to making your assumptions explicit
* Did you:

* make sure malloc () didn’t return
NULL?

* Make sure you aren’t at EOF!
* Make sure fopen () opened the file?
* Make sure scanf() read in the right number

of variables?
(SQH\l et
(, compgufs: S&::Icul

Test your code

* For every non-trivial section of your code,
write tests

* And then run them regularly!
* Much easier with properly modular code

* Test special cases (passed in too small an
array) and real cases.

(Sﬁﬁ\l et

(, compute «calcul
CANADA

Compiler is your friend

* Always turn on warnings in compiler
e -Wall, -warn all
* And fix all the things it complains about!

* Have debugging flags turned on during
development - eg, -fcheck=bounds in
gfortran

All of this takes time..

® But much, much less time than debugging

® Debugging - hours of work spent just to
get the code back into the shape it should
have been in the first place.

® Not a journey of personal growth - just a
collossal waste of time.

® Avoid it.

(SQH\' et
(, comszitS: Sailcul

But a bug happened
anyway...

® Five steps to debugging:
® Find out you have a bug
® Find out roughly where that bug is
® Examine section of code

® Find and understand the problem, and any
related problems

® Fix it. (Sgﬁ\jet

A futile slide?

Don't ever, ever see a bug and
immediately rush in with the editor

to change things until it goes away.

Really only learn this the hard way
- night before a deadline, need to
"save time' by leaping in and fixing
things.

Life lesson: |0+ hours of a

panicked programming can often L
save you from one hour of careful

chough Scifiet

(’ compute «calcul
CANADA

Finding you have a bug

® Jest, test, test.

® Only thing worse than debugging is not
realizing you have a bug.

® TJest with invalid inputs, valid inputs, etc.

® Once you know you have a bug, find
simplest, fastest case which
demonstrates the bug

Finding where bug is

® Need to bisect.
® Figure out where wrong answer happens.

® | ook at results half way through
computation. s it wrong!?

® |f so, problem is in first half

® Otherwise, in second half

® Repeat (ng et

Git is your friend

*If you have version control, and had a known
working version earlier, can hugely simplify
finding bug.

* |[f know when bug was introduced, know
what changes were made!

* Greatly reduces lines of code you're sifting
through.

(SQH\l et
(, compgufs: S&::Icul

Git is your friend

* git diff will show you all changes between
your last commit and current files

* (Look into git difftool for nice graphical
version)

* You can use git reset --hard or similar to
revert back to working version

* If correct version was much further back and
you want to find where problem happened,
“git bisect” will help you find where problem

was introduced. SCHet
" compgufs: gc:lcul

Graphical diffs

pr ﬁ;ﬁﬂ_&'uq’), C<

y primeTerd ¢

/% prine-number finding progron

vill (after bugs ore fixed) report a list of all primes which cre
less thon or equal to the user-supplied upper bound

riddled with errors!
by Normon Matloff, http://heather.cs.ucdavis. edu/ " matloff
*/
Hinclude <stdio.h>
indefme MAXPRIMES 5000 /* arroy for storring “sieve” */

int check_primelint [], int);

int main(int argc, chor =orgvl]) |

int n;

int upperbound;

int prime[MAXPRIMES]; /* Prime[l] will be 1 if I is prime, 0 otherwi »/
for (n=0; nN<MANPRIMES; ne+) prime[n) = 0;

prine(1] = prine(2] = 1;

printf(*enter upper bound\n®);
sconf (*%d*, upperbound);

for (n = 3; n <= upperboursd; n += 2)
check_prime(prine);
if (prime[n)) printf("xd is o prime\n");

