
Numerical Tools for Physical Scientists:
Modelling, Validation, & Verification

Erik Spence

SciNet HPC Consortium

4 February 2014

Erik Spence (SciNet HPC Consortium) Modelling, Validation & Verification 4 February 2014 1 / 20



This course

We covered the basics of C++ and good programming practices in the last
course. In this course we are going to focus on the specifics of numerical
computing for physical scientists. If there is a specific numerical technique
that you’d like us to discuss, tell us and we’ll see if we can work it in.

This course will cover:

Modelling, Validation, Verification.

Random numbers and Monte Carlo.

Optimization, root finding.

ODEs and molecular dynamics.

Linear Algebra.

Fast Fourier Transform.

Erik Spence (SciNet HPC Consortium) Modelling, Validation & Verification 4 February 2014 2 / 20



Today’s class

Today we will cover:

What is computational science?

Verification and validation?

Universal errors.

Erik Spence (SciNet HPC Consortium) Modelling, Validation & Verification 4 February 2014 3 / 20



Computational science

Computational science is a relatively new approach to science.

It is often called the “third leg” of science, the other two being
experiment and theory.

It is different from theoretical or experimental science, but requires
the skills of both:

I it requires the note-taking, methodical approach of experimentalists;
I it requires the mathematical skills of theorists;
I it requires its own expertise in programming, algorithms, numerical

stability, computer science, etc.

Computational science is usually done very badly. Why? Its
interdisciplinary nature has resulted in few that have the expertise to
do it properly.

Erik Spence (SciNet HPC Consortium) Modelling, Validation & Verification 4 February 2014 4 / 20



Computational science means modelling

Science is the empirical study of the natural world.

Computational science is an exercise in modelling the natural world.

Note the difference: we’re not talking about crunching data, for
which computing is also used, and to which many of the techniques
you will learn can be applied.

We are talking about building models, based on theory or law, and
using them to make predictions about the natural world, or better
understand existing observations.

Computational science is not reality! Computation science is used to
create models. Experimental science is reality.

Erik Spence (SciNet HPC Consortium) Modelling, Validation & Verification 4 February 2014 5 / 20



Basic Framework

Data Laws/Theory

F

gz

m(t)

m(t)z̈ = F −m(t)g
F ∝ ṁ

Numerical
Computation

Erik Spence (SciNet HPC Consortium) Modelling, Validation & Verification 4 February 2014 6 / 20



What can go wrong?
Problems going from data to
laws/theory: beyond the scope
of this class.

We can have errors translating
from a mathematical law/theory
to a computational model.

Various types of computation
errors can be introduced:

I Discretization error.
I Truncation error.
I Roundoff error.
I Numerical instabilities.

Or just plain old bugs can be
introduced.

Process of testing this:
verification and validation.

m(t)z̈ = F −m(t)g
F ∝ ṁ

Erik Spence (SciNet HPC Consortium) Modelling, Validation & Verification 4 February 2014 7 / 20



Verification: test!
Verification is the act of confirming that we are solving the intended
equations correctly in the regime of interest. This requires testing:

Use modular programming.

Develop code whose sole purpose is to test the module that you are
developing. I usually put it in a separate ’testing’ directory.

Add the testing code to the repository.

Compile the testing code with an optional rule in your Makefile.

Develop many and manifold tests. Any unique and relevant test you
can think of, put it in there.

As a general rule, unless you’ve tested the code recently, assume it
doesn’t work.

If someone gives you code that doesn’t come with testing functions,
assume it doesn’t work (and assume he doesn’t know how to write
good code).

Erik Spence (SciNet HPC Consortium) Modelling, Validation & Verification 4 February 2014 8 / 20



Modularity makes testing much easier

Good

Diffusion.cpp

constants.h field.h io.h

Not Good

Diffusion.cpp

constants.h

field.h io.h

Erik Spence (SciNet HPC Consortium) Modelling, Validation & Verification 4 February 2014 9 / 20



Verification: analytics and benchmarks
So we’re writing our testing code. What kind of tests can we perform?

Comparison to analytic solutions:
I Solutions tend to be for simple situations - not hard tests of the

computation.
I Necessary. If your code doesn’t solve these correctly you’ve got serious

problems.
I Analytic solutions exist for certain classes of resolution tests, since you

have control over the size of your error.

Benchmarking: comparing the results of your code to other codes
which solve the same problem, in the same parameter regime.

I Does not demonstrate that either solution is correct.
I Can show that at last one code or version has a problem, or that

something has caused changes.
I Is more powerful if different algorithm types are used.
I Save the results of benchmarks in your testing directory.

