
C Tutorial

Why C?
Because we can’t in good conscience espouse Fortran.

C Hello World

Code:

Output:

C For Loop

Code:

Output:

C Functions

Code:

Output:

Unlike Fortran, there is no distinction in
C between functions and subroutines.

C Pointers

Code:

Output:

C Arrays

Code:

Output:

assert in action

C 2-D Arrays

Code:

Output:

assert in action

C Structures

Code:

Output:

Note that C does not initialize values.
Forgetting this is an extremely common
bug. Often compilers will warn - take
them seriously.

Printing in C
formatted printing in C is handled by the
standard i/o library, not the language itself.
Still, a few tips on how to print things in a
formatted way are useful. If you need
something fancier, possibly there, look on-
line.

Math in C

Finally, here are some examples of how to do
math in C. Because C is a compact language,
math functions have been offloaded into a
library. The library is very standard, so any C
compiler will support its functions.

Some compilers may have math routines built
in, and hence not need the “-lm” flag to the
right, but this is not standard, and you will
likely be punished for your sins the first time
you run on a new machine.

And Now for Parallel

Intro to OpenMP

• Or, “Gee, I wish that loop were faster.”

• (although newer OpenMP more flexible)

OpenMP Philosophy

• Goal: Add parallelism to a functioning serial code.

• Add compiler directives to parallelize parts of code.

• Requires shared-memory machine.

• Pros: Often very easy to add to existing codes.

• Major con: Large shared-memory machines $$$$

OpenMP Philosophy II
• We tell OpenMP compiler to parallelize a block of code.

In practice, mostly fixed-length loops.

• Mark off parallel block: C use #pragma omp ... and {},
FORTRAN use !$OMP and !$OMP END.

• Compiler will spawn threads and split up work for us.
Thank you Mr. Compiler!

• We must tell compiler how to use variables. Is a variable
shared between threads, or does each thread have a
private copy?

OpenMP Philosophy III
• Not all compilers OpenMP-compatible. OpenMP

designed to be ignored by non-OpenMP compilers.

• Most OpenMP implemented with compiler directives.
Non-OpenMP compilers will think they’re comments.

• OpenMP also provides some library calls. For
compatibility, #ifdef guard these calls. OpenMP always
defines _OPENMP for this reason.

• Backwards-compatibility rapidly becoming unimportant.
Even cheap machines have multiple cores!

My First OpenMP Program
• Goal of first program: figure out in serial region

total number of parallel threads.

• Let’s see how many threads we have. (We set this at run
time using environment variable OMP_NUM_THREADS).

• omp_get_num_threads() returns total number of threads.

• omp_get_thread_num() returns which thread I am.

• omp_get_num_threads() will return current number of
working threads. This will be one if we call it from a serial
region.

My First OpenMP Program II

• To find out number of threads, we must ask in a parallel
region. To start a parallel region, use command #pragma
omp parallel (or !$OMP parallel).

• First, let’s get greetings from each thread.

• You will need to include <omp.h>, which has defines and
function prototypes for OpenMP

My First OpenMP Program Output

Code:

Output:

MFOMPP: What Happened?

• We started a parallel region, and each thread printed out
its thread ID number.

• What didn’t happen? The threads printed out in random
order. Threads execute independently, and in general,
order will be random.

• What else didn’t happen? No variables. Now lets
introduce some so we can see how they behave.

MFOMPP: Add a Variable
• Let’s assign the number of threads to a shared variable,

nthread.

• Only one thread needs to do this. So, let’s save each
thread’s number to mythread, and only have thread 0 write
to nthread.

• By default, variables are shared. But each thread needs its
own copy of mythread. We will declare that to be private.

• (Also going to drop #ifdef’s to reduce clutter)

MFOMPP: Getting nthread

Code:

Output:

MFOMPP: What Happened Now?
• The shared variable nthread was only written to by thread

0, and because it was shared, it maintained its value
outside of the parallel region.

• The compiler created a private copy of mythread for each
thread. If it had been shared, each thread would have
tried to write its own value to mythread. There’s no telling
what mythread would have been by the if statement.
Program behavior would have been indeterminate.

• Another choice (and a very good one): declare mythread
locally inside parallel region.

Quick Note on Initialization

• By default, the initial values of private variables are
undefined.

• By default, the values of private variables are lost outside
of the parallel region.

• In the #pragma directive, we can override this behavior by
declaring variables to be firstprivate (import the value from
before the parallel region) or lastprivate (put the value
from the final loop iteration into the serial variable).

MFOMPP: Getting nthread II

Code:

Output:

MFOMPP: What Was So Different?

• We declared mythread inside the parallel region. Variables
declared inside regions are always private.