/x don' t meed to check even Hs »/

|

|| /x prine-nusber finding progrom

will (ofter bugs are fixed) report o list of all primes which are
less than or equol to the user-supplied upper bound

riddled with errors!
by Normon Motloff, http://heather.cs.ucdavis. edu/“notloff
*/
finclude <stdio.h>
#define MAXPRIMES S000 /* arroy for storring “sieve” »/

woid check_prine{int [}, int);

int moin{int orgc, chor *argvil) {

int n;
int upperbound;
int primelMAXFRIMES];

for (n=0; n<MAXPRIMES; ne++) prins(n] = 0;
prine(l] = prine(2] = 1;

printf("enter upper bound\n®);
sconf (*xd", Gupperbound);

for {n = 3; n <= upperbound; n
check_prime(prine, n);
if (prine(n]) printf("xd is

=)]
+= <) i

a priss\n®,n);

[x don't need to check even Hs

/% Prime(I] will be | if I is primne, 0 otherwi */

y
*/
/

» tkdiff, xxdiff, kompare, etc - will change

your life.

o

pute « calcul

CANADA

Finding bug: debugger

* Typical scientist way of finding bugs -
inserting printf()s into code.

* Slow, error-prone, and only shows what you
print.

* Much better - debugger.

* We'll walk through gdb (lowest common
denominator).

* Graphical debuggers - Linux, ddd, eclipse, ddt;
Mac - Xcode;Windows - Visual studio ((;Qmea

gdb hands-on

* Edit your HW3 makefile and add -g to
compile, link line

* Includes information in the executable about
source code

* Disables some optimizations
* make clean, then make

*gdb [programname]

(Sﬁﬁ\l et

(, compute «calcul
CANADA

Running program

® at (gdb) prompt,
type “run”

® Runs program as
usual (slightly
slower)

® |f program required
command-line
arguments, ‘set args
[args]”, then run

$ gdb ./main

GNU gdb 6.3.50-20050815 (Apple version gd
Copyright 2004 Free Software Foundation,

GDB 1s free software, covered by the GNU

welcome to change it and/or distribute co
Type "show copying" to see the conditions
There 1s absolutely no warranty for GDB.

This GDB was configured as "x86 64-apple-
done

Program exited normally.
(gdb)

SQH\Jet

nnnnnnn

Breakpoints

® |nsert a breakpoint
into the code

® Program will run
until it hits
breakpoint, then
stop

® can use function
name, or
filename:line number

$ gdb ./main

GNU gdb 6.3.50-20050815 (Apple version gdb-1
Copyright 2004 Free Software Foundation, Inc
GDB 1s free software, covered by the GNU Gen:
welcome to change it and/or distribute copie:
Type "show copying" to see the conditions.
There 1s absolutely no warranty for GDB. Ty
This GDB was configured as "x86 64-apple-darm
done

Program exited normally.
(gdb) break tracer compute force and velocit:
Breakpoint 1 at 0x100002238: file tracer.c, .

ScCiet

’ compute calcul

Breakpoints

Put breakpoint at
tracer _compute_forc
e _and_velocity

Then Fun (gdb) break tracer compute force and velocit;
Breakpoint 1 at 0x100002238: file tracer.c, .

“Iist” IiStS the neXt Starting program: /Users/ljdursi/Desktop/Nov!

0.000000 0.000000 0.000000

few Iines Of COde (you Breakpoint 1, tracer compute force and veloc:
. . 35 for (int c¢=0; c<DIM; ++c) {

can “list 25" to list

starting at 25)

print ¢ - why is it not

0? SgiNet

nnnnnnn

step/next

Can step through
code, looking at results

Much more powerful
than printf

step - do next line of
code regardless of
where it is

next - next line of code
in this routine (eg, step
over function calls)

(gdb) 1list
30 tracer->alpha = tracer->alphalO* (1
tracer->r[0], tracer->r[l]));
31 }
32
33 void tracer compute force and velocit
34 {
35 for (int c¢=0; c<DIM; ++c) {
36 tracer->v[c] = (tracer->r[c]
37 tracer->f[c] = —-tracer->alpha
38 }
39 tracer->f[0] += tracer->qgE;
(gdb) step
36 tracer->v[c] = (tracer->r[c]
(gdb) step
37 tracer->f[c] = —-tracer->alpha
(gdb) print c
$2 =0
(gdb) print *tracer
$3 = {
m = 1,
x1l = 0,
x2 = 10,
gt = 1,