Erik Spence (SciNet HPC Consortium) Modelling, Validation & Verification 4 February 2014 10 / 20



Verification: convergence

Convergence testing is used to answer the question: is my resolution high
enough?

Convergence testing is performed by increasing the resolution of the
code and confirming that the result does not change significantly.

For codes that include expansions of quantities (such as spectral or
pseudo-spectral codes), convergence testing includes increasing the
number of terms of expansion to see if the result changes significantly.

What does “change significantly” mean? That depends on what
you’re studying. If you’re not sure, ask someone who knows. Different
fields have different criteria.

Do not fall into the trap of not doing convergence studies!

Again, the existence of convergence does not mean that the solution
is correct, but lack of convergence indicates a problem.

Erik Spence (SciNet HPC Consortium) Modelling, Validation & Verification 4 February 2014 11 / 20



Validation: testing against reality
The only way to know that enough natural law has been incorporated into
the model is to test it against the real world, which means data.

The only way to do validation of
experimental simulations is to
compare to the experiment that
you’re simulating.

It must be in a regime you are
realistically interested in, but
still experimentally accessible.

It requires collaboration with
experimenters.

It demonstrates that there is a
regime in which your code
successfully reproduces reality. arXiv:astro-ph/0206251

Erik Spence (SciNet HPC Consortium) Modelling, Validation & Verification 4 February 2014 12 / 20



Discretization error

What is it? Where does it come
from?

In the real world space and
time are continuous. But
simulations and calculations
are not.

Variables must be converted
from continuous to discrete.

Space is sliced up into grids.
Time is changed to steps.

The density of the grids and
steps goes up with increasing
resolution.

Erik Spence (SciNet HPC Consortium) Modelling, Validation & Verification 4 February 2014 13 / 20



Discretization error, continued

Discretization error is the error introduced to a calculation by the act of
discretizing the variables. What’s the problem?

One must be sure the grid density (resolution) is high enough that
discretization errors are at an acceptable level.

One must be sure that the resolution is high enough that all features
of the physical system are being captured by the computation.

What resolution is high enough? This depends on what is being
discretized (time versus space), the type of calculation, and other
factors.

There are relationships between the discretization of the various
variables that need to be respected, to keep discretization errors
under control (and to prevent numerical instabilities).

Erik Spence (SciNet HPC Consortium) Modelling, Validation & Verification 4 February 2014 14 / 20



Truncation error

Truncation error occurs when an expansion in your calculation is
truncated. Meaning, instead of using this:

ex =
∞∑

n=0

xn

n!
= 1 + x+

x2

2
+
x3

6
+
x4

24
+ ...

we use this:

ex ' 1 + x+
x2

2
.

Obviously truncation is necessary. How do we determine where to
truncate? How many terms should we keep?

Erik Spence (SciNet HPC Consortium) Modelling, Validation & Verification 4 February 2014 15 / 20



Where to truncate?
Choosing where to truncate is sometimes more art than science. The
question you need to answer: is what I am throwing away important to the
calculation?

Sometimes the answer is obvious. In the case of ex, we can sensibly
truncate when we reach machine precision, meaning choose n such that∣∣∣∣xn

n!

∣∣∣∣ < ε

where ε is machine precision.

Other cases are not so obvious. Here’s how I approach the problem:
determine some metric for what you are expanding which captures its
importance (size, magnitude, energy, ...) and then compare the largest
term you are throwing away to the largest non-trivial term. I like to have
at least one order of magnitude size difference between them, preferably
two orders.

Erik Spence (SciNet HPC Consortium) Modelling, Validation & Verification 4 February 2014 16 / 20



Roundoff errors
Roundoff error occurs when you’re not being careful with which
combinations of types of numbers you are operating on:

(a+ b) + c 6= a+ (b+ c)

#include <iostream> // RoundOff.cpp

int main() {
double a = 1.0, b = 1.0, c = 1e-16;

std::cout << (a - b) + c << std::endl;

std::cout << a - (b + c) << std::endl;

return 0;

}

ejspence@mycomp ~> g++ RoundOff.cpp -o RoundOff

ejspence@mycomp ~> ./RoundOff

1e-16

0

Erik Spence (SciNet HPC Consortium) Modelling, Validation & Verification 4 February 2014 17 / 20

~
~


Roundoff errors
Roundoff error occurs when you’re not being careful with which
combinations of types of numbers you are operating on:

(a+ b) + c 6= a+ (b+ c)

#include <iostream> // RoundOff.cpp

int main() {
double a = 1.0, b = 1.0, c = 1e-16;

std::cout << (a - b) + c << std::endl;

std::cout << a - (b + c) << std::endl;

return 0;

}

ejspence@mycomp ~> g++ RoundOff.cpp -o RoundOff

ejspence@mycomp ~> ./RoundOff

1e-16

0

Erik Spence (SciNet HPC Consortium) Modelling, Validation & Verification 4 February 2014 17 / 20

~
~


Roundoff errors, continued

Roundoff errors can occur anytime you start operating near machine
precision.