• What’s the big deal? Well, we didn’t have to list mythread
in the #pragma line. Plus, we naturally treated mythread as
a new, private variable and initialized it accordingly. While
trivial, this will save a lot of debugging time.

• I strongly encourage this for even serial codes. If you get
into this habit, you will never accidentally loop with the
same variable twice!

MFOMPP: Final Version
• We don’t really care which thread assigns nthread, only

that it happens once. OpenMP supports this with the
“#pragma omp single” command inside a parallel region.

• Another point: we can switch the default behavior of
variables. C supports (shared, none), Fortran also
supports private.

• Your instructors strongly suggest you always use
default(none). This will protect you from many, many bugs.
Combined with structures (which you should use) and
local declarations, overhead of default(none) is small.

MFOMPP: Final Version

Code:

Output:

Use of #pragma omp single has made code
cleaner and more readable. Use of

default(none) has made it safer.

MFOMPP: Final Version in Fortran

Code:

Code looks similar in Fortran. We needed to
include “omp_lib.h” instead of <omp.h>

Output:

My First OpenMP Loop

• Now let’s look at a simple loop. OpenMP will split up the
loop for us, so we don’t have to think about it.

• OpenMP shorthand for a single loop: #pragma omp
parallel for (omp parallel do in Fortran). We use the same
shared, private clauses as before.

• For each element in the loop, we will print out which
thread owns it.

MFOMP Loop

Code:

Output:

MFOMPL Debrief

• The parallel for directive told OpenMP to split up the
work.

• Each node got a chunk of the loop and spat it out.

• parallel for is a shorthand for a parallel region with a split-
up for loop.

• We could avoid the repeated calls to
omp_get_thread_num() by separating the parallel and the
for.

MFOMP Loop II

Code:

Output:

Behaves same as previous
version, but we have now
saved the repeated calls to
omp_get_thread_num().

Now Let’s do Something Useful

• So far, we haven’t gotten our threads to do anything.

• Second problem: sum x[i]*y[i] vectors x and y

• We will use OpenMP work-sharing constructs to split up
the loop amongst different threads.

• First let’s look at a serial version. This will show some of
the utilities we will be using in the course of the
workshop.

Serial ndot

Code:

Output:

Things to Note:
• We have put some definitions and utility routines in pca_utils.[ch].

We will use them in the example codes.

• We have created a typedef called NType. By default it will be
double, but can also be recast as a float (or even an int). (N
originally stood for N-body, since I wasn’t sure if that should be
done single or double)

• vector allocates a vector of NTypes and returns a pointer to the
beginning.

• pca_time is a datatype to store microsecond-precision time. The
tick() function resets a timer, and tock() tells you how much time
has passed since tick() was called.

A Parallel Dot Product
• We could clearly parallelize the loop.

• We need the sum from everybody. We could make tot
shared, then all threads can add to it.

• Don’t!!! Multiple threads may try to update tot at the same
time. If they do, then we’ll get wrong answers.

• This is known as a race condition. Threads race each other
to change shared objects. A classic parallel bug.

• Let’s have a look:

Parallel ndot - Data Race

Code:

Output:

Not only is the answer wrong, it
was slower to compute!

(Main part of code unchanged, only
showing the dot product routine.)

Data Races
• So we got a wrong answer. What happened inside the hardware?

• Shared variables live in main memory. Cores process data in
their cache.

• When a thread wants to update tot, it will pull it to its cache,
modify it, and return to main memory.

• If threads try to change at the same time, both pull the same
value, update, and return to main memory. Whoever finishes
second wins.

• Can be very subtle in practice. Errors are not repeatable, and may
not show up until problems get surprisingly large.

Critical Directive

• If threads waited for other threads to update, then we
would get the correct answer.

• OpenMP supports this. The #pragma omp critical directive
tells the compiler to only let one thread in at a time.

• The overhead for critical regions can be large. In this
case, the OpenMP run-time system needs to keep track of
all threads for every iteration.

• However, answer should be correct.

Parallel ndot - Pure Critical

Code:

Output:

Answer is now correct, but we
are 30 times slower than the
serial version!!!

Atomic Directive
• #pragma omp critical will work for arbitrary block of code.

There usually exists specialized hardware for reading,
modifying, and writing to a single memory location.

• OpenMP supports this. The #pragma omp atomic directive
lets the compiler take advantage of this hardware support.
Supports limited commands: =, +=, *=, a few others.

• Due to lower overhead, atomic should be faster. Still
won’t be that good, however.

Parallel ndot - Pure Atomic

Code:

Output:

For this case, atomic about 30%
faster than critical. Still 20 times
slower than serial!

Better Reduction
• The big problem is that many threads are trying to update

the same location.

• Dot product doesn’t depend on order of summation. So,
let each thread sum its bit into its own private variable,
then combine.

• We will have a shared variable tot, updated at the end, and
private variables mytot for each thread.