SCiNet

, compute calcul

Conditional breakpoints

Delete previous
breakpoint (delete 1)

Let’s say we want to
examine periodic
boundaries

Put a breakpoint in
tracer timestep on line
where L is calculated if
need periodic in x
direction

cont continues run

(gdb) delete 1
(gdb) break tracer.c:51 if tracer->r[0] >
tracer->x2 || tracer->r[0]
< tracer->x1
Breakpoint 2 at 0x1000015e3:
(gdb) cont

file tracer.

Breakpoint 2, tracer time step (tracer=0x
51 float L = tracer->x2 - tracer->x1

ScCiet

’ compute calcul

Conditional breakpoints

® When stepping
through, you can set
variables:

® eg, ‘set var L=5

® See if that alters
behaviour...

(gdb) delete 1

(gdb) break tracer.c:51 if tracer->r[0] >
tracer->x2 || tracer->r[0]
< tracer->x1

Breakpoint 2 at 0x1000015e3: file tracer.
(gdb) run

Breakpoint 2, tracer time step (tracer=0x
51 float L = tracer->x2 - tracer->x1

Sciet

compute «calcul
CANADA

Watchpoints

Can break anywhere in
program if a variable
changes

(gdb) delete

Ver')l useful for tracklng Delete all breal:lkpoints? (y or n) y

(gdb) break main

Changes to a varlable Béz}ao]){piigt 3 at (.)xlOOOOO9b4: file main.c,
you think should be Seakpolnt 2o madn) At main.cils
same!

delete (deletes all
breakpoints)

break main; run SQH\Jet

’ compute calcul

Watchpoints

® Set a watchpoint for
your tracer particle’s

r[O]
® continue

® Should stop in
tracer_init

(gdb) delete

Delete all breakpoints? (y or n) y

(gdb) break main

Breakpoint 3 at 0x1000009b4: file main.c,

(gdb) run
Breakpoint 2, main () at main.c:12
12 float m = 1.0;

(gdb) watch tracer->r[0]

Hardware watchpoint 3: tracer->r[0]
(gdb) cont

Continuing.

Hardware watchpoint 3: tracer->r[0]

Old value = 4.59163468e-41

New value = 0
tracer init (tracer=0x7fff5fbffe00, r0=0x
22 tracer->rprev(c] = r0[c] - vO

ScCiet

’ compute «calcul

CANADA

Stack frame

where - Shows where you
are in the code and how
you got there

eg, line 68 of main.c called
tracer init at line 22

Can go between callees
and callers with “frame”
command

Lets you see values in
caller, undersand why it
was called with values it
was.

Old value = 4.59163468e-41
New value = 0
tracer init (tracer=0x7fff5fbff600, r0=0x7fff5f

22

(gdb)

tracer->rprevic] = r0O[c] - vO[c]*tr

where

#0 tracer init (tracer=0x7fff5fbff600, r0=0x7f
#1 0x0000000100000el6 in main () at main.c:68

(gdb)

frame 1

#1 0x0000000100000el6 in main () at main.c:68

08 tracer init(&tracer,r0,v0);
(gdb) print r0
$1 = {0, O}
(gdb) print vO
$2 = {0, 10}
(gdb) print tracer
$3 = {
m =1,
x1l = 0,
x2 = 10,

(ng et

(’ compute «calcul
CANADA

Graphical debuggers

® Show source all at
once, allow you to
manipulate/view
data in other
windows

® Easier to use

® Same basic
functionality

Fmel DDD: /publici/source/programming/ddd - 3.2/ddd/cxxtest.C
File Edt View Program Commands Status Source Data

0.’1ist—>se]r‘l’ , ®» @’ loell ?- gj.