’Machine precision’ (or ’machine epsilon’) is the upper bound on the
relative error due to rounding. This is generally 1e-8 for single
precision (float) and 1e-16 for double.

Roundoff errors are most common when subtracting or dividing two
non-integer numbers that are about the same size, thus forcing the
computer to do arithmetic near machine epsilon.

Do your best to modify your algorithms to avoid such calculations.

Erik Spence (SciNet HPC Consortium) Modelling, Validation & Verification 4 February 2014 18 / 20



Numerical instabilities

Huh? What are numerical instabilities?

Numerical instabilities happen in a variety of situations. You’ll know
you have an instability when things ’blow up’.

But how can that happen? Don’t my equations represent reality?
Reality doesn’t ’blow up’.

The problem is that reality is continuous, and we’ve discretized the
problem.

How do we avoid instabilities? Usually high-enough resolution, in
space or time or both, will prevent instabilities.

Certain classes of algorithms and techniques are more prone to
instabilities than others. Be aware of the weaknesses in the algorithm
you’re using.

Be aware of what they look like.

Erik Spence (SciNet HPC Consortium) Modelling, Validation & Verification 4 February 2014 19 / 20



Numerical instability example

0.00 0.05 0.10 0.15 0.20

distance [m]

0.06

0.04

0.02

0.00

0.02

0.04

0.06
T
e
m

p
e
ra

tu
re

 [
a
rb

]

t = 0

Erik Spence (SciNet HPC Consortium) Modelling, Validation & Verification 4 February 2014 20 / 20



Numerical instability example

0.00 0.05 0.10 0.15 0.20

distance [m]

0.000

0.001

0.002

0.003

0.004

0.005
T
e
m

p
e
ra

tu
re

 [
a
rb

]
t = 0
t = 1

Erik Spence (SciNet HPC Consortium) Modelling, Validation & Verification 4 February 2014 20 / 20



Numerical instability example

0.00 0.05 0.10 0.15 0.20

distance [m]

0.000

0.002

0.004

0.006

0.008

0.010
T
e
m

p
e
ra

tu
re

 [
a
rb

]
t = 0
t = 1
t = 2

Erik Spence (SciNet HPC Consortium) Modelling, Validation & Verification 4 February 2014 20 / 20



Numerical instability example

0.00 0.05 0.10 0.15 0.20

distance [m]

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016
T
e
m

p
e
ra

tu
re

 [
a
rb

]
t = 0
t = 1
t = 2
t = 3

Erik Spence (SciNet HPC Consortium) Modelling, Validation & Verification 4 February 2014 20 / 20



Numerical instability example

0.00 0.05 0.10 0.15 0.20

distance [m]

0.005

0.000

0.005

0.010

0.015

0.020
T
e
m

p
e
ra

tu
re

 [
a
rb

]
t = 0
t = 1
t = 2
t = 3
t = 4

Erik Spence (SciNet HPC Consortium) Modelling, Validation & Verification 4 February 2014 20 / 20



Numerical instability example

0.00 0.05 0.10 0.15 0.20

distance [m]

0.02

0.01

0.00

0.01

0.02

0.03

0.04
T
e
m

p
e
ra

tu
re

 [
a
rb

]
t = 0
t = 1
t = 2
t = 3
t = 4
t = 5

Erik Spence (SciNet HPC Consortium) Modelling, Validation & Verification 4 February 2014 20 / 20



Numerical instability example

0.00 0.05 0.10 0.15 0.20

distance [m]

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5
T
e
m

p
e
ra

tu
re

 [
a
rb

]
t = 0
t = 1
t = 2
t = 3
t = 4
t = 5
t = 8

Erik Spence (SciNet HPC Consortium) Modelling, Validation & Verification 4 February 2014 20 / 20



Numerical instability example

0.00 0.05 0.10 0.15 0.20

distance [m]

3

2

1

0

1

2

3

T
e
m

p
e
ra

tu
re

 [
a
rb

]
t = 0
t = 1
t = 2
t = 3
t = 4
t = 5
t = 8
t = 10

Erik Spence (SciNet HPC Consortium) Modelling, Validation & Verification 4 February 2014 20 / 20


	Computational science
	Modelling
	What can go wrong

	Verification & validation
	Analytics and benchmarking
	Convergence
	Testing against experiments

	Universal errors
	Discretization error
	Truncation error
	Roundoff errors
	Numerical instabilities