• At end of loop, sum mytot into tot using an atomic directive.

Parallel ndot - Atomic Reduction

Code:

Output:

Now we’re in business! Correct
answer, ~3x faster than serial.

What Did We Do? What Next?
• Started a parallel region. Declared a private variable. Summed

our piece of a parallel loop. Finally, at end, summed our piece into
the total.

• This operation, where we sum private copies into a shared
variable, is called a reduction. Reductions are extremely common
in scientific parallel programming.

• OpenMP has reductions built into the standard. Instead of
declaring a variable to be private or shared, we can declare it to be
reduction, and OpenMP will take care of it for us.

• C supports +, -, and * reductions (plus some bit mask ones).
Fortran also supports min and max.

Parallel ndot - OpenMP Reduction

Code:

Output:

Same answer, time as our manual
reduction. But much simpler to
code!

Performance
• We threw in 8 cores, got a factor of 3 speedup. Why?

• Often we are limited not by CPU power but by how quickly we
can feed CPU’s.

• For this problem, we had 107 long vectors, with 2 numbers 8 bytes
long flowing through in 0.036 seconds.

• Combined bandwidth from main memory was 4.3 GB/s. Not far
off of what we could hope for on this architecture.

• One of the keys to good OpenMP performance is using data when
we have it in cache. Complicated functions: easy. Low work-per-
element (dot product, FFT): hard.

Parallel ndot - Lots of Work Per i

Code:

Output:

8 threads gives me 7.8 times
faster job. That’s more like it!

OpenMP Versions
• So far, OpenMP is good mainly for loops. This was

generally true for a long time.

• OpenMP 3.0 is more flexible - will will meet some
of it tomorrow.

• OpenMP3 very new - best documentation is
standard itself. gcc 4.3.2 & later support(?) it.

• See: http://openmp.org/wp/openmp-specifications/
for more info. Strongly encouraged - many good
sample programs.

http://openmp.org/wp/openmp-specifications/
http://openmp.org/wp/openmp-specifications/

Hand-on 0
• Make a directory in your pca/src directory called ‘hw2’.

• Copy /scratch/sievers/pca/src/hw2/Makefile into hw2,
do your work there.

• Digital version of these slides available on the scinet
wiki: https://support.scinet.utoronto.ca/wiki/index.php

• if you have problems getting a node, check for orphan
jobs: “showq -u <uid>”. If there’s more than 1, try
“canceljob <jobid>” where jobid right now is
something like 52000

https://support.scinet.utoronto.ca/wiki/index.php
https://support.scinet.utoronto.ca/wiki/index.php

Hands On 1:
• Write and compile a C program from scratch to allocate a 2-D

array using pointers. The user should be able to specify the both
dimensions of the matrix on the command line. The allocation
should be in a function, not main()

• When the matrix successfully allocates, write a function to fill it
such that matrix[i][j]=sin(sqrt((1.0+i)/(1.0+j))). Print the matrix
to the screen in a separate function. Finally, write a fourth
function to sum the elements of the matrix and print it out. Call
this program mat_2d.c

• If it has worked correctly, matrix is antisymmetric, elements (2,1)
and (3,1) are -0.339677 -0.522096

Hands On 2
• Now let’s add check timings and add parallelism. Copy

mat_2d.c to mat_2d_omp1.c. How long does it take to fill
a 3,000 by 3,000 matrix? A 3 by 3,000,000? A 3,000,000
by 3 matrix? You may wish to turn off printing the
matrix.

• Parallelize the fill using OpenMP. Repeat the same three
timing tests. How much did we improve? Did we get a
factor of 2 speedup in all cases? Any cases?

• For a 5x5 matrix, print which process did which
assignments.

Hands On 3
• Now introduce a counter so that every time a thread assigns a value to the

matrix, it increments its counter by one. For our same cases (3e6 by 3, 3
by 3e6, 3k by 3k) how much work are the different threads doing? Why?
(If the work reported by threads and the timings seem to disagree, don’t
worry, we will see what’s happening in the next lecture.)

• Can you change the parallelization so that the broken case is fixed? What
happened to the other cases?

• OpenMP 3.0 introduces a “collapse” clause to tell the compiler to combine
loops. Make sure the parallel is attached to the outer loop and add
collapse(2) to the #pragma omp for directive, and re-run the same 3 cases.
How much work is each thread doing now? Call this program
mat_2d_omp2.c

Hands On 4

• Finally, write routines to sum the elements of the matrix in
parallel in a program called mat_2d_omp3.c.

• One routine should have each thread explicitly keep track of its
private sum and then combined using critical or atomic directives.

• One routine should use the reduction clause. This should require
only one extra line over the serial case.

• You have seen each of these code snippets in the lectures, but it is
good practice to write them yourselves.