Lockop Finde Ereak Watch Prnt S

value

1: list ()

. next

= 86

/
- self = Ox804df90

= Ox804dfaol L

list->next

list=>next—>next

list—->next—rnext—rnext
@ (void) ik // Display this
P delete 19stliList *) 0x804df8o)

delete list=>next;
delete list;

= |ist;

= new List{a_global + start++);
= new List(a_global + start++);

] Unti | th|
t--4 DDD Tip of the #5
/! Test R L D X |
void Tis @
{ list If you made a mistake, try Edit—Undo. This will undo the most e
] y recent debugger command and redisplay the previous program state. I [
1]
f =
void ref
¢ date Close I Prev Tip I Next Tip I
dele]
date—per—or T
3
/
(gdb) gr aph display *{list=>next—>next->self) dependent on 4 E
(gdb) : -
A list= (LiSt *) 0x804df80 ¥

® ddd (http://
www.gnhu.org/s/
ddd/) is
particularly nice
for scientists:

® free

® Built-in plotting
of arrays

fpublic/source/programmingfddd-3.2.1 /ddd/cxxtest.C

g D24

File Edit View Program Commands Status Source Data Help
. sl DDD: ir i 0 X
0:‘\':1 / -
' File Edit View Plot Scale Contour Help
" " i . . . 1UU' 1-1':”” -
Displays | - - 90-
dr = [...] " 80-
: :
70-
60 -
void plot_test() 50 -
¢ m e 40-
static int ir[100]; ‘
] DDD: dr 30- ,
F File Edit view pPio 20"
ol
S 0_[1”
‘ 0 10 20 30 40 S0 60 70 80 S0 100
Down|
s
d Rerin
1 m |
f Points
7 Lines Ef
Ny | “* 3-D Lines
@ « " | S :
Points and Lines
> Impulses Y
Dots g
Break Stene
(gdb) _E[J.
Egggg Boxas : 1
9 T7 :
A Displ I+ — | +

“—Cwﬁ'rp'u'ﬁu-rt' Ul
CANADA

http://www.gnu.org/s/ddd/
http://www.gnu.org/s/ddd/
http://www.gnu.org/s/ddd/
http://www.gnu.org/s/ddd/
http://www.gnu.org/s/ddd/
http://www.gnu.org/s/ddd/

Performance

® Get things right before
getting them fast

® Once your program is
working correctly (and
has tests so you can
make sure it’s still
working correctly after
changes), can work on
making it go faster

Jte calcul

e ANADA

How to improve
Performance!

® Can’t improve what

’ PI‘Oﬁ|ing
you don’t measure

® Have to be able to

: : \ Aal,
quantify where your Find ‘ MELG
problem spends its bottlenecks IMPLEOVEMERtS

time. |
Tuning

SCiNet

Profiling A Code

......

® Where in your
program is time being
spent? EER,

® Find the expensive
parts

® Don’t waste time
optimizing parts
that don’t matter

ernet
(’ com;zgts;geilcul

Profiling A Code

® Timing vs. Sampling
vs. Tracing

® |nhstrumenting the
code vs.
Instrumentation-free

SIM_PROJECTILE:
ymin xmin .}
ymIX XT3 X o3
dx { xmax-xmin)/npts;
dy {ymax-ymin)/npts;
init_domain{&d, npts, npts, KL_NGUARD, xmin, ymin, xmax, ymax);
projectile_initvalues(&d, psize, pdens, pvel);
outputvar DENSVAR;
}
.-I."‘I] = xbc: besl] = xbc
bes[2] = 53] ybc;
‘|.’l,’ll'y'_'lll_,'. bcs):
SOMALIN_DACKWArc_op_cosiaC);
gomain_ene nternal to_toti&o)
ticki&tt);
(output) domain_plot(&d);
printt '
(time= , Step=8; Step < nsteps; step++, times= «dt) {
printf(, Step, dt, time);
output && step % outevery) == 8)) {
sprintfippmfile ne, , Outnum)
sprintf{binfilenane, » Outnum);
sprintf{hS5filenane, » Outnum
sprintfincdffilenane, s Outnum
domain_output_ppmi{&d, outputvar, ppafilenane)
domain output binl&d, binfilenanme);
domain_output _hdf5(&d, hS5filenanme);
domain output_netcdf(&d, ncdffilenane);
domain_plot{&d);
outnum++;
}
kKl timestep xyl{&d, bes, dt
apply_all_bes{&d, bes);
kl_timestep yx{&d, bcs, dt);
apply_all_bes{&d,becs);
}
tock(&tt)

et
(’ comegts;gélcul

Timing whole program

® Very simple; can
run any
command

$ time ./a.out

[your job output]

® |n serial, real = Elapsed

“walltime”
User+sys real Om2.448s«” "G
user 0Om?2.383s. Actual user

o .
nelel L omocre
— ystem time:
(nprocs)x (real) Disk, I/O...

<SER\Iet

Running “top”

® Run top in

M Processes: 128 total, 5 running, 2 stuck, 121 sleeping, 477 threads
anOther termlnal Load Avg: 2.34, 2.28, 2.37 CPU usage: 72.72% user, 26.81% sys, 0.45% idle
MemRegions: 16780 total, 482M resident, 30M private, 309M shared.

PhysMem: 282M wired, 814M active, 315M inactive, 1412M used, 636M free

WlndOW Whlle VM: 307G vsize, 1091M framework vsize, 3775808(123) pageins, 1348243(0) pageo

Networks: packets: 37819545/13G in, 41801431/19G out. Disks: 3833135/82G read

Program Funs PID COMMAND

%
55822 mdworker 0.
55821 screencaptur 0.
8
0.

CPU TIME #TH #vQ #POR #MREG RPRVT RSHRD RSIZE V
@ 00:00.15 5 3 55 81 2304K 6920K 6252K 3
4 00:00.08 2 47 77 576K 6272K 3196K+ 1
2.0 00:07.25 1/1 17 26 19M+ 212K 19M+ 3

O 00:00.49 3 54 92 1904K 15M 5712K 4

AN . _nAr e o=y A Pl S s A s s

55820 main

. TeIIS CPU usage’ §§7?Z- wagrker32
amount of
memory, status

b = © =

® |ots of D/S status
- waiting for 1/O

SCiet

, compute «calcul

CANADA

Insert timers into
regions of code

Instrumenting code

Simple, but
incredibly useful

Runs every time
your code is run

Can trivially see if
changes make

struct timeval calc;

tick(&calc);
/* do work x/

calctime = tock(&calc);

printf("Timing summary:\n");

/* other timers.. */

printf("Calc: %8.5f\n",

void tick(struct timeval *t) {

gettimeofday(t, NULL);
}

double tock(struct timeval xt) {

struct timeval now;

gettlmeofday(&now NULL);

1y (double) (now.tv_sec - t->tv_sec) +
((double) (now.tv_usec - t—>tv_usec)/1000000.);

calctime);

C

SCiet

’ compute calcul

Matrix-Vector multiply

S mvm --matsize=2500
® (Can get an overview

of the time spent Timing summary:

easily, because we Init: 0.00952 sec
instrumented our Calc: 0.06638 sec
code (~|2 |ines!) I/O . 5.07121 sec

® |/O huge bottleneck.

mat-vecSﬁilﬁt&:t

" compute «calcul
CANADA

Sampling for Profiling

® How to get finer-grained information about
where time is being spent!?

® Can’t instrument every single line.

® Compilers have tools for sampling
execution paths.

(SQH\J et

compute «calcul
CANADA

Program Counter
Sampling.

® As program A SR O, e, <
executes, every so
often (~100ms) a
timer goes off, and o
the current location
of execution is
recored

® Shows where time is

aernet
(’ comngts:gz::lcul

Program Counter

® Advantages
® Very low

® No extra

Samp

overhead

Instrumentation

® Disadvantages:

® Don’t know why
code is there

ling

S TMEPROYECTILE:
mln xmin }H

yml
ymax Xmax

L XA X~X

a oa-x

npts, npts,
values(&d, psize,

DENSVAR;

(L_timestep yi&d, bcs, dt
apply_all_bes{&d,bes)
kl timestep vy Ld, bc ct

JD:Vlvr.:ll bes

KL_NGUARD,

pdens,

| 4
cs[@8] = xbc; bes[1] = xbe
bcs[2] = ybec; besl3] ybc
|,':,'n') ')ll_':". w0, DCS
comain_»0 KwWarg_op_ecos c
gomain ene nternal to_totl&o
’L t'v»
output gomain_plot
arint il
(time=2.,s5tep=0; step < nsteps; stepe+s+, t
yrintf(step, Ct, time);
(output && ((step & outever ==
sprintfippmfilenane,
sprintfi{binfilenane,
sprintf{(hS5filenane,
sprintfincdffilenane,
domain output ppm{&d, outputvar, ppmt
domain output binl&d, binfilenanme);
domain_output _hdf5(&d, hS5filenanme);
domain output_netcdf(&d, ncdffilenane
domain_plot{&d);
ouU "_'00

xmin, ymin aa
pvel):
imes=2.%dt) {
[
At v
, Outnu

xernet

(compute «calcul
C A

N ADA

gprof for sampling

S gcc -03 Fpg mat-vec-mult.c --std=c99

S 1cc -03 |-pg mat-vec-mult.c -c99
turn on debugging symbols
profiling

(optional, but more info)

S ./mvm-profile --matsize=2500
[output]

S 1s

Makefile Mat-vec.dat gmon.out
mat-vec-mult.c mvm-profile

éiﬂjkkﬂ

compute «calcul
CANADA

gprof examines

Flat profile:

gmon.out

S gprof mvm-profile gmon.out

| more

Each sample counts as 0.01 seconds.

>

time
100.24

0.00
0.00
0.00
0.00
0.00
0.00
0.00

[...]

cumulative
seconds

0.41
0.41
0.41
0.41
0.41
0.41
0.41
0.41

O O O O O O O

self
seconds
0.

41
.00
.00
.00
.00
.00
.00
.00

calls

R P P, DNDNDD W W

self

Ts/call

O O O O O O O

.00
.00
.00
.00
.00
.00
.00

total
Ts/call

O O O O O O O

.00
.00
.00
.00
.00
.00
.00

name
main

tick

tock
allocld
freeld
alloc2d
free2d

get options

(SEH\J et

Gives data by function -- usually handy qp <

Each sample counts as 0.01 seconds.

% cumulative
time seconds
68.46 0.28
14.67 0.34

7.33 0.37

4.89 0.39

4.89 0.41

0.00 0.41

0.00 0.41

0.00 0.41

0.00 0.41

0.00 0.41

0.00 0.41

0.00 0.41

400a30)

gprof --line examines
gmon.out by line

gpc-£f103n084-$ gprof --line mvm-profile gmon.out
Flat profile:

self
seconds
0.28
0.06
0.03
0.02
0.02
0.00
0.00
0.00
0.00
0.00
0.00
0.00

calls

R PP, DNDNDOWW

self

Ts/call

O O O O O O O

.00
.00
.00
.00
.00
.00
.00

| more

total
Ts/call

O O O O O O O

.00
.00
.00
.00
.00
.00
.00

name
main
main
main
main
main
tick
tock

(mat-vec-mult.
(mat-vec-mult.
(mat-vec-mult.
(mat-vec-mult.
(mat-vec-mult.
(mat-vec-mult.

(mat-vec-mult.

Q Q Q Q QQ

:82 @ 401
:113 @ 40
:63 @ 401
112 @ 40
:113 @ 40
:159 @ 40
Ct

164 @ 40

allocld (mat-vec-mult.c:152 @
freeld (mat-vec-mult.c:171 @
alloc2d (mat-vec-mult.c:130 @
free2d (mat-vec-mult.c:144 @

get options (matﬁt .c:1
: et

compute «calcul
CANADA

gprof hands-on

® Edit your makefile to include -g -pg lines,
rebuild your code

® Where does your code spend most of its
time -- by function? By line!?

Object Oriented
Python

® |nterpolation

strength

® Example from http://

software-carpentry.org/ B
4 O/oop

Sciet

(’ compute «calcul
CANADA

|d Interpolation

® Take discrete,irregular
timeseries

strength

® Allow sampling at any
time

time

® For integration, averaging,
etc.

(SQFN et

compute «calcul
CANADA

|d Interpolation

step function

® Many ways to do this

® Piecewise constant (step
function)

linear interpolation

- o | 4
.~
Wr—

® |inear interpolation, etc.

Sciet

compute «calcul
CANADA

Obj. Oriented Python

® Similar to C++
® constructor:
__nit__

® Methods are just
functions ‘in’ the
class

® | ocal values:
self.values

class StepSignal (Object) :

def 1nit (self,values):
‘''Values 1s ((x0,y0), (x1,y1l)...)" "’
self.values = wvalues

def get(self,where):
assert where >= self.values[0][0]
for 1 in range(len(self.values)-1):
x0, y0 = self.values[1i]
x1, yl = self.values[i+1]
1f x0 <= where <= x1:
return yo0
assert where < x1

ScCiet

’ compute calcul

Obj. Oriented Python

® |nitialize with the
data

® call .get method to
sample at given
point

class StepSignal (Object)

def init (self,values):
VM'Values is ((x0,y0), (x1,yl)...)"""’
self.values = values

def get(self,where):
if where < self.values[0][0]:
raise IndexError, ‘$f too low’ % where
for i in range(len(self.values)-1):
x0, y0 = self.values[i]
x1, yl = self.values[i+1]
if x0 <= where <= x1:
return yO0
raise IndexError, ‘%f too high’ % where

>>> import stepsignal
>>> interp = stepsignal.StepSignal (((0.,0.),
(L.,1.), (2.,2.)))

>>> for x in (0.0, 0.5, 1.1, 1.75):
print x, 1nterp.get (x)

Sciet

compute «calcul
CANADA

Obj. Oriented Python

® Error handling
works as expected

® This would be a
reasonable set of
tests for this class

class StepSignal (object)

def init (self,values):
'"'"Values is ((x0,y0), (x1,yl)...)"""
self.values = values

def get (self,where):
assert where >= self.values[0][0]
for i in range(len(self.values)-1):
x0, y0 = self.values[i]
x1l, yl = self.values[i+1]
if x0 <= where <= x1:
return yO0
assert where < x1

>>> interp.get (-.001)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "stepsignal.py", line 8, 1n get

assert where >= self.values[0][0]

AssertionError

>>> interp.get(2.1)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "stepsignal.py", line 14, in get

assert where < x1
ScCHet

AssertionError
compute «calcul
CANADA

Linear Interpolation

class LinearSignal (object) :

® Different class,
. . def __init__(sglf,values): .
with different B
interPOIatiOn def get (self,where):

assert where >= self.values[0][0]
for i in range(len(self.values)-1):
® T x0, yv0 = self.values[i]
TeSt thls' x1, yl = self.values[i+1]
1f x0 <= where <= x1:
return y0 + (yl-y0)* (where-x0)/ (x1-x0)

assert where < x1

Sciet

compute «calcul
CANADA

Linear Interpolatlon

class LinearSignal (object)

def init (self,values):
'"Values is ((x0,y0), (x1,y1l)...)"'""'
self.values = values

def get(self,where):
assert where >= self.values[0][0]
. for i in range(len(self.values)-1):
. leferent Class x0, y0 = self.values[i]
9 x1, yl = self.values[i+]1]
if x0 <= where <= x1:
return y0 + (yl-y0)* (where-x0)/ (x1-x0)

with different e i
interpolation

>>> 1mport linearsignal
>>> 1nterp = linearsignal.LlLinearSignal (((0.,0.),

® [est this: (L1, (2.,2.0))

>>> for x in (0.0, 0.5, 1.1, 1.75):
print x, interp.get (x)

compute «calcul
CANADA

Using the class

® Argument “signal”

Can be anythlng def integrate(signal, x0, x1, num samples):

width = (x1 - x0)/num samples

With a get() total = 0.0

for 1 1n range (num samples):
methOd x = x0 + i*width

total += signal.get(x)*width
return total

® Can pass it linear
signal or step
signal, or.

Sd?\let

LLLLLLL

Using the class

® Argument “signal”

can be anYthing class Sinusoid (object) :
' def init (self, amplitude, frequency):
Wlth a get() self.amp = amplitude
self.freq = frequency
method

def get(self, x):
return self.amp * math.sin(x * self.freq)

® Can pass it linear
signal or step
signal, or.

Sd?\let

LLLLLLL

Inheritance

® [wo classes are
almost identical

® \Want to reduce
code overhead

® Also, make explicit
that they have
same interface

class StepSignal (object) :

def

def

__1nit (self,values):
'"'"'"Values 1s ((x0,vy0), (x1,y1l)...) """
self.values = values

get (self,where) :
assert where >= self.values[0][0]
for 1 in range(len(self.values)-1):
x0, y0 = self.values|[1i]
x1, yl = self.values[i+1]
1f x0 <= where <= x1:
return yo0
assert where < x1

class LinearSignal (object) :

def

def

__init (self,values):
''"'Values 1s ((x0,vy0),
self.values = wvalues

(x1,yl)...)"'""

get (self,where):
assert where >= self.values[0][0]
for i in range(len(self.values)-1):
x0, y0 = self.values|[1i]
x1, yl = self.values[i+1]
1if x0 <= where <= x1:

return y0 + (yl-y0)* (where-x0)/(x

assert where < x1
Sciet

’ compute calcul

Inheritance

Find common
code

Initialization

Find routine
(which get will be
based on)

Not very useful in
and of itself

class InterpolatedSignal (object) :

def

def

def

init (self,values):

T 'Values is ((x0,y0), (x1,yl)...)"""

self.values = wvalues

find(self, where) :
assert where >= self.values[0][0]
for 1 in range(len(self.values)-1):
x0, y0 = self.values|[1i]
x1, yl = self.values[i+1]
if x0 <= where <= x1:
return 1
assert where < x1

get (self, where):
raise NotImplementedError ('Must provide get

ScCiet

’ compute calcul

Inheritance

® Define
implementations
that inherit from
Interpolated Signal

® Just the code that’s
different

® Note get is
overridden

class StepSignal (InterpolatedSignal) :
def get(self, where):
1 = self.find(where)
return self.values[1] [0]

class LinearSignal (InterpolatedSignal) :

def get(self, where):

1 = self.find(where)

X0 = self.values[1][0]
x1l = self.values[1+1][0]
v0 = self.values[i] [1]
vyl = self.values[i1+1][1]

return y0 + (y1l-vy0)/ (x1-x0)* (where-x0)

>>> import interpolatedsignal

>>> interp =

interpolatedsignal.StepSignal (((0.,0.),(1.,1.),
(2.,2.)))

>>> interp.get (1.5)

1.0

ScCiet

’ compute calcul

Inheritance

e (Can put better input
validation into the
base class

® Make sure values are
pairs, increasing in
X...

® Both subclasses get
those improvements
automatically

class StepSignal (InterpolatedSignal) :
def get(self, where):
1 = self.find(where)
return self.values[1] [0]

class LinearSignal (InterpolatedSignal) :

def get(self, where):

1 = self.find(where)
x0 self.values[1] [0]
x1 self.values[1i+1][0]

v 0 self.values[1i] [1]
v1 self.values[1+1][1]
return y0 + (y1l-vy0)/ (x1-x0)* (where-x0)

>>> import interpolatedsignal

>>> interp =

interpolatedsignal.StepSignal (((0.,0.),(1.,1.),
(2.,2.)))

>>> interp.get (1.5)

1.0

ScCiet

’ compute calcul

